
Semi-Dense Stereo Correspondence with Dense Features

Olga Veksler
NEC Research Institute, 4 Independence Way Princeton, NJ 08540

olga@research.nj.nec.com

Abstract

We present a new feature based algorithm for stereo
correspondence. Most of the previous feature based meth-
ods match sparse features like edge pixels, producing only
sparse disparity maps. Our algorithm detects and matches
dense features between the left and right images of a stereo
pair, producing a semi-dense disparity map. Our dense fea-
ture is defined with respect to both images of a stereo pair,
and it is computed during the stereo matching process, not
a preprocessing step. In essence, a dense feature is a con-
nected set of pixels in the left image and a corresponding
set of pixels in the right image such that the intensity edges
on the boundary of these sets are stronger than their match-
ing error (which is basically the difference in intensitiesbe-
tween corresponding boundary pixels). Our algorithm pro-
duces accurate semi-dense disparity maps, leaving feature-
less regions in the scene unmatched. It is robust, requires
little parameter tuning, can handle brightness differences
between images, and is fast (linear complexity).

1 Introduction

Stereo correspondence is one of the oldest problems in
computer vision, with numerous applications. Despite sig-
nificant progress through the years, the accuracy and reli-
ability of the existing stereo algorithms can be improved.
Any stereo algorithm must face the following: while tex-
tured regions in a scene are relatively easy to match (al-
though not in the case of repeated texture), textureless re-
gions are hard to deal with. Many different approaches were
developed to address this problem.

The feature-based approaches [15, 8, 16, 18, 20] detect
and match only “feature” pixels. These are the physically
significant image pixels, such as pixels on an intensity edge.
Feature pixels can be matched reliably. Textureless regions
are left unmatched. The advantage of these methods is that
they produce accurate results. The results are rather sparse,
though, which is a disadvantage. Many applications require
dense measurements, and interpolation is a difficult prob-

lem in itself.
Since sparse depth maps are insufficient, many meth-

ods were developed to match all pixels, not just those in
edge features. These methods must deal with homogeneous
regions. The basic idea behind all of them is to encour-
age “cooperation” between pixels, so that pixels in homo-
geneous regions get assigned smoothly varying disparities.
We roughly divided such methods in a few groups below.

Area correlation methods [17, 19, 7] assume that a pixel
is surrounded by a window of pixels with the same dis-
parity, and windows of pixels are matched. Cooperation
is encouraged because close-by pixels are matched with
only slightly different windows, and thus are likely to be
assigned the same disparity. However choosing an appro-
priate window is a difficult problem, only a few researchers
have addressed it [11, 5, 13]. Area correlation methods pro-
duce dense stereo maps, but can be quite unreliable not only
in homogeneous regions, but also in textured regions for an
inappropriately chosen window size.

Cooperative methods [14, 24] directly encourage nearby
pixels to cooperate by local iterative schemes which prop-
agate information from a pixel to its neighbors. Energy
minimization methods [1, 6, 9, 3, 21] also directly promote
cooperation but use global optimization. They design and
minimize energy functions which reward smooth or almost
smooth disparity maps. The cooperative and energy mini-
mization methods frequently have parameters which are dif-
ficult to set, and they tend to be inefficient. Another draw-
back is that it may still be difficult to assess whether a ho-
mogeneous region was assigned the correct disparity, since
in some cases all pixels in a homogeneous region may be
assigned the same, but nevertheless wrong disparity.

In the last group are the segmentation based methods.
Their underlying idea is to use the results of an image seg-
mentation algorithm to locate regions which are likely to be-
long to the same object, and match those regions [4, 12, 23],
The actual details vary significantly between these algo-
rithms. Finding good regions to match through image seg-
mentation is, of course, a difficult problem.

All of the above methods have certain disadvantages. We
propose a new feature based approach to stereo correspon-



dence. Most of the previous feature based algorithms match
thin features (edge pixels), producing accurate but sparse
results. We would like to retain the accuracy of the feature
based methods, but detect and match dense features, thus
producing semi-dense stereo maps. In essence, our dense
feature is a connected set of pixels in the left image and
the corresponding set of pixels in the right image with in-
tensity boundaries stronger than the error of matching the
left and right boundary pixels. We call this the “boundary”
condition, and it is the main enabling idea of our algorithm:
the intensity change on the boundary must be more signif-
icant than the noise level of the pixels being matched, oth-
erwise the boundary does not carry any useful information,
its significance is destroyed by noise. If this principle is
not enforced, then any textured region could be matched to
any other textured region. Unlike the previous feature based
methods, the detection of our dense features is an integral
part of the algorithm, not a preprocessing stage. Further-
more, the threshold to detect a feature is adaptive, it depends
on the noise of pixels being matched.

To find a dense feature at disparityd, we first overlap the
left and the right images at disparityd and compute the er-
ror surface, see Section 2.1. The error surface is basically
the absolute difference in intensities between the pixels of
the left and right image. We expect it to be small for pix-
els which are likely to correspond. Then we use the error
surface to find the binary match surface which is1 for pix-
els that may have disparityd, and0 otherwise. Then we
prune the match surface leaving only the regions satisfying
the “boundary” condition, that is the regions with borders
on the intensity boundaries larger than the error surface on
that boundary. When pruning, we take into consideration
the brightness changes between the left and the right im-
ages, see Section 2.3. The connected regions which survive
the pruning are our dense features. Due to image structure
some features may overlap. In the final stage of our algo-
rithm, if a pixel belongs to several features (in case of over-
lapping features), we choose the “densest” feature for that
pixel, see Section 2.4. Thus the algorithm has four main
stages: computing the error surface, computing the match
surface, detecting dense features in the match surface, and
choosing among dense features when necessary.

Besides feature-based approaches, our algorithm is simi-
lar to segmentation based stereo. Our dense features can be
thought of as the appropriate segments to match. However
segmentation of the dense features is an integral part of our
stereo algorithm, not a separate preprocessing stage.

Our algorithm has many good properties. Its complexity
is linear in the number of pixels times the number of dispar-
ities searched, so it is very fast, taking 1 second for smaller
images and 7 seconds for larger images. It is even more
efficient in its memory usage, which is linear in the num-
ber of pixels. It produces accurate results as tested by real

data with ground truth, see Section 3. It can handle bright-
ness differences between the left and the right images. Even
though it is feature based, a large percentage of pixels is
matched, from 40 to 95 percent in our experiments. Occlu-
sions do not need to be handled, since most of the occluded
pixels do not belong to any dense feature. Our parameters
have intuitive meaning, and we do not tune them separately
for each stereo pair. The algorithm can handle not only ho-
mogeneous regions but also repeated texture regions. We
do not need to produce a separate “uncertainty” map for the
disparity map. Only the “certain” pixels, i.e. pixels belong-
ing to some dense feature are assigned a disparity.

2 Description of the Algorithm

We assume that the images are rectified so that the epipo-
lar lines are the scanlines. We search in the disparity rangef0; : : : ;maxdg, wheremaxd is the maximum possible dis-
parity, the only parameter provided by the user in our im-
plementation. Right now we search with pixel precision,
that is only integer disparityd are considered, although the
algorithm is easily extended to search in the subpixel range.

The algorithm is organized as follows. We cycle through
all d 2 f0; : : : ;maxdg. For eachd there are four main
steps. First we overlap the left and the right images at dis-
parity d, and compute the error surface, see Section 2.1.
The second step is to compute the match surface, see
Section 2.2. The third step is to find all the dense fea-
turesff1d ; : : : fnd g in the match surface, see Section 2.3. The
last step is to go through allp 2 f id and assign disparityd to p if the disparity ofp is still uninitialized, or iff id is
“denser” for pixelp thanf jd0 , whered0 is the current dispar-
ity assigned to pixelp andf jd0 is the feature containingp at
disparityd0. This final step is explained in Section 2.4. The
summary of our algorithm is in Fig. 1.

2.1 First Stage: Computing the Error Surface

In this section we explain how we find the error surface.
We denote the intensity of pixelp in the left image byL(p)
and the intensity of pixelp in the right image byR(p). We
denote the error surface at disparityd and pixelp byEd(p).

To compute the error surface, we need a similarity mea-
sure between pixelp in the left image and pixelp � d in
the right image, wherep � d is the pixel with coordinates
of p shifted byd to the right. RoughlyEd(p) should bejL(p) � R(p � d)j. However even in the absence of noise,
this error measure is not accurate for pixels overlapping
the surface with rapidly changing intensity when the pixel’s
true intensity is not integer. This happens because of image
sampling artifacts, see [2] for more details. Computing dis-
parity at subpixel accuracy helps to solve this problem, but
as [2] points out, the additional computation time may not



for all pixelsp dodisparity(p) = NONE
for d = 0; : : :maxd do

1. Compute the error surfaceEd(p)
2. Compute the match surfaceMd(p) fromEd(p)
3. Find dense featuresff1d ; : : : fnd g in Md(p)
4. for i = 0; : : : n

for p 2 f id do
if disparity(p) = NONE

disparity(p) = dFeatureDensity(p) = density(f id; p)
else if density(f id; p) > FeatureDensity(p)

disparity(p) = dFeatureDensity(p) = density(f id; p)
Figure 1. Overview of the algorithm.

be worth it. Instead we use the method in [2] to construct
the error surface insensitive to image sampling.

First we defineR̂ as the linearly interpolated function
between the sample points on the right scanline, and then
we measure how well the intensity atp in the left image fits
into the linearly interpolated region surrounding pixelp� d
in the right imageeld(p) = minq2[p�d� 12 ;p�d+ 12 ℄ jL(p)� R̂(q)j:
For symmetry,erd(p) = minq2[p� 12 ;p+ 12 ℄ jL̂(q)�R(p� d)j:
Thus our error surface is the symmetric measure of similar-
ity between pixelsp in the left image and pixelp� d in the
right image: Ed(p) = min �eld(p); erd(p)	 :
2.2 Second Stage:Computing the Match Surface

With the error surface defined, we are ready to compute
the binary match surface. We denote this surface for dispar-
ity d and pixelp by Md(p). At this stage, we want to setMd(p) = 1 for pixels for which disparityd might be the
right disparity, and setMd(p) = 0 for the rest.

Left and right images of a stereo pair sometimes have
significant brightness differences, due to different camera
gains or changed light conditions, for example. We want to
allow pixels with significant brightness difference to match,
provided that nearby pixels experience similar brightness
differences. At the same time we need to exclude the un-
likely matches. To satisfy these two goals simultaneously,

for all pMd(p) = 0
Sortp in the order of increasingEd(p)
for all p in order of increasingEd(p) do

if Md(q) = 0 8q 2 NpMd(p) = 1
else if jEd(q)�Ed(p)j < � 8q 2 Np s.t.Md(q) = 1,Md(p) = 1

Figure 2. Match surface computation.

we detect the regions in the error surface with smoothly
varying errors, and set the match surface to1 for those re-
gions. This way we allow matching only between two re-
gions differing by a smooth surface. For example match-
ing between two regions with smoothly varying or constant
intensities is allowed, even if these regions are of differ-
ent brightness, as long as the difference surface is smooth.
Matching a smoothly varying region with a textured region
is not allowed, and matching between two regions with dif-
ferent textures is also not allowed.

Now we can explain why we detect dense features in the
match surface rather than in the error surface. Recall that
our “boundary” condition for dense features says that the
intensity change on the boundary must be greater than the
error on the boundary. Notice that this definition treats the
boundary pixels differently from others, enabling efficient
detection of dense features. However if we use boundary
condition on the error surface, then we are checking only
that the boundary pixels are good matches. If due to im-
age structure and noise we find some false “good” boundary
in the error surface, all the pixels inside are automatically
matched, even if the inside pixels form two unrelated tex-
tures. This does not happen when we detect dense features
in the match surface, since the match surface contains only
the pixels which we consider a good match, as explained in
the previous paragraph.

The algorithm to compute the match surface is in Fig. 2.
We start by initializing the match surface to 0. Then we sort
all pixels in order of increasingEd(p). It can be done in
linear time since the range ofEd(p) is small. The next step
is to go over all pixelsp in order of increasingEd(p) and setMd(p) = 1 if either of two conditions hold. First condition
is thatMd(p) = 0 for all nearest neighborsq of p, where the
nearest neighbors ofp are just the pixels above, to the left,
to the right, and belowp. We denote the nearest neighbors
of p by Np. The second condition is that ifMd(q) = 1
for someq 2 Np, then jEd(p) � Ed(q)j � �. The first
condition initializes some “seeds” from which to grow the
match surface. It makes sense to take the pixels with the
smaller errors for the seeds, that is why we sortEd(p)’s.



for all p s.t.Md(p) = 1 and Md(p� 1) = 0
while jEd(p)� avr(p; d)j + � > jL(p)� L(p� 1)j orjEd(p)� avr(p; d)j + � > jR(p� d)�R(p� d� 1)j

do Md(p) = 0p = p+ 1
Figure 3. Pruning the left boundary.

The second condition makes sure that all the regions which
are set to1 in the match surface correspond to smoothly
varying error surface.

We set� = 3 for all the experiments. This value might
seem rather small, but keep in mind that this is not the
largest matching error that we allow, rather it is the largest
difference between matching errors that we allow. Thus the
two matched regions can differ significantly in intensity, but
this difference must be smooth. In textured regions two
neighboring pixels may have significantly different errors
not explained by just the smooth brightness differences be-
tween the regions. However in textured regionsEd(p) is
smaller than the absolute difference of intensities due to the
similarity measure we use, recall section 2.1. So this value
of � works well even in the textured regions.

In practice, of course, there are always a few pixels
which do not obey our assumptions. To deal with these
pixels, we compute connected components in the matching
surface and patch all holes of small size, which we set to 5
in our implementation. The reason for5 is the following: if
some pixel has an error not handled by our assumptions, it
can lead to a wrong choice for its 4 nearest neighbors.

2.3 Third Stage: Detecting Dense Features

In this section we explain how we find dense features
in the match surface. Recall that to locate a dense feature,
we need to find a region in the match surface which satisfies
our “boundary” condition, i.e. the boundaries must be on in-
tensity edges larger than error surface. This implies that we
can match only regions where change in disparity occurs to-
gether with a change in intensity. In reality, of course, there
are frequently uniform surfaces which straddle several dis-
parities. To deal with such surfaces, we need to detect fea-
tures which straddle several disparities. We plan to do so
in the future, see section 4. However in the current imple-
mentation, we can deal with some of such uniform surfaces
by enforcing our “boundary” condition only on the left and
right boundaries of a region. We do not enforce it on the top
or the bottom boundary. Thus we can at least match low-
texture surfaces sloping horizontally, like the ground plane.

We begin by pruning pixels on the left boundary of the
match surface until the the error of pixels on that boundary
is smaller than the intensity edge on that boundary in the left
and the right image. However we also want to correct for
the brightness differences between the images. Therefore
we subtract the average brightness difference around pixelp in the left image and pixelp � d in the right image fromEd(p). We denote this difference byavr(p; d), and it is
computed in the 3 by 3 window, i.e. ifWp is the 3 by 3
window aroundp, thenavr(p; d) = Xq2Wp (L(q)�R(q � d)) :

The algorithm to prune the left boundary is given in
Fig. 3. We begin by taking some pixelp which does not
satisfy our boundary condition. That isp is in the match
surface, pixel to the left ofp is not in the match sur-
face, andjEd(p) � avr(p; d)j + � is larger than the in-
tensity boundary betweenp andp � 1 in the left image orjEd(p) � avr(p; d)j + � is larger than the intensity bound-
ary betweenp � d andp � d � 1 in the right image. We
removep from the match surface, i.e. setMd(p) = 0, and
continue this process until all left boundary pixelsp satisfy
the “boundary” condition. We set� = 5 for all our experi-
ments, and this is the second and last significant parameter
of our algorithm. It is used to make sure that the intensity
on the boundary is not only larger, but significantly larger
(by �) than the error on the boundary.

We do similar pruning for the right boundary. Since we
treat each scanline independently for the dense feature con-
struction, there may be some inconsistencies between the
the horizontal intervals of our dense feature. That is a few
horizontal lines may stick in and out our dense feature. In
principle, a better way to extract a dense feature from the
match surface would be to use some boundary extraction
algorithm, for example the one in [10]. However even our
simple algorithm works very well with the following filter-
ing step. If pixelp is in a dense featurefd, but the pixels
above and belowp are not infd, thenp is also removed
from fd. Also if pixel p is not infd, but pixels above and
belowp are infd thenp is also placed infd.

After the filtering step, we find connected components
in the pruned match surface, and remove components less
than some minimum size, which we set to25. The rest of
the connected components are our dense features.

Figs. 4(a,b) show the match surface and the dense fea-
tures at disparity 14 for the scene in Fig. 7(a). This is the
correct disparity of the lamp. Pixels for which the match
surface is 1 and pixels which belong to a dense feature are
shown with bright intensity. Notice that the match surface
is 1 for the majority pixels in the scene. However the match
surface is 0 for the majority of the intensity edges for which
the correct disparity other than 14. That is why when the



(a) match surface atd = 14 (b) dense features atd = 14
Figure 4. Comparison of match surface and dense features

(a) left image (b) wrongd (c) rightd
Figure 5. Overlap due to repeated texture

(a) left image (b) can disparity (c) wall disparity

Figure 6. Overlap due to spurious texture

match surface is pruned using our “boundary” condition,
most of the pixels are not in any dense feature. The remain-
ing regions correspond to the lamp, few regions of repeated
texture, and few spurious small regions. Unfortunately, we
loose most of lamp handle because the intensity edge there
is not strong enough.

2.4 Forth Stage: Choosing Dense Features

Some pixelp can be a part of two dense features. One
reason is repeated texture. Consider Fig. 5(a). This is a cut
out of a repeated texture region from the scene in Fig. 7(a).
This region are the books right above the lamp. Figs. 5(b,c)
shows dense features for this region at the wrong and the
right disparities, respectively. Pixels which belong to a
dense feature are shown in bright color, pixels which do not
belong to any dense feature are shown in black color. No-
tice that for the right disparity, all the pixels are in a dense
feature. Thus the feature at the right disparity is “denser”
for the pixels which have a choice of features.

However most often features overlap is due not to re-
peated texture. It happens because some dense feature is

joined by a few extra regions, usually fairly small and tex-
tured. Consider Fig. 6(a). It shows a region occupied by
a corner of the soda can to the right and slightly above the
lamp in Fig. 7(a). The background has texture due to the
wall poster. Fig. 6(b) shows the dense feature at the dispar-
ity of the soda can. The can grabbed a thin horizontal region
due to the wall texture. Fig. 6(c) shows dense feature at the
correct disparity for that thin wall region. Notice that the
correct disparity is “denser” for that region.

Now we will formalize what we mean by “denser”. We
need to estimate how many pixels are there in the imme-
diate surrounding ofp in a dense feature. LetMd be our
match surface, and letHd(p) be the length of the horizontal
interval consisting only of pixels in the same dense feature
and containingp. For example if there arel consecutive
pixels to the left ofp in the same dense feature asp andr
pixels to the right ofp in the same dense feature asp, thenHd(p) = l + r + 1. Similarly we defineVd(p), D1d(p),D2d(p), where these quantities are, respectively, the number
of pixels in the vertical and and two diagonal intervals con-
tainingp and consisting of consecutive pixels of the same
dense feature thatp is in. We can computeHd(p), Vd(p),D1d(p), D2d(p) for all p in just four passes over the dense
features. Iff id is a feature at disparityd containingp, thendensity(p; f id) = Hd(p) + Vd(p) +D1d(p) +D2d(p)��max�Hd(p); Vd(p); D1d(p); D2d(p)	

We subtract the maximum for robustness against occa-
sional thin horizontal structure like in Fig. 6(b). Notice thatdensity(p; f id) can be different fromdensity(q; f id). With
this definition of density, the regions in Figs. 5 and 6 are
placed at the correct disparities, as can be checked in Fig. 7.

3 Experimental Results

In this section we present our experimental results on
real stereo pairs, two of which have known ground truth.



(a) left image (b) ground truth (c) our algorithm

Figure 7. Real imagery with dense ground truth

For all the experiments, the parameters were fixed as fol-
lows: � = 3, � = 5, and minimum feature size was set to25. On the disparity maps, brighter pixels have larger dis-
parity. Pixels for which no disparity was found (i.e. pixels
which do not belong to any dense feature) are in black.

3.1 Head and Lamp Stereo Pair

Fig. 7(a) shows the left image of a stereo pair from the
university of Tsukuba. For this stereo pair the dense ground
truth is known, and it is in Fig. 7(b). The disparity map our
algorithm computes is in Fig. 7(c). The size of these images
is 384 by 288, maximum disparity we search is 14. The
running time is 1 sec, and 75% of pixels are matched. The
three largest regions which our algorithm leaves unmatched
are the upper right corner, the lower right corner, and the
upper part of the region under the table. Some parts of on
the table are also not matched.

Out of the pixels that we match, 88.2% are found cor-
rectly, 98.5% are off by not more than 1 pixel, and only
1.5% of pixels are more than 1 disparity away from the
correct answer. The absolute average error is 0.13. Algo-
rithms in [24, 3] report 1.4% and 1.8% of pixels with error
more than 1 disparity from the correct answer. However
both of these methods tune their parameters to achieve the
best performance, and they are much less efficient than our
algorithm. The work in [22] gives a more comprehensive
comparison of the performance algorithms on this stereo
pair. However out of all algorithms evaluated in [22], al-
gorithms [24, 3] achieve the best accuracy.

3.2 Two Planes Stereo Pair

Fig. 8(a) shows the left image of another stereo pair for
which the dense ground truth is also known. This stereo
pair is from Microsoft. Figs. 8(b,c) show the ground truth
and our answer, respectively. The image sizes are 284 by

216, and the maximum disparity we search for is 28. The
running time was 2 seconds, with 89% of pixels matched.
Since the ground truth was computed for the right image,
we also computed our answer for the right image. Notice
that the black region on the right is not matched, this re-
gion corresponds to the occluded pixels. Only three small
regions which should be occluded are matched erroneously.
Out of the pixels which our algorithm matches, 84.6% are
matched correctly, 99.1% are off by not more than one pixel
from the correct disparity, and the average absolute error is
0.27.

3.3 Birch Stereo Pair

Fig. 9(a,b) shows the left and right birch tree images
from SRI. The image size is 320 by 242, and the maximum
disparity we searched for is 28. The running time was 2
seconds, with 41% of pixels matched. The right image is
approximately 15% brighter than the left image. This dif-
ference is easily noticeable to the eyes, that is why we show
both the left and the right images. In addition, the texture
of the grass in the front part of the left image is almost all
lost. Only the two bright spots in the very front and three
bright spots further in the back retain texture, the major-
ity of other grass pixels in the frontal half have intensity 0.
This makes stereo correspondence very challenging. Our
algorithm, however, successfully matches the trees and the
five spots on the grass which have not lost texture. It does
not match the grass which lost its texture because it cannot
match the textureless regions in the left image to the tex-
tured ones in the right image. It is hard to notice in out
displays, but the two trees in the front have smoothly vary-
ing disparity, the closer one changes disparity from 22 on
the bottom to 26 on top, and the one to the left of it changes
disparity from 20 to 21. If we enforced our “boundary” con-
dition on the whole boundary, and not just on the left and the
right boundary as we do now, we would not be able to get



these results, due to the lack of sufficient horizontal texture
on these trees.

3.4 Shoe Stereo Pair

Fig. 10(a) shows the left image of another challenging
stereo pair from CMU. The size is 512 by 480, and the max-
imum disparity is 14. The running time was 7 seconds, and
95% of pixels are matched by our algorithm. This stereo
pair is difficult because of the repeated texture floor. Our
algorithm was able to place almost all of the floor at the dis-
parity 9. A manual inspection of the left and right images
suggests that two plausible disparities of the floor are 9 and
3. However the disparity of the shoe varies from 13 to 11,
so disparity 3 would place the floor too far, the shoe would
have to float over it. So the disparity of 9 our algorithm
produces is most likely right.

4 Discussion

Our results on the real stereo data, including the data
with ground truth, show that our algorithm produces accu-
rate results, can handle brightness differences between im-
ages, repeated texture, homogeneous image regions. It is
robust with respect to parameters, they do not need to be
tuned. It is also very fast and efficient with memory.

The biggest current limitation is that it cannot handle ho-
mogeneous sloped surfaces with slant other than horizon-
tal. We plan to address this in our future work but allowing
dense features to form across different disparities. When
we do that, we will need to check our “boundary” condition
across the whole border, not just the left and right bound-
ary as we do right now. With this extension we also plan to
apply our algorithm to motion sequences.

The second biggest limitation is the way we extract the
dense features from the match surface. Instead of process-
ing each scanline independently as we do now, it would be
better to use a boundary extraction algorithm which is less
local.

Acknowledgments

We would like to thank Prof. Y. Ohta from the University
of Tsukuba and Dr. R. Szeliski from Microsoft research for
providing the images with ground truth.

References

[1] S. Barnard. Stochastic stereo matching over scale.IJCV,
3(1. May 1989):17–32, May 1989.

[2] S. Birchfield and C. Tomasi. A pixel dissimilarity measure
that is insensitive to image sampling.IEEE Transactions on

Pattern Analysis and Machine Intelligence, 20(4):401–406,
April 1998.

[3] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate en-
ergy minimization via graph cuts. InInternational Confer-
ence on Computer Vision, pages 377–384, 1999.

[4] L. Cohen, L. Vinet, P. Sander, and A. Gagalowicz. Hier-
archical region based stereo matching. InCVPR89, pages
416–421, 1989.

[5] A. Fusiello and V. Roberto. Efficient stereo with multiple
windowing. In IEEE Conference on Computer Vision and
Pattern Recognition, pages 858–863, 1997.

[6] D. Geiger, B. Ladendorf, and A. Yuille. Occlusions and
binocular stereo.International Journal of Computer Vision,
14:211–226, 1995.

[7] D. Gennery. Modelling the environment of an exploring ve-
hicle by means of stereo vision. InPh. D., 1980.

[8] W. Grimson. A computer implementation of a theory of hu-
man stereo vision.Royal, B-292:217–253, 1981.

[9] H. Ishikawa and D. Geiger. Occlusions, discontinuities, and
epipolar lines in stereo. InECCV98, pages xx–yy, 1998.

[10] I. Jermyn and H. Ishikawa. Globally optimal regions and
boundaries. InICCV99, pages 904–910, 1999.

[11] T. Kanade and M. Okutomi. A stereo matching algorithm
with an adaptive window: Theory and experiment.PAMI,
16(9):920–932, September 1994.

[12] J. Ma and N. Ahuja. Region correspondence by global con-
figuration matching and progressive delaunay triangulation.
In CVPR00, pages II:637–642, 2000.

[13] R. Maas, B. ter Haar Romeny, and M. Viergever. Area-based
computation of stereo disparity with model-based window
size selection. InCVPR99, pages I:106–112, 1999.

[14] D. Marr and T. Poggio. Cooperative computation of stereo
disparity. Science, 194(4262):283–287, October 15, 1976,
October 1976.

[15] D. Marr and T. Poggio. A computational theory of human
stereo vision.RoyalP, B-204:301–328, 1979.

[16] G. Medioni and R. Nevatia. Segment-based stereo matching.
CVGIP, 31(1):2–18, July 1985.

[17] K. Mori, M. Kidode, and H. Asada. An iterative predic-
tion and correction method for automatic stereocomparison.
CGIP, 2:393–401, 1973.

[18] N.Ayache and B. Faverjon. Efficient registration of stereo
images by matching graph descriptions of edge segments.
International Journal of Computer Vision, 1, 1987.

[19] D. Panton. A flexible approach to digital stereo mapping.
PhEngRS, 44(12):1499–1512, December 1978.

[20] L. Robert and O. Faugeras. Curve-based stereo: Figuralcon-
tinuity and curvature. InIEEE Conference on Computer Vi-
sion and Pattern Recognition, pages 57–62, 1991.

[21] S. Roy. Stereo without epipolar lines: A maximum-flow
formulation. IJCV, 34(2/3):1–15, August 1999.

[22] R. Szeliski and R. Zabih. An experimental comparison of
stereo algorithms. InIEEE Workshop on Vision Algorithms,
September 1999.

[23] H. Tao and H. Sawhney. Global matching criterion and color
segmentation based stereo. InWACV00, pages 246–253,
2000.

[24] C. Zitnick and T. Kanade. A cooperative algorithm for stereo
matching and occlusion detection.PAMI, 22(7):675–684,
July 2000.



(a) left image (b) ground truth (c) our algorithm

Figure 8. Slanted planes stereo pair

(a) left image (b) right image (c) our algorithm

Figure 9. Birch Sequence from SRI

(a) left image (b) our algorithm

Figure 10. Shoe sequence from CMU


