Parameter Selection for Graph Cut Based
| mage Segmentation*

Bo Pend Olga Veksler

boopeng@gmail . com olga@csd.uwo.ca
Hong Kong Poltechnic University  University of Western Ontario
Hung Hom, Kowloon, Hong Kong London, ON N6A 5B7 Canada

Abstract

The graph cut based approach has become very popular foadtive seg-
mentation of the object of interest from the background. Gfrtae most im-
portant and yet largely unsolved issues in the graph cut eatation frame-
work is parameter selection. Parameters are usually fixiEatdleand by the
developer of the algorithm. There is no single setting obpaaters, how-
ever, that will result in the best possible segmentatiomforgeneral image.
Usually each image has its own optimal set of parametersegifnentation
of an image is not as desired under the current setting ofpeteas, the user
can always perform more interaction until the desired tesatle achieved.
However, significant interaction may be required if paramsettings are far
from optimal. In this paper, we develop an algorithm for awddic parameter
selection. We design a measure of segmentation qualitydbaselifferent
features of segmentation that are combined using AdaB®bsh we run the
graph cut segmentation algorithm for different parametémes and choose
the segmentation of highest quality according to our learedsure. We de-
velop a new way to normalize feature weights for the AdaBbased clas-
sifier which is particularly suitable for our framework. Eeqgmental results
show a success rate of 8596 for parameter selection.

1 Introduction

General purpose image segmentation is a highly ambigualdem. In many applica-
tions, such as medical imaging, user guidance is availalielp reduce the ambiguities
in segmentation. Sometimes, even with a small amount ofins&action, segmentation
quality is largely improved. Thus interactive segmentatiechniques are becoming in-
creasingly popular over the last decade. In this paper wsidenthe most common type
of interactive segmentation: segmentation of the objeattefest from its background.
There are many different approaches to interactive sedtient such as snakes [9],
livewire [6], and level sets [14]. In recently years, intefiee segmentation based on
a graph cut [3, 4] has become very popular. The original werlluie to Boykov and
Jolly [3], followed by extensions [1, 12, 18]. Probably thgdest advantage of the graph
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Figure 1: (a) is the original image with the seeds; (b-h) sttmwobject segment for an in-
creasing value of paramet&r (b,c) are oversegmentations, (d,e) are good segmengation
and (f-h) are undersegmentations.

cut algorithm is that it addresses segmentation in a gloptinization framework and
guarantees a globally optimal solution for wide class ofrgpéunctions [11]. Another
advantage is that both the regional and the boundary piepe&dn be used. In addition,
the user interface is simple and convenient - the user marke ®bject and background
"seeds”. The seeds can be loosely positioned inside thedjel background regions,
which is easier compared to placing seeds exactly on thedawyplike in livewire [6].

A fundamental, but far from having been solved issue in g@aghsegmentation is
parameter selection. Inappropriate choice of parametaysrasult in unsatisfactory seg-
mentation, and the user may have to spend a significant anobtime correcting the
segmentation. In this paper, we address selecting one afdlseimportant parameters in
graph cut segmentation, which we call paramatésee Sec. 2). Fig. 1 (b-h) shows the
results of segmenting the image in Fig. 1(a) under diffevahies ofA. The parameter
A controls under/over segmentation of an image. Here, ogerertation means that the
boundary between the object and background regions is tap lm oversegmentation,
the object region is not coherent, i.e. it consists of too yr@aces or its boundary is not
smooth, see Fig. 1(b,c). Undersegmentation means thabtiredary between the object
and background segments is too short. In undersegmenttét@boundary is too smooth
and the background segment may contain pieces of the faredr(r vice versa), see
Fig. 1(f-h). For low values ofA, an oversegmentation, and for larger valuesi pfan
undersegmenation tend to occur. There is a good randewaflues where neither un-
dersegmentation no oversegmentation occurs (Fig. 1(deWever, for each particular
image, the range of appropriaevalues may be different [10]. Usually, is fixed to a
certain value by the developers of the segmentation algoriaind it is expected to give
satisfactory segmentations for the images similar to thieaewere used to tune the pa-
rameters. But when given a different class of images, thdtsamight not be satisfactory.

For better performanceé, has to be estimated for each image separately. Statistical
approaches, such as [20] lead to computationally intréetaftimators. We pursue an
empirical approach. Given segmentation results for difiek values, such as in Fig. 1,
we choose the best one, according to the measure of segioepaality that we develop.



We investigate different measures of segmentation quptityposed previously, and
develop a measure similar to [15]. Our measure of segmentapiality is based on
intensity, gradient, contour continuity, and texture feas. We approach the problem
of segmentation quality as a binary classification problgoofl segmentation vs. bad
segmentation), and train a classifier using the AdaBoostitign [7].

The idea of selecting parameters based on a segmentatility queasure is not novel,
although our particular segmentation quality classifiexdsel. The novelty of our work
comes from a new way to normalizing feature weights usedHerclassifier. Our ap-
proach to feature normalization is uniquely appropriatdtie parameter selection prob-
lem, and leads to a big improvement in performance, fromreate of approximately
15% with standard feature normalization to onl¢% error rate with our normalization.

There are several reasons why we address selection of onhgle parameten .
First of all, this parameter has the greatest effect on satatien results, yet it is the
hardest parameter to estimate from the image itself, bedaissrelated to the length of
the expected boundary between the object/backgroundrggi@ther parameters in the
graph cut framework can be reasonably well estimated framgihen image. The other
reason is computational, since we have to re-run the graphlgarithm for different
parameter values. Therefore the parameter search spatebdwbw-dimensional.

Our training set consists of 80 images with 10 segmentatach, under differert
settings. Segmentations were manually labeled into tweseks, "good” (positive), and
"bad” (negative). Leave one out cross validation error imte4%, namely the top quality
segmentation chosen for an image is a "bad” segmentationlyndo4% of cases.

2 Interactive segmentation with a graph cut

We now review the interactive segmentation framework of @gmentation of an object
from the background is formulated as a binary labeling prblGiven a set of label®”
and a set of pixels?, the task is to assign to each pixet & alabelf, € . For binary
image segmentation, the label set45={0,1}, where O corresponds to the background
and 1 corresponds to the object. et {f,|fp € £} stand for a labeling, i.e. label
assignments to all pixels. An energy function is formulaed

E(f) = Dy(fp) +A- - I(f f 1
(f) pezy p(fp) (pyge/Vqu (fo # fq) (1)

The first sum in Eq. (1) is called the data term and it measupesixels like the
labels in labeling. Dp(fp) measures how well labé}, fits pixel p. A common approach,
and the one we use in our work, is to build a foreground anddpackd intensity models
from the foreground seeds and background seeds, respgctifeen theDy(fp) terms
are the negative log likelihoods of the constructed baakgdéforeground models.

The second sum in Eq. (1) is called the smoothness term andiits the weighted
sum of discontinuities irf. Here.#(fp # fg) is 0 if f, = fq and 1 otherwise.. /" is
a neighborhood system, we use the 4-connected grid whickisterof ordered pixel
pairs(p,q). The smoothness term prefers a labelfnghich does not have many jumps
between labels 0 and 1, that is a labelinig expected to have shorter boundaries between
regions labeled as 1 and 0. To encouraged the boundary ta lieecintensity edges in
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the image, a common choice ([3])igq =€ 20> , wherel,, is the intensity of pixep.



Parametep is related to the level of variation in the image, and it isteethe average
absolute intensity difference between the neighboringlpix

Boykov et.al. [3] show how to minimize this energy in Eq. (lij}iwa minimum cut on
a certain graph. We use the efficient algorithm of [2] for corimy the minimum cut.

The parametei in the energy in Eq. (1) controls the relative weight of theedarm
versus the smoothness termAlfis too small, an oversegmentation of an image tends to
occur. IfA is too large, an undersegmentation typically occurs. Cingasn appropriate
A is a challenging task, and is the main goal of this paper.

3 Segmentation Evaluation

Segmentation evaluation is closely tied to the question lrditvis a good segmentation.
While evaluating segmentation results is an importantitagkelf, in this paper, segmen-
tation evaluation is a crucial task since it forms an integaat of the proposed parameter
selection method. See [21] for a review of segmentatioruagain.

Many algorithms evaluate segmentation subjectively. O#hgorithms use ground
truth for evaluation, this is calleslipervised segmentation evaluation [13, 16]. Supervised
evaluation is appropriate if the goal is to compare diffeeagmentation algorithms or to
find the best fixed parameters for a single segmentationitiigor Our goal is to tuné
for each particular image, and thus no ground truth is avkila

Unsupervised evaluation methods do not rely on ground truth. Heuristicsrieasur-
ing segmentation quality are designed. The heuristics asedon some cues related to
the Gestalt grouping principles, such as intra-regionarmiity, inter-region contrast, etc.
Many methods design segmentation evaluation heuristjealeview is in [5]. No single
cue is enough for a successful segmentation evaluatioreftire multiple cues have to
be combined. Cue combination is challenging to addresddiiatly.

Another unsupervised evaluation approach is based oritkegain evaluation function
from a database with ground truth [15, 19]. Just as the umsigeel approaches, the
method in [15] is based on computing different features atistics on segmentation
results. However, the advantage of [15] is that a combinaifalifferent features is done
in a principled manner, through training a classifier on adhsegmented database.

Our approach to segmentation evaluation is inspired by. [kb]15], they formulate
the problem of determining whether a segmentation is goihasy classification. They
train a linear classifier, which given an image and its sedatem, returns 1 if the seg-
mentation is good and -1 otherwise. For training images ofiggegmentations, they use
images segmented by humans [15]. For bad segmentatioggath@omly pair a human
segmentation with a different image (not the image wheresbgmentation came from).
Their features are computed from "superpixels” providedhgge oversegmentation.

We also train a classifign(x) to recognize a good segmentation. Our training data
consists of segmentation results under different valuds &#¥e manually label good seg-
mentations as positive examples, and bad segmentatiodsr@egmentation and over-
segmenation) as negative examples. Our training datadehtran in [15]. In [15], the
negative examples are created by pairing a segmentatisidpobby a human with a ran-
dom image. Therefore, even though segment boundaries a@tlsnthere is no contrast
on the boundary and no coherency inside regions, in mosscalee good segmenta-
tions (positive examples) have a good contrast on the bayndaerefore it should be



relatively easy to separate the two classes, and, in fagjtfifid that a linear classifier is

sufficient. In our training set, all segmentations are poediby the graph cut algorithm
for different values of, and all of them tend to have segment boundaries coinciditing w
intensity edges in the image, which makes our classificagioblem harder.

An input to the classifien(x) is a feature vectax which consist of features extracted
from a segmentation example. We discuss the features thasevim Sec. 4. Unlike [15],
we did not find it necessary to compute "superpixels” to basefeatures on. We use
the Real AdaBoost [7] to train a classifiefx). Real AdaBoost, in addition to the class
label, provides confidence estimate&x). A high positive value of(x) indicates that
the classifier is very confident thatis in the positive class (i.e. a good segmentation).
Thus instead of just a binary decision, namely a good or a bgahentation, we take the
confidence value(x) as the final measure of segmentation goodness, which gives a r
range of values. We use implementation of [17].

4 Segmentation Features

We now describe the features that we use for classifier trginWe use features based
on intensity, texture, gradient direction, and corners fdatures are computed based on
the original imagd, and its segmentatioB Herel, is the intensity of pixep, S, = 0
andSy = 1 mean that pixep is assigned, respectively, to the background or the object.
In general, there may be multiple object/background se¢gn&¥e use gray level images
because their segmentation is more challenging compaieadoimages.

Intensity Features

One of the most intuitive and frequently used features fandifying the quality of a
segmentation is based on the intra-region uniformity atetiregion dissimilarity. Often
in the object region, image pixels might have nearly cortstaslowly varying intensity,
and the intensity differences between pixels on the boyrafahe object and background
regions are often greater than the differences within theablsegion. In the case of
images with little texture, these intensity based intrgiae and inter region criteria prove
to be effective and simple. So we combine two properties feasaring the quality
of segmentation: the inter-region differences across thenbary and the intra-region
differences between neighboring pixels within each ohjegiort.

First intensity feature is based on the pairwise averagelatesintensity differences:

Z(p,q)eB“p* lq _ Z(p,q)eo“p* lq
B O]

whereB is the set of pairs of neighboring pixels along the objectriatawy, i.e. B =
{(p,0)|Sp =1, =0 or S, =0,§ = 1}; O'is the set of pairs of pixels inside an ob-
ject region, i.e.0 = {(p,q)|Sp, = 1, = 1}, |B| and|O| are the sizes of se® andO,
respectively. For a good segmentatiienstyr Should be positive and large.

We also compare the histogram of absolute intensity diffees of pixel pairs irB
and the histogram of pixel pairs @. Their histograms should be distinct. To measure
the dissimilarity between the histograms, we usexhstatistic, which is given by:

Fintensity1(1,S) =

1As mentioned before, we assume that there is coherency dtfiinvihe object region, and therefore we do
not measure intra-region similarity within the backgrouadion.



(H(i,B) —H(i))
Fintensity2(1,S) = <
|ntenS|ty2( ) ) Z H(i)

whereH (i, X) is the value of the histogram &f at bini, andH (i) = [H(i,B) + H(i,0)] /2
is the mean histogram.

Our two intensity based features are based on the assuntiptibthhe object has con-
stant or slowly changing intensities. They may be mislegdlirthe object has strong
texture, in which case texture features are more helpfalssetion below.

Gradient Direction Features

The gradient of an image is anther important feature. Foroalgegmentation, we expect
the gradient to change smoothly in most places on the boyndaless the object or
background have strong texture. The gradient magnitudesiady captured iffinensity1
andFnensity2. However, sometimes there is a weak boundary with very weallignt
magnitude but very consistent gradient direction. Gép) be the gradient direction at
pixel p. We can capture gradient direction consistency in theiofig feature:

S (paeslG(p) — G()|

Fgradientl(las) = |B| )

where, as beford is the set of pixel pairs on the boundary of background/diogggons.
Fgradient1 is the average value of gradient direction differences.sthaller itis, the higher
is the quality of the extracted boundary.

We also have another feature based on gradient directiocchvidnbased on variance:

€ Gp —G(g)|—G)?2
Foradient2(1,S) = \/Z(p,q) 8 (|B)| (a)] ) |

Q]

whereG is the average difference of gradient directions on the daon A small value
of Fyradient2 indicates a good segmentation.

Boundary Corner Feature

Smoothness of a boundary is a strong cue for human perceptstem. Therefore we
expect that a good segmentation will have smooth boundaitle®nly a few corners. We
use SUSAN corner detector to detect any corners on the digegground boundary. We
detect corners in the "mask” imagdw corresponding to segmentati&n That isMp = 0

if Sp=0andMp =255if S, = 1, whereM,, is the value of imag#/ at pixel p. For the
boundary feature, we simply SBfoundary(S) to be the number of corners detected in the
segmentatiois. Notice that we do not need the original imddger this feature.

Texture Feature

The last feature we use for our classifier is based on textiinelps to detect a good seg-
mentation when strong texture is present in the object. Adsted way to describe texture



is through a bank of Gabor filters [8]. To compare texture efdhject and background,
we compute the histograms of Gabor filter bank responsesatepafor the object and
the background. Then we S&byqure to be thex? distance between these histograms. As
a measure of the quality of segmentation, the texture @iffee between the object and
background is expected to be large for a good segmentattsraall for a bad one. In the
case of undersegmentation, a part of object might be cledsif a part of background (or
vice versa), thu§iequre Will be small. However, the drawback of this feature is it gan
detect oversegmentation, which may receive a high scorertigl yre.

5 Feature Normalization

Before training the classifier, features have to be norredligince they vary widely across
different images and cannot be directly compared. Therénarestandard ways for fea-
ture normalization. First way is used to make sure diffefeatiures are on approximately
the same scale, since this is desirable for some classifietsg, X2, ...X, be then train-
ing samples, and let thgh feature ofith sample beq‘. In such case, ifl is the total

number of features, then fgr=1,...,d, jth feature valuesi,x),...,xs are normalized
to be approximately in some fixed range, usuallyari] or [-1,1]. This is done either
by linearly stretching the range, or by normalizing valugsdz, ...,X) to have zero mean,
unit variance. Such feature normalization has no effectuorAalaBoost classifier.

Second way is to normalize each training image itself, fanegle, by linearly stretch-
ing all the intensity values to some fixed range, usually betyj—1,1]. The idea is that
any features computed from normalized examples will be nbuig the same range.

We found that the standard approach to feature normalizatiees not work well.
The error rate, at best, was around 15% when we tried diffevaps of normalizing the
training images. The reason is as follows. In different ismghe average contrast on
the boundary between the object of interest and the backdroan be very different,
sometimes only a few gray level values, and sometimes as &@ hundred gray level
values. Thus the range Bfyensity1, Fintesnsity2 and other features values that correspond to
a good segmentation varies widely across different images after image normaliza-
tion. Thus there is no single threshold for any of the feathet works reasonably well
for any feature, leading to a weak classifier performance.

Let | be some image. Recall that we perform segmentation forrdiitet values.
Let S, S, ..., S be thek different segmentations of imadeand letxy, X, ..., X« be the
k training examplescorresponding to these segmentations. 1be another image and
Y1,Y2, ..., Yk be thek training examples corresponding to theegmentations of imagk

For these examples, let us consider the values of some firtdrég, that isx), x5,
..., X for imagel andyl,y,, ...,y for imageJ. Suppose thgth feature corresponds to
Fintensity1, SO the larger the feature value, the better is the separbtitween the object
and the background. The range>¢fs maybe betweerf0.1,0.4) and the range oy; 's
between(0.3,0.7). Due to the contrast differences in the imadesndJ, a value of
0.3 most likely signals a good segmentation for imagéut not a good segmentation
for imageJ. Therefore, for imagé, we should care about how large the valuesq’of

are compared to the range of valuesxjmx%, ,x1‘< that is compared to the other values

2Each training examplg corresponds to a vector of features extracted from imagyed segmentatioS.
The features are as described in Sec. 4.



in its own range. In other words, we do not care about the absohlues of features
X}, %5, ...,%}, but only about their rank in relation to each other.

So our feature normalization is as follows. Gideaxamples (feature vectorsy), x,
..., Xk corresponding to th& segmentations of an imadeunder differentA settings,
for each featurg, we replaceq with its rank in the se{xi,x),...,x.}. We found this
normalization to be very effective, see Sec. 6.

Our feature normalization is uniquely suitable for the paeter selection problem,
since for a given image, we normalize feature values witheettoall segmentations for
this image. Therefore, our measure of segmentation queityonly be applied to a set of
segmentation results for a single image, i.e. it cannot péexpto a single segmentation,
and therefore it is not a stand-alone measure like the oribin [

6 Experimental Results

We have collected 80 images of natural scenes from the webpearformed graph cut
segmentation withk in the range from of 2 to 74 with a step size of 8, which gives 10
segmentation results per image. We manually labeled eachesgation result as "good”
(the positive class) or "bad” (the negative class). Culyentrr system is applied after the
user enters all the brush strokes. The system could be r&rrmuaer makes corrections.

Since our data set is small, we use leave one out cross vahidhiOOCV). We take
one image out of 80 (which means that we take out all 10 segtiens for different
values ofA for this image) and train the classifier on the remaining 78ges. Then
we test the classifier on the image (all the 10 segmentatisocaged with it) we took
out. If we compute the overall classification error (bad segtations classified as good,
and vice versa), it is 16%. However, our goal is to return to the user the segmentatio
result which we think is the best one, therefore we measuor eate differently. Out
of 10 segmentation results for the image that was held outretren to the user the
segmentation with the highest confidence value for beingénpositive class. Now the
natural measure of error is how many bad segmentations tammeel to the user, that is
how often the segmentation with the highest confidence fiorgbee good segmentation is
actually a bad segmentation. The error rate is o3y %. Our new feature normalization
scheme makes a big difference in results. If we use a stamdardalization approach,
the error rate is around 15%, where, again, the error is medsis the percentage of bad
segmentations returned to the user (the overall classificatror rate is worse than 30%).

We also test how well our parameter selection works comparasing a fixed\ . We
perform segmentation with a fixed valuedin the range from 2 to 114 in step size of 8.
For each fixedi, we compute the error rate, that is the percentage of badesggtions.
The error rate starts at 100% far= 2, then goes down to 38% for A = 66 and then
goes up again to 83% for A = 114. Thus if segmentation with a fixédis performed,
the best error rate would be 396, which is significantly worse compared to choosing an
appropriatel using our system.

Some randomly chosen results for automatically selectamgmpetei are in figure 2.
The average running time to perform graph cut segmentatmmpute the features, and
classify the results is under 3 minutes. To improve efficjemee could use the para-
metric max flow algorithm of [10], which allows computing teeries of minimum cuts
corresponding to different values dfwith only slight increase in cost compared to com-



puting a single cut. Note however, that the majority of timedur algorithm is spent on
computing features, thus the speedup would be relativelyasio
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Figure 2: Segmentation results produced by automaticalgctingA .



