
Parameter Selection for Graph Cut Based
Image Segmentation∗

Bo Peng†

boopeng@gmail.com

Hong Kong Poltechnic University
Hung Hom, Kowloon, Hong Kong

Olga Veksler
olga@csd.uwo.ca

University of Western Ontario
London, ON N6A 5B7 Canada

Abstract

The graph cut based approach has become very popular for interactive seg-
mentation of the object of interest from the background. Oneof the most im-
portant and yet largely unsolved issues in the graph cut segmentation frame-
work is parameter selection. Parameters are usually fixed beforehand by the
developer of the algorithm. There is no single setting of parameters, how-
ever, that will result in the best possible segmentation forany general image.
Usually each image has its own optimal set of parameters. If segmentation
of an image is not as desired under the current setting of parameters, the user
can always perform more interaction until the desired results are achieved.
However, significant interaction may be required if parameter settings are far
from optimal. In this paper, we develop an algorithm for automatic parameter
selection. We design a measure of segmentation quality based on different
features of segmentation that are combined using AdaBoost.Then we run the
graph cut segmentation algorithm for different parameter values and choose
the segmentation of highest quality according to our learntmeasure. We de-
velop a new way to normalize feature weights for the AdaBoostbased clas-
sifier which is particularly suitable for our framework. Experimental results
show a success rate of 95.6% for parameter selection.

1 Introduction

General purpose image segmentation is a highly ambiguous problem. In many applica-
tions, such as medical imaging, user guidance is available to help reduce the ambiguities
in segmentation. Sometimes, even with a small amount of userinteraction, segmentation
quality is largely improved. Thus interactive segmentation techniques are becoming in-
creasingly popular over the last decade. In this paper we consider the most common type
of interactive segmentation: segmentation of the object ofinterest from its background.

There are many different approaches to interactive segmentation, such as snakes [9],
livewire [6], and level sets [14]. In recently years, interactive segmentation based on
a graph cut [3, 4] has become very popular. The original work is due to Boykov and
Jolly [3], followed by extensions [1, 12, 18]. Probably the biggest advantage of the graph

∗This work was partially supported by NSERC Canada
†This work was done while Bo Peng was a student at the University of Western Ontario.

(a) (b)λ = 2 (c) λ = 10 (d)λ = 18

(e)λ = 26 (f) λ = 34 (g)λ = 42 (h)λ = 50

Figure 1: (a) is the original image with the seeds; (b-h) showthe object segment for an in-
creasing value of parameterλ ; (b,c) are oversegmentations, (d,e) are good segmentations,
and (f-h) are undersegmentations.

cut algorithm is that it addresses segmentation in a global optimization framework and
guarantees a globally optimal solution for wide class of energy functions [11]. Another
advantage is that both the regional and the boundary properties can be used. In addition,
the user interface is simple and convenient - the user marks some object and background
”seeds”. The seeds can be loosely positioned inside the object and background regions,
which is easier compared to placing seeds exactly on the boundary, like in livewire [6].

A fundamental, but far from having been solved issue in graphcut segmentation is
parameter selection. Inappropriate choice of parameters may result in unsatisfactory seg-
mentation, and the user may have to spend a significant amountof time correcting the
segmentation. In this paper, we address selecting one of themost important parameters in
graph cut segmentation, which we call parameterλ (see Sec. 2). Fig. 1 (b-h) shows the
results of segmenting the image in Fig. 1(a) under differentvalues ofλ . The parameter
λ controls under/over segmentation of an image. Here, oversegmentation means that the
boundary between the object and background regions is too long. In oversegmentation,
the object region is not coherent, i.e. it consists of too many pieces or its boundary is not
smooth, see Fig. 1(b,c). Undersegmentation means that the boundary between the object
and background segments is too short. In undersegmentation, the boundary is too smooth
and the background segment may contain pieces of the foreground (or vice versa), see
Fig. 1(f-h). For low values ofλ , an oversegmentation, and for larger values ofλ , an
undersegmenation tend to occur. There is a good range ofλ values where neither un-
dersegmentation no oversegmentation occurs (Fig. 1(d,e)), however, for each particular
image, the range of appropriateλ values may be different [10]. Usually,λ is fixed to a
certain value by the developers of the segmentation algorithm, and it is expected to give
satisfactory segmentations for the images similar to thosethat were used to tune the pa-
rameters. But when given a different class of images, the results might not be satisfactory.

For better performance,λ has to be estimated for each image separately. Statistical
approaches, such as [20] lead to computationally intractable estimators. We pursue an
empirical approach. Given segmentation results for differentλ values, such as in Fig. 1,
we choose the best one, according to the measure of segmentation quality that we develop.

We investigate different measures of segmentation qualityproposed previously, and
develop a measure similar to [15]. Our measure of segmentation quality is based on
intensity, gradient, contour continuity, and texture features. We approach the problem
of segmentation quality as a binary classification problem (good segmentation vs. bad
segmentation), and train a classifier using the AdaBoost algorithm [7].

The idea of selecting parameters based on a segmentation quality measure is not novel,
although our particular segmentation quality classifier isnovel. The novelty of our work
comes from a new way to normalizing feature weights used for the classifier. Our ap-
proach to feature normalization is uniquely appropriate for the parameter selection prob-
lem, and leads to a big improvement in performance, from error rate of approximately
15% with standard feature normalization to only 4.4% error rate with our normalization.

There are several reasons why we address selection of only a single parameterλ .
First of all, this parameter has the greatest effect on segmentation results, yet it is the
hardest parameter to estimate from the image itself, because it is related to the length of
the expected boundary between the object/background regions. Other parameters in the
graph cut framework can be reasonably well estimated from the given image. The other
reason is computational, since we have to re-run the graph cut algorithm for different
parameter values. Therefore the parameter search space hasto be low-dimensional.

Our training set consists of 80 images with 10 segmentationseach, under differentλ
settings. Segmentations were manually labeled into two classes, ”good” (positive), and
”bad” (negative). Leave one out cross validation error rateis 4.4%, namely the top quality
segmentation chosen for an image is a ”bad” segmentation in only 4.4% of cases.

2 Interactive segmentation with a graph cut

We now review the interactive segmentation framework of [3]. Segmentation of an object
from the background is formulated as a binary labeling problem. Given a set of labelsL
and a set of pixelsP, the task is to assign to each pixelp ∈P a labelfp ∈L . For binary
image segmentation, the label set isL ={0,1}, where 0 corresponds to the background
and 1 corresponds to the object. Letf = { fp| fp ∈ L } stand for a labeling, i.e. label
assignments to all pixels. An energy function is formulatedas:

E(f) = ∑
p∈P

Dp(fp)+ λ · ∑
(p,q)∈N

wpq ·I (fp 6= fq) (1)

The first sum in Eq. (1) is called the data term and it measures how pixels like the
labels in labelingf . Dp(fp) measures how well labelfp fits pixel p. A common approach,
and the one we use in our work, is to build a foreground and background intensity models
from the foreground seeds and background seeds, respectively. Then theDp(fp) terms
are the negative log likelihoods of the constructed background/foreground models.

The second sum in Eq. (1) is called the smoothness term and it counts the weighted
sum of discontinuities inf . HereI (fp 6= fq) is 0 if fp = fq and 1 otherwise.N is
a neighborhood system, we use the 4-connected grid which consists of ordered pixel
pairs(p,q). The smoothness term prefers a labelingf which does not have many jumps
between labels 0 and 1, that is a labelingf is expected to have shorter boundaries between
regions labeled as 1 and 0. To encouraged the boundary to lie on the intensity edges in

the image, a common choice ([3]) iswpq = e
−

(Ip−Iq)2

2σ2 , whereIp is the intensity of pixelp.

Parameterσ is related to the level of variation in the image, and it is setto the average
absolute intensity difference between the neighboring pixels.

Boykov et.al. [3] show how to minimize this energy in Eq. (1) with a minimum cut on
a certain graph. We use the efficient algorithm of [2] for computing the minimum cut.

The parameterλ in the energy in Eq. (1) controls the relative weight of the data term
versus the smoothness term. Ifλ is too small, an oversegmentation of an image tends to
occur. Ifλ is too large, an undersegmentation typically occurs. Choosing an appropriate
λ is a challenging task, and is the main goal of this paper.

3 Segmentation Evaluation

Segmentation evaluation is closely tied to the question of what is a good segmentation.
While evaluating segmentation results is an important taskin itself, in this paper, segmen-
tation evaluation is a crucial task since it forms an integral part of the proposed parameter
selection method. See [21] for a review of segmentation evaluation.

Many algorithms evaluate segmentation subjectively. Other algorithms use ground
truth for evaluation, this is calledsupervised segmentation evaluation [13, 16]. Supervised
evaluation is appropriate if the goal is to compare different segmentation algorithms or to
find the best fixed parameters for a single segmentation algorithm. Our goal is to tuneλ
for each particular image, and thus no ground truth is available.

Unsupervised evaluation methods do not rely on ground truth. Heuristics for measur-
ing segmentation quality are designed. The heuristics are based on some cues related to
the Gestalt grouping principles, such as intra-region uniformity, inter-region contrast, etc.
Many methods design segmentation evaluation heuristically, a review is in [5]. No single
cue is enough for a successful segmentation evaluation, therefore multiple cues have to
be combined. Cue combination is challenging to address heuristically.

Another unsupervised evaluation approach is based on learning an evaluation function
from a database with ground truth [15, 19]. Just as the unsupervised approaches, the
method in [15] is based on computing different features or statistics on segmentation
results. However, the advantage of [15] is that a combination of different features is done
in a principled manner, through training a classifier on a hand-segmented database.

Our approach to segmentation evaluation is inspired by [15]. In [15], they formulate
the problem of determining whether a segmentation is good asbinary classification. They
train a linear classifier, which given an image and its segmentation, returns 1 if the seg-
mentation is good and -1 otherwise. For training images of good segmentations, they use
images segmented by humans [15]. For bad segmentations, they randomly pair a human
segmentation with a different image (not the image where this segmentation came from).
Their features are computed from ”superpixels” provided byimage oversegmentation.

We also train a classifierh(x) to recognize a good segmentation. Our training data
consists of segmentation results under different values ofλ . We manually label good seg-
mentations as positive examples, and bad segmentations (undersegmentation and over-
segmenation) as negative examples. Our training data is harder than in [15]. In [15], the
negative examples are created by pairing a segmentation provided by a human with a ran-
dom image. Therefore, even though segment boundaries are smooth, there is no contrast
on the boundary and no coherency inside regions, in most cases. The good segmenta-
tions (positive examples) have a good contrast on the boundary. Therefore it should be

relatively easy to separate the two classes, and, in fact, [15] find that a linear classifier is
sufficient. In our training set, all segmentations are produced by the graph cut algorithm
for different values ofλ , and all of them tend to have segment boundaries coinciding with
intensity edges in the image, which makes our classificationproblem harder.

An input to the classifierh(x) is a feature vectorx which consist of features extracted
from a segmentation example. We discuss the features that weuse in Sec. 4. Unlike [15],
we did not find it necessary to compute ”superpixels” to base our features on. We use
the Real AdaBoost [7] to train a classifierh(x). Real AdaBoost, in addition to the class
label, provides confidence estimates,c(x). A high positive value ofc(x) indicates that
the classifier is very confident thatx is in the positive class (i.e. a good segmentation).
Thus instead of just a binary decision, namely a good or a bad segmentation, we take the
confidence valuec(x) as the final measure of segmentation goodness, which gives a real
range of values. We use implementation of [17].

4 Segmentation Features

We now describe the features that we use for classifier training. We use features based
on intensity, texture, gradient direction, and corners. The features are computed based on
the original imageI, and its segmentationS. HereIp is the intensity of pixelp, Sp = 0
andSp = 1 mean that pixelp is assigned, respectively, to the background or the object.
In general, there may be multiple object/background segments. We use gray level images
because their segmentation is more challenging compared tocolor images.

Intensity Features

One of the most intuitive and frequently used features for quantifying the quality of a
segmentation is based on the intra-region uniformity and inter-region dissimilarity. Often
in the object region, image pixels might have nearly constant or slowly varying intensity,
and the intensity differences between pixels on the boundary of the object and background
regions are often greater than the differences within the object region. In the case of
images with little texture, these intensity based intra-region and inter region criteria prove
to be effective and simple. So we combine two properties for measuring the quality
of segmentation: the inter-region differences across the boundary and the intra-region
differences between neighboring pixels within each objectregion1.

First intensity feature is based on the pairwise average absolute intensity differences:

Fintensity1(I,S) =
∑(p,q)∈B |Ip − Iq|

|B|
−

∑(p,q)∈O |Ip − Iq|

|O|

whereB is the set of pairs of neighboring pixels along the object boundary, i.e. B =
{(p,q)|Sp = 1,Sq = 0 or Sp = 0,Sq = 1}; O is the set of pairs of pixels inside an ob-
ject region, i.e.O = {(p,q)|Sp = 1,Sq = 1}; |B| and|O| are the sizes of setsB andO,
respectively. For a good segmentation,Fintensity1 should be positive and large.

We also compare the histogram of absolute intensity differences of pixel pairs inB
and the histogram of pixel pairs inO. Their histograms should be distinct. To measure
the dissimilarity between the histograms, we use theχ2 statistic, which is given by:

1As mentioned before, we assume that there is coherency only within the object region, and therefore we do
not measure intra-region similarity within the backgroundregion.

Fintensity2(I,S) = ∑
i

(H(i,B)− Ĥ(i))2

Ĥ(i)

whereH(i,X) is the value of the histogram ofX at bini, andĤ(i) = [H(i,B)+H(i,O)]/2
is the mean histogram.

Our two intensity based features are based on the assumptionthat the object has con-
stant or slowly changing intensities. They may be misleading if the object has strong
texture, in which case texture features are more helpful, see section below.

Gradient Direction Features

The gradient of an image is anther important feature. For a good segmentation, we expect
the gradient to change smoothly in most places on the boundary, unless the object or
background have strong texture. The gradient magnitude is already captured inFintensity1

andFintensity2. However, sometimes there is a weak boundary with very weak gradient
magnitude but very consistent gradient direction. Let~G(p) be the gradient direction at
pixel p. We can capture gradient direction consistency in the following feature:

Fgradient1(I,S) =
∑(p,q)∈B |~G(p)− ~G(q)|

|B|
,

where, as before,B is the set of pixel pairs on the boundary of background/object regions.
Fgradient1 is the average value of gradient direction differences. Thesmaller it is, the higher
is the quality of the extracted boundary.

We also have another feature based on gradient direction which is based on variance:

Fgradient2(I,S) =

√

∑(p,q)∈B (|~G(p)− ~G(q)|− Ḡ)2

|B|
,

whereḠ is the average difference of gradient directions on the boundary. A small value
of Fgradient2 indicates a good segmentation.

Boundary Corner Feature

Smoothness of a boundary is a strong cue for human perceptionsystem. Therefore we
expect that a good segmentation will have smooth boundarieswith only a few corners. We
use SUSAN corner detector to detect any corners on the object/background boundary. We
detect corners in the ”mask” imageM corresponding to segmentationS. That isMp = 0
if Sp = 0 andMp = 255 if Sp = 1, whereMp is the value of imageM at pixel p. For the
boundary feature, we simply setFboundary(S) to be the number of corners detected in the
segmentationS. Notice that we do not need the original imageI for this feature.

Texture Feature

The last feature we use for our classifier is based on texture.It helps to detect a good seg-
mentation when strong texture is present in the object. A standard way to describe texture

is through a bank of Gabor filters [8]. To compare texture of the object and background,
we compute the histograms of Gabor filter bank responses separately for the object and
the background. Then we setFtexture to be theχ2 distance between these histograms. As
a measure of the quality of segmentation, the texture difference between the object and
background is expected to be large for a good segmentation and small for a bad one. In the
case of undersegmentation, a part of object might be classified as a part of background (or
vice versa), thusFtexture will be small. However, the drawback of this feature is it cannot
detect oversegmentation, which may receive a high score underFtexture.

5 Feature Normalization

Before training the classifier, features have to be normalized, since they vary widely across
different images and cannot be directly compared. There aretwo standard ways for fea-
ture normalization. First way is used to make sure differentfeatures are on approximately
the same scale, since this is desirable for some classifiers.Let x1,x2, ...xn be then train-
ing samples, and let thejth feature ofith sample bex j

i . In such case, ifd is the total
number of features, then forj = 1, ...,d, jth feature valuesx j

1,x
j
2, ...,x

j
n are normalized

to be approximately in some fixed range, usually in[0,1] or [−1,1]. This is done either
by linearly stretching the range, or by normalizing valuesx j

1,x
j
2, ...,x

j
n to have zero mean,

unit variance. Such feature normalization has no effect on our AdaBoost classifier.
Second way is to normalize each training image itself, for example, by linearly stretch-

ing all the intensity values to some fixed range, usually between[−1,1]. The idea is that
any features computed from normalized examples will be roughly in the same range.

We found that the standard approach to feature normalization does not work well.
The error rate, at best, was around 15% when we tried different ways of normalizing the
training images. The reason is as follows. In different images, the average contrast on
the boundary between the object of interest and the background can be very different,
sometimes only a few gray level values, and sometimes as large as a hundred gray level
values. Thus the range ofFintensity1,Fintesnsity2 and other features values that correspond to
a good segmentation varies widely across different images,even after image normaliza-
tion. Thus there is no single threshold for any of the featurethat works reasonably well
for any feature, leading to a weak classifier performance.

Let I be some image. Recall that we perform segmentation for different λ values.
Let S1,S2, ...,Sk be thek different segmentations of imageI, and letx1,x2, ...,xk be the
k training examples2 corresponding to these segmentations. LetJ be another image and
y1,y2, ...,yk be thek training examples corresponding to thek segmentations of imageJ.

For these examples, let us consider the values of some fixed feature j, that isx j
1,x

j
2,

..., x j
k for imageI andy j

1,y
j
2, ...,y

j
k for imageJ. Suppose thejth feature corresponds to

Fintensity1, so the larger the feature value, the better is the separation between the object
and the background. The range ofx j

i ’s maybe between(0.1,0.4) and the range ofy j
i ’s

between(0.3,0.7). Due to the contrast differences in the imagesI and J, a value of
0.3 most likely signals a good segmentation for imageI, but not a good segmentation
for imageJ. Therefore, for imageI, we should care about how large the values ofx j

i

are compared to the range of values inx j
1,x

j
2, ...,x

j
k, that is compared to the other values

2Each training examplexi corresponds to a vector of features extracted from imageI and segmentationSk.
The features are as described in Sec. 4.

in its own range. In other words, we do not care about the absolute values of features
x j

1,x
j
2, ...,x

j
k, but only about their rank in relation to each other.

So our feature normalization is as follows. Givenk examples (feature vectors)x1,x2,
..., xk corresponding to thek segmentations of an imageI under differentλ settings,
for each featurej, we replacex j

i with its rank in the set{x j
1,x

j
2, ...,x

j
k}. We found this

normalization to be very effective, see Sec. 6.
Our feature normalization is uniquely suitable for the parameter selection problem,

since for a given image, we normalize feature values with respect toall segmentations for
this image. Therefore, our measure of segmentation qualitycan only be applied to a set of
segmentation results for a single image, i.e. it cannot be applied to a single segmentation,
and therefore it is not a stand-alone measure like the one in [15].

6 Experimental Results

We have collected 80 images of natural scenes from the web, and performed graph cut
segmentation withλ in the range from of 2 to 74 with a step size of 8, which gives 10
segmentation results per image. We manually labeled each segmentation result as ”good”
(the positive class) or ”bad” (the negative class). Currently, our system is applied after the
user enters all the brush strokes. The system could be rerun after user makes corrections.

Since our data set is small, we use leave one out cross validation (LOOCV). We take
one image out of 80 (which means that we take out all 10 segmentations for different
values ofλ for this image) and train the classifier on the remaining 79 images. Then
we test the classifier on the image (all the 10 segmentation associated with it) we took
out. If we compute the overall classification error (bad segmentations classified as good,
and vice versa), it is 16.1%. However, our goal is to return to the user the segmentation
result which we think is the best one, therefore we measure error rate differently. Out
of 10 segmentation results for the image that was held out, wereturn to the user the
segmentation with the highest confidence value for being in the positive class. Now the
natural measure of error is how many bad segmentations are returned to the user, that is
how often the segmentation with the highest confidence for being a good segmentation is
actually a bad segmentation. The error rate is only 4.37%. Our new feature normalization
scheme makes a big difference in results. If we use a standardnormalization approach,
the error rate is around 15%, where, again, the error is measured as the percentage of bad
segmentations returned to the user (the overall classification error rate is worse than 30%).

We also test how well our parameter selection works comparedto using a fixedλ . We
perform segmentation with a fixed value ofλ in the range from 2 to 114 in step size of 8.
For each fixedλ , we compute the error rate, that is the percentage of bad segmentations.
The error rate starts at 100% forλ = 2, then goes down to 39.5% for λ = 66 and then
goes up again to 83.9% for λ = 114. Thus if segmentation with a fixedλ is performed,
the best error rate would be 39.5%, which is significantly worse compared to choosing an
appropriateλ using our system.

Some randomly chosen results for automatically selecting parameterλ are in figure 2.
The average running time to perform graph cut segmentation,compute the features, and
classify the results is under 3 minutes. To improve efficiency, we could use the para-
metric max flow algorithm of [10], which allows computing theseries of minimum cuts
corresponding to different values ofλ with only slight increase in cost compared to com-

puting a single cut. Note however, that the majority of time for our algorithm is spent on
computing features, thus the speedup would be relatively modest.

References
[1] A. Blake, C. Rother, M. Brown, P. Perez, and P.H.S. Torr. Interactive image segmentation

using an adaptive gmmrf model. InECCV, pages Vol I: 428–441, 2004.

[2] Y. Boykov and V. Kolmogorov. An experimental comparisonof min-cut/max-flow algorithms
for energy minimization in vision.TPAMI, 26(9):1124–1137, 2004.

[3] Yuri Boykov and M. P. Jolly. Interactive graph cuts for optimal boundary and region segmen-
tation. InICCV, volume I, pages 105–112, 2001.

[4] Y.Y. Boykov and G. Funka Lea. Graph cuts and efficient n-d image segmentation.Interna-
tional Journal of Computer Vision, 69(2):109–131, September 2006.

[5] S. Chabrier, B. Emile, H. Laurent, C. Rosenberger, and P.Marche. Unsupervised evaluation
of image segmentation application to multi-spectral images. In ICPR, pages 576–579, 2004.

[6] A. X. Falaco, J.K. Udupa, S. Samarasekara, and S. Sharma.User-steered image segmentation
paradigms: Live wire and live lane. InGraphical Models and Image Processing, volume 60,
pages 233–260, 1998.

[7] Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of on-line learning
and an application to boosting.J. Comput. Syst. Sci., 55(1):119–139, 1997.

[8] S.E. Grigorescu, N. Petkov, and P. Kruizinga. Comparison of texture features based on gabor
filters. TIP, 11(10):1160–1167, 2002.

[9] M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active contour models.IJCV, 2:321–331.

[10] V. Kolmogorov, Y.Y. Boykov, and C. Rother. Applications of parametric maxflow in computer
vision. pages 1–8, 2007.

[11] Vladimir Kolmogorov and Ramin Zabih. What energy function can be minimized via graph
cuts?TPAMI, 26(2):147–159, February 2004.

[12] Y. Li, J. Sun, C.K. Tang, and H.Y. Shum. Lazy snapping.ACM Trans. Graph., 23(3):309–314.

[13] David R. Martin, Charless Fowlkes, Doron Tal, and Jitendra Malik. A database of human
segmented natural images and its application to evaluatingsegmentation algorithms and mea-
suring ecological statistics. InICCV, pages II: 416–423, 2001.

[14] S. Osher and J.A. Sethian. Fronts propagating with curvature dependent speed: Algorithm
based on hamilton jacobi formulations.Journal of Computational Physics, 79:12–49, 1988.

[15] X. Ren and J. Malik. Learning a classification model for segmentation. InICCV, volume 1,
pages 10–17, 2003.

[16] R. Unnikrishnan, C. Pantofaru, and M. Hebert. Toward objective evaluation of image segmen-
tation algorithms.PAMI, 29(6):929–944, 2007.

[17] A. Vezhnevets. http://research.graphicon.ru/machine-learning/gml-adaboost-matlab- tool-
box.html.

[18] S. Vicente, V. Kolmogorov, and C. Rother. Graph cut based image segmentation with connec-
tivity priors. In CVPR, page to appear, 2008.

[19] Hui Zhang, Sharath Cholleti, Sally A. Goldman, and Jason E. Fritts. Meta-evaluation of image
segmentation using machine learning. InCVPR, pages 1138–1145, 2006.

[20] Li Zhang and Steven M. Seitz. Estimating optimal parameters for mrf stereo from a single
image pair.TPAMI, 29(2):331–342, February 2007.

[21] Y.J. Zhang. A review of recent evaluation methods for image segmentation.ISSPA, 1:148–
163, 2001.

Figure 2: Segmentation results produced by automatically selectingλ .

