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Abstract

We develop a fast and accurate variable window ap-
proach. The two main ideas for achieving accuracy are
choosinga usefulrange of window sizes/shapesfor eval-
uationanddevelopinga new windowcostwhich is particu-
larly suitablefor comparingwindowsof differentsizes.The
speedof our approach is due to the Integral Image tech-
nique, which allows computationof our windowcostover
anyrectangularwindowin constanttime, regardlessof win-
dowsize. Our methodranksin thetop four on theMiddle-
bury stereodatabasewith groundtruth, andperformsbest
outof methodswhich havecomparableefficiency.

1 Intr oduction

Area-basedmatching is an old and still widely used
methodfor densestereocorrespondence[11, 12, 13, 7, 6].
In this approachoneassumesthata pixel is surroundedby
a window of pixelsat approximatelyequaldisparity. Thus
thecostfor pixel � to havedisparity � is estimatedby taking
a window of pixelsaround� in the left image,shifting this
window by � in the right imageandcomputingthe differ-
encebetweenthesetwo windows. Somecommonwindow
costsaresumof squaredor absolutedifferences,normal-
izedcorrelation,etc. After all window costsarecomputed,
a pixel is assignedthedisparitywith thebestwindow cost.
The well known problemwith this approachis that while
theassumptionof a window at approximatelyequaldispar-
ity is usually valid, the shapeand size of that window is
unknown beforehand.Ignoringthisproblem,mostmethods
usea rectangularwindow of fixedsize. In this casetheim-
plementationis very efficient. Using the “sliding column”
methodof [3] the runningtime is independentof the win-
dow size,it is linearin thenumberof pixelsanddisparities.

As early as[11], researchersrealizedthat keepingwin-
dow sizefixedfor all pixels leadsto systematicerrors.For
a reliableestimatea window mustbe largeenoughto have
sufficient intensityvariation. But on theotherhanda win-
dow mustbesmallenoughto containonly pixelsatapprox-

imatelyequaldisparity. Furthermoreneardisparitybound-
arieswindowsof differentshapesareneededto avoid cross-
ing that boundary. Thusaswindow sizeis increasedfrom
small to large, the results rangefrom accuratedisparity
boundariesbut noisy in low texture areasto morereliable
in low textureareasbut blurreddisparityboundaries.There
is no goldenmiddle whereresultsareboth reliablein low
textureareasanddisparityboundariesarenotblurred.

Sincefixed window algorithmsclearly do not perform
well, therehasbeensomework on varying window size
and/orshape.Suchvariablewindow methodsfacetwo main
issues.First is designinganappropriatewindow cost,since
windows of different sizesand/orshapesare to be com-
pared.Secondis efficiently searchingthespaceof possible
windowsfor theonewith thebestcost.Theearliestvariable
window approachis [11]. They usenormalizedcorrelation
for thewindow cost,andchangewindow sizeuntil thereis
significantintensityvariancein awindow. However relying
only on intensityvarianceis notenough,sinceit maycome
at thecostof crossingadisparityboundary.

The adaptive window [9] usesan uncertaintyof dispar-
ity estimateasthewindow cost.For this window cost,they
needa modelof disparityvariationwithin a window, and
also initial disparity estimate. Then to find the bestwin-
dow, they usegreedylocalsearch,which is very inefficient.
While this methodis elegant,it doesnot give sufficient im-
provementover thefixedwindow algorithm. Theproblem
mightbeits sensitivity to theinitial disparityestimate.

Anotherpopularmethod[8, 5,4,10] is themultiplewin-
dow. For eachpixel, a small numberof differentwindows
are evaluated,and the one with the bestcost is retained.
Usuallywindow sizeis constant,but shapeis varied.Typi-
cal window costis relatively simple,for exampletheSSD.
To be efficient, this methodseverely limits the numberof
windows, under ten in all of the above papers. Because
window shapeis varied,at discontinuitiesthis methodper-
formsbetterthanthefixedwindow method.However there
arestill problemsin low texture regions,sincethenumber
of differentwindow sizestried is notnearlyenough.

In [15] a compactwindow algorithmis developed.Win-
dow costis theaveragewindow errorplusbiasto largerwin-



dows. Efficientoptimizationovermany “compact”window
shapesis doneusing the minimum ratio cycle algorithm.
While this methodperformswell, it doesnot seemto be
efficientenoughfor realtime implementation.

Weproposeanew variablewindow algorithm.Ourmain
ideais to find a usefulrangeof window sizesandshapesto
explorewhile evaluatinga novel window costwhich works
well for comparingwindow of differentsizes.To efficiently
searchthe spaceof windows, we use the integral image
technique,long known in graphics[2] � andrecentlyintro-
ducedin vision [16]. With this technique,aslong aswin-
dow costis a functionof sumof termsdependingon indi-
vidual imagepixels, the costover an arbitraryrectangular
window can be computedin constanttime. Many useful
window costssatisfythis restriction.

Our novel window cost is the averageerror in a win-
dow with biasto largerwindowsandsmallererrorvariance.
Experimentallywe foundthat this costassignslower num-
bersto windows which aremore likely to lie at the same
disparity. This cost is similar to the one in [15], however
we addbiasto smallervariance.This improvestheresults,
sincepatchesof pixelswhich lie at thesamedisparitytend
to have lower error variance. Variancecannotbe handled
by [15] dueto therestrictionsof theiroptimizationmethod.

Using the window cost above and the integral images
we aim to efficiently evaluatea usefulrangeof windows of
differentsizesandshapes.We foundthat limiting window
shapesto just squaresworkswell enough.Furthermoredue
especiallyto the varianceterm in our window cost, win-
dowswith lowercoststendto lie atapproximatelythesame
disparity. Thereforewindow costsareupdatedfor all pix-
els in a window, not just the pixel in the centerasdonein
mosttraditionalareabasedmethods.Thisallowsrobustper-
formanceneardiscontinuities,whereone needswindows
shapesnot centeredat themiddlepixel. Eventhoughcom-
putingawindow costtakesconstanttime,updatingthecost
for all pixels in the window would take time linear in the
window size, if donenaively. We usedynamicprogram-
ming to achieve constantupdatetime onaverage.

Thusthe algorithmworks by exploring all squarewin-
dows betweensomeminimum andmaximumsize. Using
the observation that for a fixed pixel, the function of the
bestwindow sizeis continuousalmosteverywhere,we fur-
ther reducethe numberof window evaluationsto just six
windows perpixel on average.So thealgorithmis fast,its
runningtime is linear in the numberof pixels anddispari-
ties,andit is suitablefor realtime implementation.

Weshow resultsontheMiddleburydatabasewith ground
truthwhichwascompiledby D. ScharsteinandR. Szeliski,
and has becomea standardbenchmarkfor performance
evaluationandcomparisonto otheralgorithms.For there-
sults, seehttp://www.middlebury.edu/stereo/. Our method
�
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Figure 1.

ranksin thetop 4 (at thesubmissiontime), andit performs
bestoutof methodswhichhave comparableefficiency.

2 Integral Image

In this section we explain how the integral image
works [2, 16]. Supposewe have a function from pixels to
real numbers�����
	���
 , andwe wish to computethe sumof
this functionin somerectangularareaof theimage,thatis:

������������� ����������� ���! �	�"�
�#

The straightforward computationtakes just linear time, of
course. However if we needto computesuchsumsover
distinctrectanglesmany times,thereis amoreefficientway
usingintegral images,which requiresjust a constantnum-
ber of operationfor eachrectangularsum. And unlike the
“sliding column” methodof [3], therectanglesdo not have
to beof fixedsize,they canbeof arbitrarysize.

Let usfirst computetheintegral image
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	���
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Thatis �����
	���
 holdsthesumof all �����
	���
 termsto theleft
andabove ���
	���
 , andincluding ���
	���
 , seeFig. 1(a). The
integral imagecanbecomputedin lineartime for all ���
	���
 ,
with justfour arithmeticoperationsperpixel. Westartin the
top left corner, keepgoingfirst to theright andthendown,
andusethe recursion�����
	���
&$'�����
	���
)(*�����,+.-/	���
0(
�����
	��1+2-3

+4�����5+2-/	��1+2-3
 with the appropriatemodi-
fication at the imageborders.Why this works is apparent
from figure 1(b). Pixels with the small plus signsare the
contributionsfrom �����5+2-6	7��
 , pixels with the larger plus
signsarethecontributionsfrom ���!�
	7�8+9-:
 , andpixelswith
theminussignsarethecontributionsfrom ���!�;+<-/	��&+=-3
 .

After the integral image is computed, following the
above ideas,thesumof ���!�
	���
 in a rectanglewith corners
at ���
	���
 and ���?>�	���>�
 canbecomputedwith four arithmetic
operationsvia ���!�
	7��
3+@�����?>6+9-/	���
A+@�����
	���>/+9-3
A(B���!�?>/+
-6	7��>7+B-3
�	 with appropriatemodificationsattheborder. Thus



with a linearamountof precomputation,thesumof �����
	���

over any rectanglecanbecomputedin constanttime.

3 Window Cost

In this sectionwe describethe window cost which we
found to work well for evaluationwhetherall pixels in a
window lie at approximatelythe samedisparity. We also
show how to computethis costusing the integral images.
First weneedto describeourmeasurementerror.

SupposeCD���
	���
 is theintensityof pixel ���
	���
 in theleft
imageand EF�!�
	7��
 is theintensityof ���
	���
 in theright im-
age. To evaluatehow likely a disparity � is for an individ-
ual pixel ���
	���
 , somekind of measurementerror GIHJ���
	���

which dependson CD���
	���
 and EF���1+K�J	���
 is used.Oneof
thesimplestis GIHL�!�
	���
M$ONPCD���
	���
:+QER���S+Q�J	���
7N . Wehow-
ever usethe onedevelopedin [1], which is insensitive to
imagesamplingartifacts(theseareespeciallypronounced
in texturedareasof animage).First we define TE asthelin-
earlyinterpolatedfunctionbetweenthesamplepointsonthe
right scanline,andthenwe measurehow well the intensity
at �!�
	���
 in the left imagefits into the linearly interpolated
regionsurrounding���;+K�J	���
 in theright image
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For symmetry,
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Finally, G�HJ���
	���
.$iVXWZY G UH ���
	���
�	cG fH �!�
	���
 # For other
versionsof samplinginsensitiveerrorsee[14].

Now wecandefineourwindow cost j%HL�7kl
 . Here k is
a rectangularsetof pixels,and � is somedisparity, sincea
window is evaluatedat somedisparity.

j%HJ�7km
M$ GD(onQprqds�tu�7G/
�(
v

w kx(1y # (1)

The first term in equation(1) is just the averagemeasure-

menterror in the window: G;$ z|{�} ~����J���I�
� �L� �r�� �9� . The in-

clusionof this termis obvious: the lower themeasurement
error, the more likely disparity � is for pixels in k . We
normalizeby window size NPklN sincewe will becomparing
windowsof differentsizes.Thesecondtermis thevariance

of theerrorsin a window: qdsctu��G:
�$ z|{�} ~����J�
�
� �
� �L� �r��� _� ��� +

z|{I} ~����J� � �
� �L� �r�� ���

�
$ G � +�� G/
 � . Weincludethevariance

termbecausewefoundexperimentallythatthepixelswhich
belongto the samedisparity tendto have not just smaller
averageerrorbut alsosmallererrorvariance.

The last term in equation(1) is smallerfor larger win-
dows, so it implementsbiasto larger windows. This term
is crucial in untextured regions,wherethe first two terms

are approximatelyequalfor all windows, and larger win-
dowsshouldbepreferredfor areliableperformance.Lastly,
n�	 v 	7y areparametersassigningrelativeweightsto termsin
equation(1). Wehold themconstantfor all experiments.

To computethewindow costin equation(1) efficiently,
we first computethe integral imagesof ���!�
	���
�$lGIHL���
	���

andof �����
	���
�$m�7GIHL���
	���
a
 � . Thenfrom section2 is obvi-
ousthatboth G andqdsctu��G:
 canbecomputedin constanttime
usingtheseintegral images,andthusour window costover
anarbitraryrectanglecanbecomputedin constanttime.

4 Efficient Search for Minimum Window

In thissectionweexplainadynamicprogrammingtech-
niquewhichgreatlyimprovesourefficiency. In ourvariable
window algorithm(which is fully describedin Sec.5), we
will facethe following subproblem.Supposefor eachim-
agepixel ���
	���
 wearegivenonefixedsizerectangularwin-
dow with its upperleft cornerat ���
	���
 andwith thebottom
right corner in any location. This collection of windows
can be indexed by the coordinatesthe upperleft window
corners,sincefor each �!�
	���
 thereis exactly onewindow
with theupperleft cornerat ���
	���
 . Solet km�!�
	7��
 denotea
window from this collection,where ���
	���
 is theupperleft
corner. Even thoughthereis only onewindow per pixel,
eachpixel typically belongsto many windows (but is the
top left cornerof only oneof thewindows). Theproblemis
to assignto eachpixel ����	7��
 thecostof theminimumcost
window it belongsto. If donenaively, solvingthis problem
takestime linearin thesizeof thelargestkm���
	���
 timesthe
imagessize,which is toocostly. Howeverwecansolve this
problemin expectedlineartimein theimagesize,thatis we
canremove thewindow sizedependence.

Let �l���
	���
 denote the cost of the minimum cost
window ���
	���
 belongsto. Besidescomputing �m���
	���

we also needto computethe coordinatesof the bottom
right corner of the minimum cost window, denotedby
��� � ���
	���
�	�� � ���
	���
a
7# We start in the upperleft cornerof
theimage,andfollow thedirectionfirst to theright andthen
down. Computing �m�!�
	���
 , � � �!�
	7��
 , � � �!�
	���
 is trivial
for �!�
	7��
 in the upperleft cornerof the image,sincesuch
�!�
	���
 is in only onewindow. Theargumentproceedsby in-
duction. Supposewe needto compute�l���
	���
 , � � ���
	���
 ,
� � ���
	���
 for some ���
	���
 and thesethreequantitieswere
alreadycomputedfor all pixelsto theleft andabove ���
	���
 .
Therearefour possiblecases:

case1: � � �!�1+=-/	���

�4� and � � ���
	��&+<-:
M�4�
case2: � � �!�1+=-/	���

�4� and � � ���
	��&+<-:

�*�
case3: � � �!�1+=-/	���
��*� and � � ���
	��&+<-:
M�4�
case4: � � �!�1+=-/	���
��*� and � � ���
	��&+<-:

�*�

Simple analysisof thesefour casesleadsto the follow-
ing conclusions.The bestof thesefour scenariosis case
1, since then �m���
	���
 is the minimum of �l���
	��*+�-:
 ,



�m�!�5+2-/	���
 andthe costof the window km�!�
	���
 . In this
case,�l���
	���
�	c� � �!�
	���
 and � � ���
	���
 canbecomputedin
constanttime. In case2, �m����	7��
 is the minimum of cost
of window km�!�
	���
 , �m�!�*+l-/	���
 , and costsof windows
km���
	�� � 
 where� � rangesfrom ��+�- to ��+=�@(�- with �
equalto the maximumwindow height in the given collec-
tion of windows. Thusin case2 the work is proportional
to themaximumwindow height. Case3 is similar to case
2, the work thereis proportionalto the maximumwindow
width. Finally case4 is theworst,weneedto examinecosts
of all windows which contain �!�
	7��
 , so the work is pro-
portionalto themaximumwindow size.Fromexperiments,
cases1, 2, 3, 4 areapproximatelydistributedat 70, 14, 14,
and2 percent,respectively. Sotheexpectedrunningtimeto
compute�m�!�
	7��
 for all ���
	���
 is roughlylinear.

5 Variable Window Algorithm

In this sectionwe describeour variablewindow algo-
rithm. Our overall goal is to evaluatea useful rangeof
windows of different sizesand shapesin a small amount
of time, using the cost function in section3, and integral
imagesof section2 for efficiency. Thereare threemain
ideasin our approachwhich give us efficiency and accu-
racy. First we limit window shapesto just squares.Second
window costsare updatedfor all pixels in a window, not
just thepixel in themiddle. Third thecontinuityproperties
of the bestwindow size for a fixed pixel are exploited to
evenfurtherreducethenumberof window evaluations.We
now describeandmotivatetheseideasin detail.

We found that we can limit window shapesto squares
and still achieve good results. This way we can explore
many differentwindow sizes(which is crucialfor goodper-
formancein untexturedregions)while drasticallyreducing
the numberof window evaluation. We limit windows to
squaressolelyfor efficiency. But interestinglyif werunour
algorithm allowing any rectangularshapes,the resultsdo
not improve by much,while efficiency suffersa lot. This is
likely becauseweneedto find alargeenoughpatchof pixels
at approximatelyequaldisparity, but we do not necessarily
needto conformascloselyaspossibleto theactualshapeof
thepatchof pixelsat thesamedisparity, asis thecasewhen
usingmoregeneralwindow shapes(rectanglesasopposed
to squares).Thusour algorithmevaluatessquarewindows
betweensomeminimumandmaximumallowedsizes.

Thesecondideais to usewindow costasanestimatenot
just for thepixel in thecenterof thewindow, but for all pix-
els in thewindow. We canafford this becauseour window
cost is particularly good for evaluatingwhetherall pixels
in a window lie at approximatelythesamedisparity, espe-
cially dueto thevariancein equation(1). This idealeadsto
betterperformanceatdisparityboundaries,wherewindows
not centeredat themiddlepixel areneededto avoid cross-

Figure 2. Best window sizes

ing adisparityboundary. Weneedefficient implementation,
however. While computingasquarewindow costtakescon-
stanttime, updatingthe costnaively for all window pixels
takestime linearin thewindow size,which is toocostly.

Weusethedynamicprogrammingalgorithmin section4
for efficient window costupdate.Let km���
	������ > 	�� > 
 de-
notea window with its upperleft cornerat ���
	���
 andthe
bottomright cornerat ��� > 	�� > 
 . We fix a disparity � andfor
eachpixel ���
	���
 weevaluatecostsof all squarewindows in� km���
	��O�d� > 	�� > 
eNZ�g�'�!� > +*�%
@$���� > +4��
B� �M¡ , where
� and � are the minimum andmaximumallowed window
heights.Thenwe retainonly the km�!�
	7�K���?>�	��¢>�
 with the
smallestcost. Thusfor each ���
	���
 we have only onewin-
dow km����	7�l�
�?>�	7��>�
 andso we canusethe algorithm in
section4. That is for all pixels we canfind the minimum
costretainedwindow eachpixel belongsto in linearoverall
time. Thenthis processis repeatedfor all disparities.Note
that in this approach,many squarewindows arenot used.
Thatis if costof km�!�
	��9�c� � 	�� � 
 is greaterthanthecostof
km�!�
	��£�?� � 	�� � 
 , then km�!�
	��£�d� � 	�� � 
 is discarded.We
do this for efficiency. However whenwe comparetheper-
formanceof this approachwith the muchlessefficient al-
ternative of updatingwindow costsfor all squarewindows,
resultsareslightly worse,insteadof expectedbetter. This
is probablybecauseif somewindow is discarded,it is more
likely to crossadisparityboundarythanaretainedwindow,
andthusshouldnotbeusedin theupdateof window costs.

Therunningtime of thealgorithmin thepreviouspara-
graph in linear in the numberof pixels times numberof
disparitiestimes maximumwindow height. However we
can speedup our methodfurther by getting rid of win-
dow heightdependency. Fig. 2 shows thesizesof thebest
km�!�
	��,�:�?>�	��¢>�
 for each���
	���
 in a portionof somescene.
The brighterthe color, the larger the window size. Notice
that for mostpixels,thebestwindow sizeis continuousei-
therfrom theleft or theright. We exploit this continuityas
follows. For the leftmostpixel of eachline we will com-
pute the bestwindow searchingthroughthe whole range
betweenthesmallestandlargestwindow sizes.For therest
of pixelson that line we usepreviouswindow sizeto limit
thesearchrange.Thatis supposefor ���
	���
 thebestwindow
is km�!�
	��9�c�?>�	��¢>�
 , andsowindow heightis ��$,�?>/+X�B(9- .
For ���¤(O-/	���
 we aregoing to evaluateonly the windows
with heightsbetween�¥+O- and �&(�- . Of coursewe will
missthecorrectbestsizesfor somepixelsin theimage,but



Tsukuba Sawtooth Venus Map
Algorithm all untex disc all untex disc all untex disc all disc
Layered 1.58 1.06 8.8 0.34 0.00 3.35 1.52 2.96 2.6 0.37 5.2
Belief prop. 1.15 0.42 6.3 0.98 0.30 4.83 1.00 0.76 9.1 0.84 5.3
Disc. pres. 1.78 1.22 9.71 1.17 0.08 5.55 1.61 2.25 9.06 0.32 3.33
Var. Win. 2.35 1.65 12.17 1.28 0.23 7.09 1.23 1.16 13.35 0.24 2.9
Graphcuts 1.94 1.09 9.5 1.30 0.06 6.34 1.79 2.61 6.9 0.31 3.9
GC+occl. 1.27 0.43 6.9 0.36 0.00 3.65 2.79 5.39 2.5 1.79 10.1
Graphcuts 1.86 1.00 9.4 0.42 0.14 3.76 1.69 2.30 5.4 2.39 9.4
Multiw. cut 8.08 6.53 25.3 0.61 0.46 4.60 0.53 0.31 8.0 0.26 3.3
Comp.win. 3.36 3.54 12.9 1.61 0.45 7.87 1.67 2.18 13.2 0.33 4.0
Realtime 4.25 4.47 15.0 1.32 0.35 9.21 1.53 1.80 12.3 0.81 11.4
Bay. diff. 6.49 11.62 12.3 1.45 0.72 9.29 4.00 7.21 18.4 0.20 2.5
Cooperative 3.49 3.65 14.8 2.03 2.29 13.41 2.57 3.52 26.4 0.22 2.4
SSD+MF 5.23 3.80 24.7 2.21 0.72 13.97 3.74 6.82 13.0 0.66 9.4
Stoch.diff. 3.95 4.08 15.5 2.45 0.90 10.58 2.45 2.41 21.8 1.31 7.8
Genetic 2.96 2.66 15.0 2.21 2.76 13.96 2.49 2.89 23.0 1.04 10.9
Pix-to-Pix 5.12 7.06 14.6 2.31 1.79 14.93 6.30 11.37 14.6 0.50 6.8
Max Flow 2.98 2.00 15.1 3.47 3.00 14.19 2.16 2.24 21.7 3.13 16.0
Scanl.opt. 5.08 6.78 11.9 4.06 2.64 11.90 9.44 14.59 18.2 1.84 10.2
Dyn. prog. 4.12 4.63 12.3 4.84 3.71 13.26 10.10 15.01 17.1 3.33 14.0
Shao 9.67 7.04 35.6 4.25 3.19 30.14 6.01 6.70 43.9 2.36 33.0
MMHM 9.76 13.85 24.4 4.76 1.87 22.49 6.48 10.36 31.3 8.42 12.7
Max. Surf. 11.10 10.70 42.0 5.51 5.56 27.39 4.36 4.78 41.1 4.17 27.9

Figure 3. Middlebury stereo evaluation table

for thesepixels the bestwindow size is likely to be con-
tinuousfrom theright. Thereforewerepeattheabovealgo-
rithm by visiting pixelsonemoretimebut now from right to
left. Thatis we computethebestwindow sizefor theright-
mostpixel of eachline, andusethis sizeto limit therange
of windows for pixels to the left. Betweenthe left-to-right
andright-to-left visitations,the window with the bestcost
wins. Thusthenumberof window evaluationsperpixel is
six on average,andsotherunningtime of thefinal version
is a smallconstanttimesthenumberpixelsanddisparities,
makingit suitablefor realtime implementation.

6 Experimental Results

In this sectionwe presentexperimentalresultson the
Middlebury database.They provide stereoimagerywith
ground truth, evaluation software, and comparisonwith
otheralgorithms. This databasehasbecomea benchmark
for densestereoalgorithm evaluation. Resultsof eval-
uation and all the imagescan be found on the web via
http://www.middlebury.edu/stereo. For all theexperiments,
we set n=$ -/# ¦ , v $¨§ , y<$ +D© , andminimumandmaxi-
mumwindow sizesto 4 by 4 and31by 31squares.

Fig.3 summarizestheresultsof evaluation.Thefirst col-
umnlistsnamesthe22evaluatedstereoalgorithms.Theal-
gorithmsarearrangedroughlyin theorderof performance,
with the betteroneson top. The next 4 columnsgive per-
centageerrors eachalgorithm makes on the four scenes
from the database.A computeddisparity is countedasan

error if it is more than one pixel away from the true dis-
parity. Eachof thesefour columnsis broken into 3 sub-
columns:theall, disc, anduntex columnsgive thetotal er-
ror percentageeverywhere,in theuntexturedareas,andnear
discontinuities,respectively.

In this table,our algorithm(Var. Win.) is in the bold
face.It is theforth bestin thedatabaseranking(at thesub-
missiontime), althoughtherankinggivesjust a roughidea
of theperformanceof analgorithm,sinceit is hardto come
upwith a “perfect” rankingfunction.Ourmethodperforms
bestout of local methods,that is thosenot requiringcostly
global optimization. The running times for the Tsukuba,
Sawtooth,Venus,andMapscenesare4, 7, 7, and4 seconds
respectively, onPentiumIII 600Mhz.Ouralgorithmismore
efficient andperformsbetterthanthe compactwindow al-
gorithm[15], which is mostrelated.Eventhough[15] uses
moregeneral“compact” window shapes,we performbet-
ter probablydueto a betterwindow cost.Our window cost
cannotbehandledby [15] dueto restrictionsof their opti-
mizationprocedure.Figs.4 and5 show the resultson the
sceneandmapstereopairsfrom theMiddlebury database.

7 Conclusionsand Futur eWork

We presenteda fastandaccuratevariablewindow algo-
rithm. Oneof themainideasof thealgorithmis to explorea
usefulrangeof interestingwindow shapesandsizes,taking
advantageof the continuity propertiesof the bestwindow
size. Another idea is a novel window cost which works



Figure 4. Tsukuba scene: left image, true disparities, our result

Figure 5. Map scene: Left image, true disparities, our result

well for evaluatingwhetherall pixels in a window lie at
approximatelythe samedisparity. To achieve linear effi-
ciency, our algorithmtakesadvantageof theintegral image
techniqueto quickly computewindow costsover arbitrary
rectangularwindows. Thustherunningtime is asmallcon-
stanttimesthe numberof pixels anddisparities,makingit
suitablefor realtime implementation.In thefutureweplan
to explorebetterwindow costs,or learnawindow costfrom
thegroundtruthin theMiddlebury database.Anotherdirec-
tion of researchis to find betterwayof exploiting continuity
propertiesof thebestwindow size.
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