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Abstract
Classic mosaic is an old and durable art form. Generating artificial classic mosaics from digital images is an
interesting problem that has attracted attention in recent years. Previous approaches to mosaic generation are
largely based on heuristics, and therefore it is harder to analyse, predict and improve their performance. In addition,
previous methods have a number of disadvantages, such as requiring that the number of tiles in a mosaic is known
a priori, or relying on extensive user interaction, or using heuristics for tile placement that lead to visible artefacts.
We propose a classic mosaic generation algorithm that is based on a principled global optimization. Our approach
is fully automatic. We design and optimize an objective function that incorporates the desired mosaic properties,
such as tile alignment to significant image edges, prohibiting tile overlap, etc. Our optimization method is based
on graph cuts, which proved to be a powerful optimization tool in graphics and computer vision. Experimental
comparison to previous work demonstrate the advantages of our approach.

Keywords: non-photorealistic rendering, artificial mosaic, graph cuts, optimization

ACM CCS: I.3.3 [Computer Graphics]: Picture/Image Generation—Line and curve generation

1. Introduction

Classic mosaic is an ancient art form. For thousands of years
durable mosaics were used for decoration. A classic mosaic
is composed of a large number of small tiles with regular
shapes, such as rectangles. Recently there has been interest
in generating artificial classic mosaics from digital images.

Artificial mosaic is an example of a non-photorealistic
rendering technique. Unlike traditional rendering, which
emphasizes faithfulness of the image to a real scene,
non-photorealistic rendering focuses on art-like effects,
such as engraving [Ost99, PB94], pen-and-ink illustrations
[SWHS97, WS96], digital paintings [Her01, Mei96], line-
art drawings [Elb95, Elb98], stipple drawing [DHvOS00,
HHD03, PFS03, Sec02] and others [KMN∗99]. Non-
photorealistic rendering is used for drawing attention to the
important parts of a scene, abstracting away irrelevant details,
creating digital art, etc.

Studying the work of mosaic artists, two main properties
of a visually appealing mosaic emerge. First, mosaic tiles
should be placed at orientations that emphasize perceptually
important curves in an image. This is usually done by placing
the tile sides parallel to the important curves. For example,
the circle in Figure 1(a) is strongly emphasized in Figure
1(b) by placing the tile sides parallel to the circle boundary.
If the tiles are placed at random orientations, the circle is
emphasized much less, Figure 1(c). Parallel tile placement
is by far the most popular way to emphasize the boundaries,
although other techniques for boundary emphasis are also
possible.

Deciding which curves are perceptually important and are
to be highlighted is frequently done with user interaction
[Hau01, EW03]. While a human is the ultimate expert, it
may be desirable to produce mosaics automatically. Since
perceptually important curves tend to coincide with strong
colour edges in an image, some methods take advantage of the
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Figure 1: Principles for an appealing mosaic. (a) Origi-
nal image. (b) Appealing mosaic: tiles align to strong edges
and their orientation changes smoothly; no tiles overlap the
boundary between the red circle and the blue background,
therefore this boundary appears to be as sharp as in the
original image. (c) Unappealing mosaic: tiles do not align to
intensity edges and their orientation changes randomly; any
tile that overlaps the boundary between the red circle and
blue background has a colour that is a blend of red and blue,
blurring the boundary.

information provided by the gradient magnitude to automate
the mosaic generation process. Explicit methods [DBG05,
BDBFG06] label the boundaries returned by an edge de-
tection or an image segmentation algorithm as perceptually
important. Such approach is simple but brittle, since edge
detection and image segmentation frequently produce un-
appealing boundaries. Implicit methods [LVJ07, BDBG∗08]
use the gradient magnitude only as a soft cue for a possible
boundary to emphasize. Whether a pixel with a high gradient
magnitude gets emphasized or not depends on other factors,
such as preferred tile orientations at other pixels, etc.

The second important mosaic principle is to maximize
the number of tiles, while avoiding tile overlap as much as
possible. This, combined with the first principle, means that
tile orientations should align with important boundaries and
vary smoothly in the image, since smoothly varying orien-
tations allow a tighter packing of tiles. In Figure 1(b), tile
orientations vary much more smoothly compared to that
of Figure 1(c). Therefore, the mosaic in Figure 1(b) has
less gap space and is visually more appealing than that in
Figure 1(c).

The goal of this paper is to develop a principled global
optimization based method for generating classic mosaics.
We design and optimize an objective function that incorpo-
rates the desired mosaic properties, such as tile alignment
to significant image edges, prohibiting tile overlap, etc. We
also avoid both user interaction and explicit edge detection
that are currently required by most mosaic generation algo-
rithms. Furthermore, unlike many existing approaches, we
completely prohibit overlap between tiles.

Preliminary version of this paper appeared in [LVJ07].
Compared to [LVJ07], we have made significant improve-
ments to the algorithm, including a formulation of a better
energy function and a better optimization algorithm. We now
also provide a comparison to prior work.

This paper is organized as follows. Section 2 discusses
previous work, Section 3 is a brief overview of our algo-
rithm, Section 4 explains optimization with graph cuts. Sec-
tion 5 describes our energy function for mosaic generation,
Section 6 gives a detailed description of our optimization
strategy. Section 7 presents our experimental results and com-
parison with previous work. Section 8 is a summary.

2. Previous Work

Many artificial mosaic methods have been proposed based on
the principles illustrated in Figure 1 [Hau01, EW03, DBG05,
BDBFG06, SGS05, BDBG∗08]. Most of these methods have
two main steps: generating a tile orientation field and packing
the tiles. The details of how these steps are implemented vary
greatly between the algorithms, however all of them are based
on heuristics, and therefore it is hard to predict, analyse, and
improve their performance.

Hausner [Hau01] develops one of the earliest success-
ful algorithms. The approach is interactive, the user outlines
perceptually important ‘feature edges’ in the image to be em-
phasized by the mosaic. The tiles close to the feature edges
should have sides parallel to them, and the other tiles should
have smoothly varying orientation. To achieve this, Hausner
takes the gradient of the Euclidean distance transform ap-
plied to the feature edges as the tile orientation field. The
second step of the algorithm is packing the tiles into the mo-
saic image. For this purpose, a Centroidal Voronoi Diagram
(CVD) is used with N randomly placed seeds. By computing
CVD, the image plane will be segmented into fair regions.
To make the resulting regions almost rectangular, Manhat-
tan distance, rather than Euclidean distance, is used. One
tile is placed centred at the seed inside each CVD cell, with
its edges parallel to the orientation vector at the cell centre.
Therefore, N gives the number of tiles in the mosaic.

Hausner’s algorithm produces good results, but it has
a number of disadvantages. The biggest disadvantage is
that their tile orientation field has discontinuities. Consider
Figure 2. The original image with the user drawn edges is
in Figure 2(a). Hausner’s mosaic is in Figure 2(b). In Figure
2(c), the computed tile orientation field is shown with black
and yellow triangular arrows. The yellow arrows highlight
some discontinuities in the computed field, they are at loca-
tions equidistant from the feature edges. Such discontinuity
curves appear emphasized due to tile orientations changing
rapidly around them. However, these were not the boundaries
that the user meant to emphasize. Another disadvantage of
the Hausner’s method is that the number of tiles has to be
fixed beforehand. If the number of tiles is underestimated,
the results could be sparse. If the number of tiles is overes-
timated, many tiles could overlap. Other disadvantages are
that the algorithm does not guarantee that there will be no
tile overlap, the CVD algorithm may not converge, and user
interaction, which may not be readily available, is required.
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Figure 2: Discontinuities in the tile orientation field computed by Hausner’s algorithm. (a) Original image, feature edges
are in yellow. (b) Mosaic produced by Hausner’s algorithm. (c) Tile orientation field shown with triangular arrows. Some
discontinuities are pointed out with yellow arrows. These results were produced with the code from Hausner’s web site.

An alternative, also interactive, approach to rendering clas-
sic mosaics is in [EW03]. The user is asked to draw one or
several closed curves around the edges that are to be em-
phasized. Then a set of ‘tile orientation guide’ curves is pro-
duced. This is the set of curves that are parallel to the user-
outlined curves, and the distance between any two neighbour-
ing curves is the size of a square tile. This is basically the set
of level lines to the user-drawn curve. Tiles are packed along
these guide curves with their sides parallel to the nearest
curve, and under the constraint that tiles do not overlap.

Elber and Wolberg’s [EW03] tile orientation field also has
discontinuities, they lie at the skeleton of the closed feature
curves provided by the user. Perhaps the biggest drawback
of their method is the following artefact. The tiles that are
far away from a user drawn curve still align to it, even if
there are other interesting objects around. For example, if the
user outlines a foreground object, the background tiles far
from the foreground still have orientations that align with the
outlined foreground object. Another disadvantage is a large
gap space where the curvature of the orientation guide curve
is large.

The approach most similar to ours is in [BDBG∗08]. Sim-
ilar to our work, they use optimization to get tile orientation
field. Although their energy function is different from ours,
the idea is the same: make tiles align to strong image gradi-
ents and vary smoothly throughout the image. However, the
optimization methods that they use are local and not as pow-
erful as the graph cut based optimization. In addition, the tile
packing step is still performed heuristically. The advantage
of [BDBG∗08] over previous work is that they prohibit tile
overlap and do not require user input.

There are mosaic types other than classic. Crystallization
mosaic [DHJN02, FDF05, Hae90] is a simulation of a glass-
stone mosaic. Photo [DBP05, SH97, KP02, OK08, PCK09]
and puzzle mosaic [DBGP05, KP02, PCK09] are two special
branches that only exist in artificial mosaic. The former one

places thousands of small images in a regular grid to form
a bigger image which is unrelated to the small images and
is better viewed from a distance. In essence, small images
serve the same purpose as pixels. Puzzle mosaic packs a
set of small pieces of arbitrary shapes together to generate
a scene. Besides static mosaics, researchers also developed
some approaches which can create videos with mosaic effect
[KGFC02, SLK05].

3. Overview of Our Approach

Our goal is to develop a classic mosaic algorithm based on
principled global optimization. Having a global objective
function has a number of advantages. We can model the de-
sired mosaic properties directly by including the appropriate
terms into the energy function. Successful optimization of
this energy guarantees that the mosaic satisfies those prop-
erties that we think are desirable. If the results are unsat-
isfactory, we can rethink and redesign those terms in the
energy functions that are likely to be the cause of a failure.
By modifying the energy function, new mosaic effects can
be introduced. We can also use the value of the energy as a
metric for measuring and comparing the quality of mosaics.

The objective function that we design incorporates the
properties illustrated in Figure 1, such as tile alignment to
significant edges, etc. We also avoid both user interaction
and explicit edge detection that are currently required by
most mosaic algorithms. Furthermore, unlike many existing
approaches, we completely prohibit overlap between tiles.

Our objective function is too hard to optimize in all the
variables simultaneously, and therefore we optimize differ-
ent sets of variables sequentially. First we optimize our tile
orientation variables. The constraints are similar to those in
previous work: we require that tile orientations vary smoothly
and align with the strong intensity edges. This step is per-
formed with the α-expansion algorithm [BVZ01] which is
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based on graph cuts. Graph cuts proved to be a powerful op-
timization tool [SZS∗08]. The biggest benefit of using global
optimization is that our approach preserves the smoothness
of tile orientations as a global property. We do not have dis-
continuities in tile orientations like those in [Hau01, EW03]
because we optimize tile orientations directly and globally.
None of the existing approaches enforce the smoothness of
tile orientations in a global optimization framework. Further-
more, we eliminate user interaction because explicit edge
information is not needed.

In the second step, we optimize over tile visibility variables
of our energy function. Intuitively, this step can be seen as
stitching together multiple candidate mosaic layers. First we
generate multiple mosaic layers obeying the pre-computed
tile orientations. A candidate mosaic layer is heuristically
generated and therefore is not a good mosaic overall. The
gap space between tiles is not optimized and many tiles may
be placed over sharp intensity edges, which creates blur, like
in Figure 1(c). However, some parts of a candidate layer are
good, i.e. the tiles are packed tightly and avoid overlapping
the sharp intensity edges. By optimizing over visibility vari-
ables of the energy function, we select the good parts from
all the candidate layers. This step can be seen intuitively as
stitching together candidate mosaic layers. Optimizing over
visibility variables is also done in the energy optimization
framework with graph cuts [BVZ01].

4. Energy Optimization with Graph Cuts

We formulate the mosaic generation as a labelling problem,
and address it in the energy minimization framework. In
this section, we explain what a labelling problem is, and the
common types of energies formulated for labelling problems.
We also briefly review energy minimization with graph cuts.

In a labelling problem, one has a set of pixels P and a
set of labels L. The labels represent some property that one
wants to assign to pixels. The task in a labelling problem is
to assign some label in l ∈ L to each pixel. Let fp denote
the label assigned to pixel p, and let f be the collection of
all pixel-label assignments. Typically, there are two types of
constraints for pixels and labels. Unary constraints, denoted
by Dp(l), give the penalty for assigning label l to pixel p.
The smaller is Dp(l), the more likely is l for pixel p. Dp(l) is
modelled from the observed data. Binary constraints, denoted
by Vpq (l1, l2) express the penalty for assigning labels l1 and
l2 to two neighbouring pixels p and q. Binary constraints
come from prior knowledge about the optimal labelling and
encourage some type of smoothness on the labelling.

The following energy function is formulated:

E(f ) = Esmooth(f ) + Edata(f ). (1)

Edata(f ) is called the data term, and it sums up the unary
constraints

Edata(f ) =
∑
p∈P

Dp(fp), (2)

Esmooth is called the smoothness term, and it sums up the
binary constraints

Esmooth =
∑

{p,q}∈N
Vpq (fp, fq ). (3)

In Equation (3), N is a collection of neighbouring pixel
pairs, it could be the standard four- or eight-connected grid,
or it could include longer-range interactions. The choice of
Vpq should reflect the a priori knowledge about the labelling
one wants to get. Some typical choices are Vpq (fp, fq ) =
|fp − fq |, or Vpq (fp, fq ) = min(K, |fp − fq |C), where K,
C are constants.

In addition to specifying smoothness assumptions, the
choice for Vpq also determines the choice of the optimization
algorithm. A convex Vpq leads to an energy that can be opti-
mized exactly with a graph cut [Ish03]. Other commonly used
Vpq lead to energies that are NP-hard to optimize [BVZ01,
KZ04], but there are approximation algorithms with different
quality guarantees [BVZ01].

Optimization algorithms based on graph cuts [BVZ01]
have proved to be successful in optimizing the energies of
the type in Equation (1), see [SZS∗08]. We use max-flow im-
plementation of [BK04] for computing the minimum graph
cut.

5. Energy Function for Classic Mosaics

In this section, we give a detailed motivation and description
of the energy function that we use for mosaic generation. We
start by explaining the label set. Any tile can be identified
by its centre and orientation. Therefore, we use two labels
per pixel. Let I be the colour image for which we wish to
generate the mosaic, and let P be the collection of all pixels
inside I. For each pixel p ∈ P we wish to assign a label
which is an ordered pair: (vp, ϕp). Here vp ∈ {0, 1} is the
binary ‘visibility’ variable. If vp = 1, then we place a tile
centred at pixel p in the mosaic. If vp = 0 then the mosaic
does not have any tiles centred at p. We assume that all tiles
are square with the side of size tSize.

The second part of the label, ϕp , specifies the orientation of
the tile centred at pixel p, if there is such a tile in the mosaic.
If vp = 1 then ϕp has a meaning (i.e. tile orientation), if
vp = 0, the value of ϕp is not used. Our discrete optimization
framework requires that the set of orientations is finite. Here
we discretize the orientations into n angles, at equal intervals.
Because the square tiles have several angles of symmetry, we
need angles only in the range of [0, π

2 ). The set of all possible
orientations is

� =
{ π

2n
× (i − 1)|i = 1, 2, . . . , n

}
.

We set n to 32 for all the experiments.
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Occasionally we need to refer to the set of all pixels cov-
ered by a tile centred at pixel p and with orientation ϕp . We
will denote this set as T (p, ϕp). The colour of the tile is an
average of colours over the pixels in I that this tile covers.

Let ϕ = {ϕp|p ∈ P} and v = {vp|p ∈ P}. A mosaic then
is an ordered pair of variables (v, ϕ) s.t. v ∈ {0, 1}n and ϕ ∈
�n, where n is the size of P .

We are now ready to formulate the energy function for
a mosaic (v, ϕ). Our energy function encodes the following
principles for generating a visually pleasing mosaic: tiles
should align with strong edges in the image I, nearby tiles
should have similar orientations, tiles should avoid cross-
ing strong edges in image I, and, finally, the gap space in
the mosaic should be minimal. Our energy function is as
follows:

E(v, ϕ) =
∑
p∈P

(1 − vp) +
∑
p∈P

vp · Dp(ϕp)

+
∑

{p,q}∈N
Vpq (vp, vq, ϕp, ϕq ).

(4)

The first sum in Equation (4) ensures that the gap space is
minimized. The more tiles are placed in the mosaic, the less
gap space there is. In addition, this terms ensures that the
optimal solution is not the trivial one: vp = 0 for all pixels
p. The second sum in Equation (4) is the data term, which
measures how well the tiles that we place in the mosaic align
to the edges and avoid crossing the edges. The last sum is the
smoothness term that encourages nearby tiles to have similar
orientations and also prohibits tile overlap. We now discuss
the data and the smoothness terms in greater detail.

5.1. Data term

For each pixel p, the data term is vp · Dp(ϕp). The term
Dp(ϕp) measures the quality of a tile with centre at pixel p
and with orientation ϕp . Multiplying by vp ensures that we
consider only the quality of the tiles that are actually present
in the mosaic. The Dp has the following form:

Dp(ϕp) = Dalign
p (ϕp) + Davoid

p (ϕp), (5)

where D
align
p (ϕp) encodes edge alignment, encouraging tile

sides to be parallel to the intensity edges of the underlying
image I, and Davoid

p (ϕp) encodes edge avoidance, pushing the
tiles away from intensity edges to prevent blurring.

We first explain the edge alignment term D
align
p . Assuming

that a pixel p is a tile centre, and knowing the tile size, it is
fairly easy to estimate how well a particular orientation aligns
a tile to any intensity edge in the neighbourhood. Because the
tiles have four sides, we check for the evidence of a strong
edge for each one of them, and then choose the side with the
strongest evidence. To check for an edge presence, we use
the colour difference between boxes around a tile side. We

Figure 3: Shows R and B regions used in of D
align
p (ϕp).

split a tile in half horizontally into regions R1 and R3, and
then, separately, we split a tile vertically into regions R2 and
R4, as illustrated with coloured solid rectangles in Figure 3.
Regions B1, B2, B3, B4, illustrated in Figure 3, are located
outside the tile, and adjacent to R1, R2, R3, R4, respectively.
To measure the evidence for an edge on the right-hand side
of the tile, we take the difference in colour between regions
R1 and B1. The other sides are handled similarly. Thus, Dalign

p

is

Dalign
p (ϕp) = we × max

i=1...4

∥∥∥∥∥∥
∑
p∈Ri

I (p) −
∑
p∈Bi

I (p)

∥∥∥∥∥∥
, (6)

where I(p) stands for the colour vector at pixel p. The weight
we is negative. Thus, when there is a high response on the
colour difference between the pixels inside the tile and that
outside the tile, the term D

align
p (ϕp) is negative, making tile

orientations with a higher contrast to incur less cost.

The edge avoidance term Davoid
p (ϕp) is defined as

Davoid
p (ϕp) = wv ·

∑
q∈T (p,ϕp )

‖g(q)‖, (7)

where ‖g(p)‖ is the magnitude of the gradient at pixel p,
and T (p, ϕp) is the set of pixels covered by the tile with
centre at p and orientation ϕp . We approximate gradient by
the standard Sobel operator. This term measures the intensity
variance inside the tile, therefore we call it the variance term.
If the label ϕp makes the tile overlap a strong intensity edge,
then the variance term will penalize the overlap between the
edge and the tile. This term is particularly important for pixels
close to the edges of an object. The weight of wv is set to be
positive, because we want high gradient to be penalized.

Notice that the Dp(ϕp) term involves summation over a po-
tentially large group of pixels if tile size is large. To compute
Dp(ϕp) efficiently, we use the summed-area table technique
[Cro84]. Summed-area tables allows computing Dp(ϕp) in
constant time, independent of the tile size tSize.

c© 2010 The Authors
Computer Graphics Forum c© 2010 The Eurographics Association and Blackwell Publishing Ltd.



2392 Y. Liu et al. / EG Classic Mosaics

5.2. Smoothness term

The last term in Equation (4) is the smoothness term.
First we define the neighbourhood system as N = {{p, q}|
dist(p, q) ≤ √

2 · tSize}, where dist(p, q) is the Euclidian
distance between the coordinates of pixels p and q. This
neighbourhood system is large enough to contain all pairs of
pixels s.t. if tiles cantered at these pixels are placed in the
mosaic, then these tiles are adjacent or overlapping.

We define the interaction term Vpq (ϕp, ϕq, vp, vq ) as

Vpq (ϕp, ϕq, vp, vq ) =

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 if vp = 0 or vq = 0

ws · |ϕp − ϕq |( π
2 ) if vp = vq = 1 and

T (p, ϕp) ∩ T (q, ϕq ) = ∅,

∞ if vp = vq = 1 and

T (p, ϕp) ∩ T (q, ϕq ) �= ∅,
(8)

where

|ϕp − ϕq |( π
2 ) =

⎧⎪⎨
⎪⎩

|ϕp − ϕq | if |ϕp − ϕq | ≤ π

4
,

π

2
− |ϕp − ϕq | otherwise .

(9)

The smoothness term serves two purposes. First, any finite
energy labelling has no overlapping tiles. Secondly, it encour-
ages orientations of adjacent tiles to have similar orientations.
Notice that we only consider the orientations of neighbour-
ing tiles that are actually placed in the mosaic. The modulo
arithmetic in Equation (9) reflects the fact that rotation by
angle ϕp gives the same result as rotation by angle ϕp + π

2 ,
due to the symmetry of a square. Thus, the penalty for two
neighbouring pixels to have different orientation labels is an
absolute difference of their labels, modulo π

2 arithmetic.

A mosaic (v′, ϕ′) that has a low value of energy in Equa-
tion (4) is expected to be visually pleasing. Any other desired
mosaic properties can also be included. However, successful
optimization depends on the particular form of the energy
function. There may be properties that one wishes to include
that make the energy very hard to optimize. For example, we
may wish to include terms that make the gap space evenly dis-
tributed throughout the mosaic. However, such terms would
require higher order interactions, which are much harder to
optimize. We found that the energy in Equation (4) offers a
nice balance between containing the most important terms
for a pleasing mosaic, and being reasonable to optimize.

6. Optimization

In this section, we describe our optimization approach. The
energy in Equation (4) is too difficult to optimize in all vari-
ables simultaneously. We devise a stepwise approach for ap-
proximation. First, we ignore the tile visibility labels vp , and

optimize tile orientation variables ϕp (Section 6.1). Keeping
tile orientation variables ϕp fixed, we then optimize for the
visibility variables vp (Section 6.2).

6.1. Optimizing in orientation variables

We now explain how to optimize the orientation variables ϕ

while ignoring the visibility variables v. Intuitively, optimiz-
ing only the orientation ϕ generates a smooth tile orientation
field, which is usually the first step in most mosaic algo-
rithms [Hau01, BDBFG06]. However, unlike most previous
algorithms (with a notable exception of [BDBG∗08]), our
orientation field is generated in a principled manner using
a well-understood objective function. Our advantage over
[BDBG∗08], who also use optimization to get the orientation
field, is that our objective function is optimized globally with
graph cuts, not locally as in [BDBG∗08]. Global optimization
of non-convex functions produces better results, as shown in
[SZS∗08]. Our energy function is non-convex, and, in fact,
NP-hard to optimize, as shown later.

Ignoring the visibility labels vps, our energy in Equation
(4) becomes a function of orientation labels

Eo(ϕ) =
∑
p∈P

Dp(ϕp) +
∑

{p,q}∈N
Vpq (ϕp, ϕq ), (10)

where Vpq (ϕp, ϕq ) = ws · |ϕp − ϕq |mod( π
2 ).

Another way of looking at decoupling of variables ϕ

and v is as follows. In the energy in Equation (10),
Dp terms are optimized for all pixels p, and Vpq

terms are optimized for all neighbouring pixel pairs
{p, q}. Therefore, if ϕ∗ optimizes the energy in Equa-
tion (10), all Dp(ϕ∗

p) and Vpq (ϕ∗
p, ϕ∗

q ) terms are expected
to be small. In the complete energy in Equation (4), only the
Dp and Vpq terms for pixels p, q with nonzero vp, vq mat-
ter. Assigning vps while keeping ϕps fixed to the previously
optimized values of ϕ∗

ps corresponds to picking out a sub-
set of previously optimized Dp(ϕ∗

p) and Vpq (ϕ∗
p, ϕ∗

q ) terms.
Because all Dp(ϕ∗

p) and Vpq (ϕ∗
p, ϕ∗

q ) terms were small, their
subset is also expected to be small.

To minimize the energy in Equation (10), we use the
α-expansion algorithm [BVZ01]. According to [BV06], to
optimize our energy with α-expansion algorithm, for all
α, β, γ ∈ L, the smoothness term Vpq should satisfy

Vpq (β, γ ) ≤ Vpq (α, γ ) + Vpq (β, α). (11)

We now prove that the energy in Equation (10) satisfies in
Equation (11).

Proof . To simplify notation, V denotes Vpq . Recall that
orientations are in the range of [0, π

2 ), where π
2 is identified

with 0. By definition in Equation (9), for any orientation
labels α, β,

Vpq (α, β) = min
{
|α − β|, π

2
− |α − β|

}
≤ π

4
.
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Figure 4: Original images.

Therefore,

V (α, γ ) + V (β, α) = min
(
|α − γ |, π

2
− |α − γ |

)

+ min
(
|β − α|, π

2
− |β − α|

)
.

There are four possible cases

Case 1:

V (α, γ ) + V (β, α) = |α − γ | + |β −α| ≥ |γ −β| ≥ V (γ, β).

Case 2:

V (α, γ ) + V (β, α) =
(π

2
− |α − γ |

)
+ |β − α|.

Because |β − α| − |α − γ | ≥ −|γ − β|, we have that

V (α, γ ) + V (β, α) ≥ π

2
− |γ − β| ≥ V (β, γ ).

Case 3:

V (α, γ ) + V (β, α) = |α − γ | +
(π

2
− |β − α|

)
,

the proof is identical to Case 2.

Case 4:

V (α, γ ) + V (β, α) =
(π

2
− |α − γ |

)
+

(π

2
− |β − α|

)
.

Because α, β, γ ∈ [0, π
2 ), and |α − γ | ≥ π

4 and
|β − α| ≥ π

4 , we have that either α is larger than both
γ and β or α is smaller than both γ and β. In the first
case, V (α, γ ) + V (β, α) = π − 2α + γ + β ≥ γ + β ≥
|γ − β| ≥ V (γ, β). In the second case, V (α, γ ) +
V (β, α) = π + 2α − γ − β ≥ π + max{γ, β} −
max{γ, β} − γ − β ≥ |γ − β| ≥ V (γ, β). �

It is interesting to note that the energy in Equation (10)
is NP-hard to optimize. Suppose � = {0, π

6 , π
3 }. Let α, β ∈

�. Then there are three cases for Vpq (ϕp, ϕq ): V (0, π
6 ) =

V ( π
6 , π

3 ) = V (0, π
3 ) = π

6 . Thus, this Vpq is the so called

Potts model, which was shown to be NP-hard to optimize
in [BVZ01].

6.2. Optimizing in visibility variables

Let ϕ∗ be the tile orientation field computed in Section 6.1.
We now must optimize Equation (4) over the visibility vari-
able v with ϕ fixed to ϕ∗. Unfortunately, optimizing v, even
if ϕ is kept fixed, is an NP-hard bin packing problem. Our ap-
proach approximates this problem in a two-step manner. First
for i = 1, . . . , m we generate in a heuristic manner a number
of labellings vi s.t. E(vi, ϕ∗) < ∞ for all i. Therefore, each
(vi, ϕ∗) corresponds to a mosaic with no overlapping tiles.
Because vi is generated heuristically, (vi, ϕ∗) may not be a
good mosaic overall, but might contain a few regions that are
good candidates for the final mosaic. We call each (vi, ϕ∗)
a candidate mosaic layer. Orientations of the mosaic corre-
sponding to each candidate mosaic layer are given by ϕ∗. The
final step is to stitch all (vi, ϕ∗) into a final mosaic (v∗, ϕ∗)
in such a way that the energy in Equation (4) is minimized.

6.2.1. Generating candidate mosaic layers

Intuitively, building each layer candidate mosaic layer
(vi, ϕ∗) given a tile orientation field corresponds to using
heuristics for tile placement, as done in most other mosaic
generation algorithms [Hau01, BDBG∗08], etc. However, in-
stead of generating just one final mosaic, we generate m lay-
ers, that are stitched together to form a better final mosaic
according to our global energy function in Equation (4).

We build each vi heuristically. Our goal is for a candidate
mosaic layer (vi, ϕ∗) to have no tile overlap and at the same
time contain as many tiles as possible (i.e. for as many pixels
as possible, variables vi

p should be set to 1). We start with
vi

p = 0 for all pixels p. Next we select a starting pixel s at
random. The starting pixel gets assigned vi

s = 1. Then we
put all the other pixels in P on an ordered list O of pixels to
be processed. Pixels in list O are ordered by their distance to
the starting pixel s, with pixels closer to s placed closer to the
beginning of O. Let q be the next pixel to be processed. We set
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Figure 5: Starry night results.

vi
q = 1 if placing tile cantered at q with orientation ϕ∗

q does
not cause tile overlap among the tiles previously placed, that
is if T (p, ϕ∗

p) ∩ T (q, ϕ∗
q ) = ∅ for all pixels p with vi

p already
set to 1. The process of ‘growing’ vi stops when the list O is
empty. By placing pixels on the list in order of their distance

to the start pixel, we are trying to ensure that the next tile
placed in vi is as close as possible to the already placed tiles,
thus making the gap space in vi minimal.

To build a candidate mosaic layer efficiently, when as-
signing vi

q = 1 for some pixel q, we remove all the pixels
in T (q, ϕ∗

q ) from the list O. We also check for tile overlap
efficiently. Whether two tiles overlap or not depends only on
their relative orientations and the relative distance between
the tile centres. We compute a small two-dimensional lookup
table, which, based on the relative orientation and centre dif-
ferences, tells us whether two tiles overlap or not. Thus, the
overlap checking can be done in constant time.

We build enough candidate mosaic layers to ensure that
for all pixels p, there is an i s.t. vi

p = 1. This gives each pixel
p a chance to have a tile cantered at p appear in the final
stitching. The candidate mosaic layers built in this heuristic
manner are far from an optimal mosaic. Although we try to
pack the tiles tightly in each candidate layer, any layer will
have regions where the packing is not as tight as possible. In
addition, because the quality of tiles (i.e. the data term Dp)
is not checked when building the layers, many tiles will be
placed on the high intensity edges which causes blurring of
the mosaic. Therefore, we need the third step of stitching all
layers (vi, ϕ∗) together to find a better solution.

6.2.2. Stitching candidate mosaic layers

After generating a set of candidate mosaic layers (vi, ϕ∗), i =
1, . . . , m, the last step is to stitch them together to form the
final mosaic (v∗, ϕ∗) s.t. the energy E(v∗, ϕ∗) is minimized.

The stitching is performed in a pairwise manner. Let
(vi, ϕ), (vj , ϕ) be two mosaics with equal orientations field.
Then their stitching is another mosaic (v′, ϕ) s.t. for all
p ∈ P, v′

p ∈ {vi
p, vj

p, 0}. This implies that the stitching of
two mosaics cannot have any tiles that were not present in
either the first or the second mosaic, thus the name ‘stitching’.

Our stitching algorithm is iterative. We always have the
current mosaic (vc, ϕ∗), and stitch it with one of the candi-
date mosaic layers (vi, ϕ), chosen at random. The stitching
is performed in such a way as to minimize the energy of the
resulting mosaic. We update the current mosaic to the result
of the stitching, and repeat. To initialize, vc is set to a ran-
domly chosen vi . The process stops when there is no layer
s.t. stitching this layer improves the current mosaic (vc, ϕ),
or when the maximum number of iterations is reached.

We now explain how to find the optimal stitching of the cur-
rent mosaic (vc, ϕ) and the candidate mosaic layer (vi, ϕ). Let
Pc = {p ∈ P|vc = 1},Pi = {p ∈ P|vi = 1}, and let S =
Pi ∪ Pc. Notice that only pixels p ∈ S can have their visi-
bility variable vp change as a result of a stitching. Therefore,
optimization is performed only over the variables vp s.t. in
p ∈ S. With the variables ϕ fixed to ϕ∗ and optimization
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Figure 6: Portray results.

performed only over pixels in S, the energy in Equation (4)
reduces to the energy below:

Ev(v) =
∑
p∈S

(1 − vp) +
∑
p∈S

vp · Dp(ϕ∗
p)

+
∑

{p, q} ∈ N
{p, q} ⊂ S

Vpq (vp, vq, ϕ
∗
p, ϕ∗

q ). (12)

The energy that we can actually optimize exactly is

Ẽv(v) =
∑
p∈S

(1 − vp) +
∑
p∈S

vp × Dp(ϕ∗
p)

+
∑

{p, q} ∈ N
p ∈ Pc, q ∈ Pi

Vpq (vp, vq, ϕ
∗
p, ϕ∗

q ). (13)

The difference between the energies Ev in Equation (12)
and Ẽv in Equation (13) is that only the pairwise terms be-
tween pixels p ∈ Pc and q ∈ Pi are present in Equation (13).
Pairwise terms between pixels inside Pi and inside Pc are
missing in Ẽv . We omit this terms to make optimization
tractable. However, the absence of these terms is not as im-
portant as may seem at first. First of all, because there is
no tile overlap in either vc or vi, Vpq (vp, vq, ϕ

∗
p, ϕ∗

q ) is fi-
nite when p, q ∈ Pc and when p, q ∈ Pi . Furthermore, tile
orientations ϕp were optimized in the first step of our al-
gorithm. Therefore, we may assume that Vpq (vp, vq, ϕ

∗
p, ϕ∗

q )
have low values for most neighbouring pixel pairs. Therefore,
it is relatively safe to exclude the pairwise terms Vpq when
either p, q ∈ Pc or p, q ∈ Pi . However, ignoring Vpq when
p ∈ Pc and q ∈ Pi is not safe, because for such p, q the term

Vpq (vp, vq, ϕ
∗
p, ϕ∗

q ) could be infinite due to overlap of tiles
centred at p and q. We do include such ‘unsafe’ terms in the
energy Ẽv . Therefore, the energy Ẽv is a good approximation
to the energy Ev .

Another explanation for Ẽv is that it finds a stitching of the
current mosaic (vc, ϕ∗) and a candidate layer (vi, ϕ∗) in such
a way that the gap space is optimized and the ‘good’ tiles
(tiles with small Dp) are selected . Orientations at the seam
of the stitching are accounted for, but orientations outside
of the stitching seam are disregarded, because those are al-
ready assumed to be satisfactory because an optimized ϕ∗ is
used.

We now explain how to optimize the energy in Equa-
tion (13). We use the idea of roof duality from [HHS84].
Let us introduce a new variable tp for each pixel p, with
the following dependence on the visibility variables vp . If
p ∈ Pc, then tp = vp . If p ∈ Pi , then tp = 1 − vp . In words,
for the pixels in Pc, the meaning of variable tp is the same
as the meaning of variable vp , and the meaning of vari-
able tp is reversed for p ∈ Pi . Let t = {tp|p ∈ P}. We can
rewrite the energy in Equation (13) in terms of the new
variables

Ev(t) =
∑
p∈S

D′
p(tp) +

∑
{p,q}∈Nci

V ′
pq (tp, tq ), (14)

where Nci = {{p, q}|{p, q} ∈ N and p ∈ Pc, q ∈ Pi}, and
D′

p(tp), V ′
pq (tp, tq ) are defined later:

D′
p(tp) =

⎧⎨
⎩

1 + tp(Dp(ϕ∗
p) − 1) if p ∈ Pc

tp + (1 − tp)Dp(ϕ∗
p) if p ∈ Pi

(15)
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Figure 7: Tiger results.

and

V ′
pq (tp, tq ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 if tp = 0, tq = 0

0 if tp = 0, tq = 1

Vpq (ϕ∗
p, ϕ∗

q , 1, 1) if tp = 1, tq = 0

0 if tp = 1, tq = 1
(16)

As shown in [KZ04], a binary energy can be optimized ex-
actly with a graph cut if it is submodular, that is if the pairwise
terms satisfy: Vsr (0, 1) + Vsr (1, 0) ≥ Vsr (0, 0) + Vsr (1, 1).
Clearly the energy in Equation (14) is submodular, since
V ′

pq (1, 0) is either a positive constant or infinite, and all other
V ′

pq are 0. Therefore, the energy in Equation (13) can be opti-
mized exactly with a graph cut. For implementation, we use
the max-flow/min-cut algorithm in [BK04].

The last detail of the stitching algorithm is as follows. Let
(ṽ, ϕ∗) be the mosaic that is the result of stitching the current
mosaic (vc, ϕ∗) with a candidate mosaic layer (vi, ϕ∗), that
is ṽ optimizes the energy in Equation (13). Because the en-
ergy in Equation 13 is only an approximation to the energy
in Equation 12, we check if Ev(ṽ) < Ev(vc), that is if the
stitching using approximate energy is better according to the
exact energy. If yes, then we update vc to ṽ. If not, we discard
the results of stitching.

Note that [LRR08] use an optimization procedure similar
to ours for computing the optical flow from video. They
compute many flow fields and ‘fuse’ or stitch them together.

7. Experimental Results

We now present our experimental results. We perform com-
parison to Hausner [Hau01] (using code available on the
author’s web site), and we also compare to Battiato et al.
[BDBG∗08] (using the results provided by the authors). For
all the experiments, the parameters were fixed to the follow-
ing values: we = −50, wv = 20 and ws = 20.

Figure 4 shows the images used for mosaic generation.
Figures 5–7 show the mosaics obtained with our method,
Battiato et al. and Hausner. Compared to Battiato et al.,
our mosaic is more spatially coherent. Figures 5(b) and 7(b)
have many tiles that ‘pop out’, that is their colour is inco-
herent compared to the nearby tiles. This happens because
Battiato et al. contains heuristic steps that do not discour-
age tiles to cross strong intensity edges. When a tile crosses
a strong intensity edge, its colour is blended and it stands
out from the surrounding tiles, as illustrated in Figure 1(c).
We perform global optimization and discourage strong edge
crossing as a part of the energy function. In addition, com-
pared to that of Battiato et al., the tiles in our mosaics are
better aligned to object edges, and therefore they outline the
object shapes more accurately. For example, in Figure 5(a),
all the stars are clearly delineated, where as in Figure 5(b)
only the larger stars have reasonable outlines and the other
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Figure 8: Progression of mosaic stitching described in Section 6.2.2

stars are blended with the background. The tiger face that
we produce [Figure 7(a)] is more readily recognized as a
tiger compared to that of Battiato et al. [Figure 7(b)]. This
is, again, due to our mosaics delineating objects more clearly
and have less tiles that are incoherent with the surrounding
tiles.

The method of Battiato et al. can be viewed as a simplified
version of our algorithm. They also generate tile orientation
field (similar to what we do in Section 6.1, but using local
optimization). Then they generate the final mosaic heuris-
tically. Thus, their final mosaic is equivalent to our single
mosaic layer, and the steps in Sections 6.2.1 and 6.2.2 are not
performed. To understand the importance of stitching multi-
ple layers together, consider Figure 8. Figure 8(a) shows our
starting layer. This would be similar to the output of Battiato
et al. The mosaic in Figure 8(a) is clearly inferior, many tiles
overlap intensity edges and therefore their colour is blurred.
The Chinese character can be barely recognized in this mo-
saic. Figure 8(b) shows our result after stitching 64 layers
together. The results are significantly improved compared
to the starting layer in Figure 8(a). The result of stitching
98 layers [Figure 8(c)] still shows a mild improvement over
Figure 8(b).

Compared to Hausner [Hau01], our mosaics also have
fewer tiles that ‘pop out’, due to our use of global optimiza-
tion. Because Hausner needs user interaction, the extent to
which the objects are outlined depends solely on the user.
For example, in Figure 5(c), the user marked the bound-
aries around the tree, the largest star, and the border be-
tween the sky and the ground regions. These are exactly
the objects that are outlined very well in the resulting mo-
saic. The boundaries of other objects are not emphasized.
For example, the medium size star on the right of the cas-
tle has tiles with orientations following the tree boundary,
not the star boundary. In addition, tile orientations of Haus-
ner’s mosaics is visibly more discontinuous compared to our
mosaics.

Figure 9: Mosaics with different wv .

Having a global energy function allows us to control the
mosaic appearance by tuning parameter values. For example,
parameter wv in Equation (7) determines the importance of
the edge avoidance constraint. When wv is set to 0, tiles are
free to cross any edges and the mosaic is blurred [Figure
9(b)]. When wv is very large, some tiles which are close to
the edges will be removed and a large gap space is created in
the final mosaic [Figure 9(a)]. A good choice of wv is in the
middle between the two extremes in Figure 9.

To improve the time spent on building and stitching mosaic
layers, we pre-compute a table storing the area of overlap for
a pair of tiles. This table is indexed by the relative positions
and orientations between tiles. With these speed-ups, and
considering the significant amount of layer stitching, our
running times are reasonable. On the images in Figure 4, of
sizes 867 × 691, 940 × 1233 and 1200 × 827, the running
times were, respectively, 5, 10 and 9 min. Further speed
improvements would help, of course.

8. Conclusion

We formulated the problem of classic mosaic generation in
a global optimization framework, and designed an energy
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function encoding the properties that lead to perceptually
pleasing mosaics. Our global optimization framework offers
a more principled approach than previous work, which is
mostly based on heuristics.

Note that the artificial mosaics produced by our algorithm
are different in appearance from the classic mosaics produced
by artists. In these, the tiles are placed at successive bands
around the feature edges. This creates discontinuities at the
skeleton of the feature curves, as explained in the introduc-
tion. The tiles have smoothly varying orientations.

While removing user interaction is an advantage for a
naive user, an artist may want more control on the edges to
emphasize. If desired, it is easy to include user interaction in
our framework, by fixing orientations of some tiles to user
specified values. Then the algorithm can proceed as before,
but optimizing only over the free variables.

In the future, we intend to extend our approach to render-
ing mosaics with tiles of different size and shapes. Smaller
tiles are needed in image regions which have fine scale de-
tails, and larger tiles are sufficient in areas of the image which
have coarse features. Therefore, we need to vary the tile size
for different regions of the image. It is relatively trivial to
include tile size as an additional (third) variable in our opti-
mization framework, favouring the areas with higher spacial
frequencies to have smaller tile size. In addition, we also plan
to generate time-coherent video mosaics.
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