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Abstract

Optimization with graph cuts became very popular in re-
cent years. Progress in problems such as stereo correspon-
dence, image segmentation, etc., can be attributed, in part,
to the development of efficient graph cut based optimiza-
tion. Recent evaluation of optimization techniques shows
that the popular expansion and swap graph cut algorithms
perform extremely well for energies where the underlying
MRF has the Potts prior, which corresponds to the assump-
tion that the true labeling is piecewise constant. For more
general priors, however, such as corresponding to piece-
wise smoothness assumption, both swap and expansion al-
gorithms do not perform as well. We develop several opti-
mization algorithms for truncated convex priors, which im-
ply piecewise smoothness assumption. Both expansion and
swap algorithms are based on moves that give each pixel
a choice of only two labels. Our insight is that to obtain a
good approximation under piecewise smoothness assump-
tion, a pixel should have a choice among more than two la-
bels. We develop new “range” moves which act on a larger
set of labels than the expansion and swap algorithms. We
evaluate our method on problems of image restoration, in-
painting, and stereo correspondence. Our results show that
we are able to get more accurate answers, both in terms of
the energy, which is the direct goal, and in terms of accu-
racy, which is an indirect, but more important goal.

1. Introduction
In recent years, energy optimization with graph cuts [6,

10, 7, 18] has become very popular in computer vision and
graphics fields. Optimization with graph cuts has been suc-
cessfully applied to image restoration [7], stereo and multi-
view reconstruction [6, 16, 7, 17], motion [28], texture syn-
thesis [19], segmentation [4, 3, 22, 14], digital photomon-
tage [1]. Optimization with graph cuts is successful, in large
part, because either the exact minimum or an approximate
minimum with certain quality guarantees can be found, un-
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like the older optimization techniques, such as Simulated
Annealing [8] or ICM [2]

Usually, the following energy function is minimized:

E(f) =
∑

p∈P
Dp(fp) +

∑

(p,q)∈N
Vpq(fp, fq). (1)

In Eq. (1), L is a finite set of labels, representing the prop-
erty needed to be estimated at each pixel, such as intensity,
color, etc. P is the set of sites that one needs to assign la-
bels to. Often P is set of image pixels. The label assigned
to pixel p ∈ P is denoted by fp, and f is the collection
of all assignments: f = {fp|p ∈ P}. The first sum in
Eq. (1) is usually called the data term, because it represents
the preferences of individual pixels for their labels, and it
is expressed as the sum over all pixels of individual pixel
preferences Dp(fp). The data term usually comes from the
observed data. The second sum in Eq. (1) is usually called
the smoothness term, and it represents our prior knowledge
about what the likely labelings f should be like. The sec-
ond term is the sum over interacting ordered pixel pairs
(p, q) ∈ N . Usually N is the 4 or 8 connected grid, how-
ever longer range interactions are also useful [16]. Without
loss of generality, we assume that if (p, q) ∈ N then p < q.

The energy function in Eq. (1) arises in Maximum A
Posteriori (MAP) estimation in Markov Random Fields
(MRF). The labeling f minimizing the energy gives the
maximum of the posterior distribution p(f |D), where D is
the observed data. In the MRF framework, the data term
comes from the likelihood of the data, and the smoothness
term comes from the prior distribution p(f).

Usually there are no restrictions on Dp’s. The Vpq’s (of-
ten called the interaction penalties) are typically used to
specify the smoothness assumptions on the labeling f . Dif-
ferent choices of Vpq’s correspond to different smoothness
assumptions. A common choice is the Potts model, which is
Vpq(fp, fq) = wpq ·min {1, |fp − fq|}. Here wpq’s are per
pixel pair weights that can be different for different pixel
pairs. Potts model penalizes any difference between fp and
fq by the same amount. Intuitively, it corresponds to the
expectation that f should be piecewise constant, that is to
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consist of several pieces where pixels inside the same piece
share the same label. This is because the Potts model treats
small or large differences in labels in the same way.

Other common choices for Vpq are Vpq(fp, fq) =
wpq · min {T, |fp − fq|} and Vpq(fp, fq) = wpq ·
min {T, (fp − fq)2}, the truncated linear and truncated
quadratic interactions, respectively. These Vpq’s correspond
to the piecewise smooth assumption on f , that is the as-
sumption that f consists of several pieces, where the labels
between neighboring pixels inside each piece differ just a
little, or vary “smoothly”1. This is because smaller dif-
ferences in labels cause smaller penalties, and larger dif-
ferences cause larger penalties. Therefore a labeling f is
encouraged to have just a few places where nearby pixels
change their labels significantly. Most nearby pixels are ex-
pected to have similar labels. It is important to limit the
penalty from above by a truncation constant T . Otherwise
|l1−l2| or (l1−l2)2 might be prohibitively large, and assign-
ing labels l1 and l2 to neighboring pixels will be too costly,
resulting in an oversmoothed labeling f . Vpq’s which do
not lead to oversmoothing are typically called discontinuity-
preserving. Without the truncation, that is if Vpq is the ab-
solute linear or quadratic difference, the energy in Eq. (1)
can be optimized exactly with a graph cut [9], but the corre-
sponding energies are not discontinuity preserving. Energy
in Eq. (1) is NP-hard to optimize if discontinuity preserving
Potts, truncated linear or quadratic Vpq’s are used [7].

Recently, Szeliski et al. [27] performed an experimen-
tal evaluation of several energy minimization methods that
have been extensively used to for minimizing energies given
by Eq. (1) : the graph cut based expansion and swap al-
gorithms [7], sequential tree-reweighted message passing
(TRW-S) [13], and loopy belief propagation (LBP) [20].
Their results show that for the Potts model, both expan-
sion and swap algorithms perform extremely well, with the
expansion algorithm slightly outperforming the swap algo-
rithm. Both expansion and swap algorithms get the answer
within a small percentage of the global minimum (the lower
bound on the global minimum is estimated by the TRW-S
algorithm [13]). TRW-S performs as well as graph cuts, but
takes significantly longer to converge. An additional ben-
efit of graph cuts over TRW-S is when longer range inter-
actions are present in N . Szeliski et al. [27] studied only
the case when N is the 4-connected grid. Kolmogorov and
Rother [15] performed a comparison between graph cuts
and TRW-S when longer range interactions are present in
N , and they concluded that graph cuts perform significantly
better in terms of energy than TRW-S in this case.

For the truncated linear Vpq’s the expansion and swap al-
gorithms still perform relatively well, but for the truncated
quadratic Vpq the energy value is noticeably worse than that
of TRW-S. In this paper, we develop several optimization al-

1The term “smoothly” is used informally here.

gorithms for the truncated linear and quadratic Vpq . In gen-
eral, our methods can be used for truncated convex priors,
we define what we mean by a truncated convex prior in Sec-
tion 3. Informally, truncated convex priors correspond to
piecewise smoothness assumption on f . Our insight is that
both expansion and swap algorithms give a pixel a choice of
only two labels, but for problems where piecewise smooth-
ness assumptions are appropriate, to obtain a good approx-
imation, a pixel should have a choice among more than
two labels. We develop new ”range” moves which act on
a larger set of labels than the expansion and swap moves.

Note that Kleinberg and Tardos [11] develop an algo-
rithm for minimization with truncated linear Vpq, with an
optimality factor O(log k log log k), where k = |L|. How-
ever, they use linear programming, which is impractical for
the computer vision problems even of moderate size.

We evaluate our method on problems of image restora-
tion, inpainting, and stereo correspondence, and our results
show that we are able to get more accurate answers, both in
terms of energy (which is the direct goal), and in terms of
accuracy (which is an indirect, but more important goal).

2. Energy Optimization with Graph Cuts
In this section, we briefly explain the prior work on opti-

mization with graph cuts.

2.1. Assumptions on the Label Set
For the rest of the paper we assume that the labels can

be represented as integers in the range {0, 1, ...k}, which
is necessary since we base our method on the construction
in [9]. Assuming integer labels rules out directly using our
methods for motion estimation, since in motion, labels are
two dimensional. However, there are indirect ways to ap-
ply our methods to motion, by fixing one component of a
motion vector and letting the other one vary [23].
2.2. Convex Priors

Ishikawa [9] develops a method to find the exact min-
imum of the energy function in Eq. (1) in the case when
the interaction terms Vpq are convex functions of the la-
bel differences. His definition of convexity in the discrete
setting is as follows. An interaction penalty Vpq(l1, l2) =
wpq · g(l1 − l2) is said to be convex if and only if for any
integer x, g(x + 1)− 2g(x) + g(x− 1) ≥ 0. It is assumed
that g(x) is symmetric2, otherwise it can be replaced with
g(x)+g(−x)

2 without changing the labeling that minimizes it.
Note that [26] extend the results in [9] to handle a more
general definition of convexity.

Convex Vpq include the absolute and squared difference
interactions as a special case. While the energy arising from
convex priors is not discontinuity preserving, Ishikawa’s
construction gives us an important tool for energy optimiza-
tion with truncated convex priors, which do lead to discon-
tinuity preserving energies. Since our construction is based

2A function is symmetric if g(x) = g(−x).



on Ishikawa’s, we first explain Ishikawa’s construction in
detail. Note that the construction we give in this section is
slightly different from that in [9].

Ishikawa’s method is based on computing a minimum
cut in a particular graph. There are two special nodes in
the graph, the source s and the sink t. For each p ∈ P ,
we create a set of nodes p0, p1, ..., pk+1. We identify p0

with the source s, and we identify pk+1 with the sink t. We
connect node pi to node pi+1 with a directed edge ep

i for
i = 0, 1, ..., k. In addition, for i = 0, 1, ..., k, node pi+1 is
connected to node pi with a directed edge of infinite weight.
This ensures that for each p, only one of the edges of type
ep
i will be in the minimum cut, see [9]. If an edge ep

i is cut,
then pixel p is assigned label i. Thus a cut C of finite cost
corresponds to a labeling fC in a unique way.

Furthermore, for any (p, q) ∈ N , an edge epq
ij which

connects node pi to node qj is created for i = 0, ..., k + 1
and j = 0, ..., k + 1. The weight of this edge is

w(epq
ij ) =

wpq

2
[g(i−j+1)−2g(i−j)+g(i−j−1)]. (2)

The edge weight defined by Eq. (2) is non-negative, since
g(x) is convex. This is important, since graph-cut/max-flow
algorithms require non-negative edge weights.

Let C be a cut of finite cost. Let (p, q) ∈ N . If edges
ep
i and eq

j are in the cut C, then all the edges in the set Sij
pq,

defined below, also have to be in the cut C.
Sij

pq = {epq
lm|0 ≤ l ≤ i, j + 1 ≤ m ≤ k + 1}∪

{epq
lm|i + 1 ≤ l ≤ k + 1, 0 ≤ m ≤ j}.

When summing up over Sij
pq , most of edge weights cancel

out, and we are left with∑

e∈Sij
pq

w(e) = wpq[g(i− j) + g(k + 2) + h(i) + h(j)],

where h(i) = − 1
2 [g(k+1−i)+g(i+1)]. Recall that the cut

C corresponds to a labeling fC . Except some extra terms,
the sum above is almost exactly Vpq(i, j) = Vpq(fC

p , fC
q ) =

wpq · g(i − j). The term g(k + 2) can be ignored since it
is a constant and does not change the minimum cut, just its
cost. Terms h(i) and h(j) can be subtracted from the costs
of edges ep

i and ep
j . Therefore we define the weights ep

i as
follows:

w(ep
i ) = Dp(i)−

∑

q∈Np

wpq · h(i),

whereNp is the set of neighbors of pixel p. Under this edge
weights assignment, the cost of any finite cut C is exactly
E(fC) plus a constant. Therefore the minimum cut gives
the optimal labeling.

For the absolute linear Vpq this construction leads to a
graph with O(|P| · |L|)3 vertices and edges, assuming 4-
connected grid. This is because the edges of type epq

ij have

3 Here |S| denotes the size of set S.

zero weight unless i = j. For more general Vpq , for ex-
ample the squared difference Vpq , the number of vertices is
still O(|P| · |L|), but the number of edges is O(|P| · |L|2).

Note that [12] develops an algorithm for minimizing en-
ergy with convex Vpq which is more memory and time ef-
ficient. However it can be used only when the Dp’s are
convex.

2.3. Expansion and Swap Algorithms

Boykov et al. [7] develop the expansion and swap algo-
rithms based on graph cuts for minimizing the energy in
Eq. (1). These methods can be applied when Vpq is Potts,
truncated linear or quadratic, but the answer is only approx-
imate, which is not surprising, since the energy is NP-hard
to optimize under these interaction penalties [7]. However,
in case of the Potts Vpq, the expansion algorithm gives an
answer within a factor of 2 from the optimal [7], although
in practice, the answer is much closer to the optimal [27].

Both the expansion and the swap algorithms find a local
minimum of the energy function in the following sense. For
each f , we define a set of “moves” M(f). We say that
f is a local minimum with respect to the set of moves, if
E(f ′) ≥ E(f) for any f ′ ∈ M(f). A move from f to
f ′ is standard if there is at most one pixel p s.t. fp 6= f ′p.
The number of standard moves is O(|P||L|), therefore an
optimal standard move is easy to compute.

Swap moves are defined as follows. Given a labeling f
and a label pair (α, β), a move from f to f ′ is called an α-β
swap if fp 6= f ′p ⇒ fp, f

′
p ∈ {α, β}. That is an α-β swap

reassign labels α, β among pixels that are labeled either α
or β in f . M(f) is then defined as the collection of α-β
swaps for all pairs of labels α, β ∈ L.

The expansion moves are defined as follows. Given a
labeling f and a label α, a move f ′ is called an α-expansion
if fp 6= f ′p ⇒ f ′p = α. That is the set of pixels assigned α
can only expand from f to f ′. M(f) is then defined as the
collection of α-expansions for all labels α ∈ L.

The expansion and swap algorithm finds a local mini-
mum with respect to expansion or swap moves, correspond-
ingly. In either case, the number of moves to search for the
best one is exponential in the number of pixels, and exhaus-
tive search is ruled out. In [7] they describe how to compute,
for a given a labeling f , the optimal α-expansion and the
optimal α-β swap with the minimum cut on a certain graph.
The conditions on Vpq for the expansion or swap algorithm
to work were generalized from those in [7] by [18].

According to [18], the swap algorithm may be used
whenever Vpq(α, α) + Vpq(β, β) ≤ Vpq(α, β) + Vpq(β, α)
for all α, β ∈ L. The expansion algorithm may be used
whenever Vpq(α, α) + Vpq(β, γ) ≤ Vpq(α, γ) + Vpq(β, α)
for all α, β, γ ∈ L. Therefore the requirements for expan-
sion algorithm are more strict than those for the swap al-
gorithm. For example, the energy with truncated linear Vpq



can be optimized by both expansion and swap algorithms,
whereas for truncated quadratic Vpq , only the swap algo-
rithm applies. In practice, however, it is possible to apply
the expansion algorithm with a “truncation trick” [21] to en-
ergies which do not satisfy the necessary inequality above.
The resulting labeling is no longer guaranteed to be a lo-
cal minimum with the respect to expansion moves, but the
energy is guaranteed to go down.

Unlike the algorithm in [9], the expansion and swap al-
gorithms are iterative. We start with an initial labeling f .
Then we iterate until convergence over labels α ∈ L for the
expansion and over pairs of α, β ∈ L for the swap algo-
rithm. At each iteration, we find the optimal α-expansion
(or α-β-swap) from our current labeling, and then replace
our current labeling with it.

3. Graph Cuts for Truncated Convex Priors
In this section, we describe our algorithm for the case

when Vpq is given by a truncated convex prior. We use the
truncated version of Ishikawa’s [9] interaction penalty. That
is we assume that Vpq(fp, fq) only depends on the label dif-
ference fp − fq. We define an interaction penalty to be
truncated convex if there exists a symmetric function g(x)
such that g(x + 1)− 2g(x) + g(x− 1) ≥ 0 and

Vpq(l1, l2) = wpq ·min{g(l1 − l2), T}. (3)

Throughout this section and the rest of the paper, we will
assume that the energy in Eq. (1) has truncated convex in-
teraction penalties defined by Eq. (3).

To motivate our multi-label moves, we will prove a theo-
rem below, but first we need some notation and definitions.

Given a subset T ⊂ P , let

ET (f) =
∑

p∈T
Dp(fp) +

∑

(p,q)∈N ,{p,q}∩T 6=∅
Vpq(fp, fq).

In words, ET (f) is the sum all the terms of the energy func-
tion which depend on pixels in T .

Let f and f ′ be two labelings. Given a subset of pixels
T ⊂ P , we use notation comb(f, f ′, T ) to denote a labeling
s.t. comb(f, f ′, T )p = fp if p 6∈ T and comb(f, f ′, T )p =
f ′p if p ∈ T . That is comb(f, f ′, T )4 is equal to f for pixels
not in T and it is equal to f ′ for pixels in T .
Definition Given a subset of pixels T ⊂ P and a labeling
f , we define a sublabeling fT as fT = {fp|p ∈ T }, that is
fT is the labeling f restricted to the set of pixels T . ¤
Definition Given a labeling f and a subset T ⊂ P , fT
is called a smooth sublabeling, if for every p ∈ T , if its
neighbor q is also in T , then there is a sequence of pixels
p = r0, r1, ..., rm = q s.t. ri ∈ T for all i, ri is a neighbor
of ri+1 for i = 0, ..., m− 1 and |fri − fri+1 | ≤ T . ¤
Theorem Let f̂ be a labeling such that for any labeling
f ′ and any T ⊂ P s.t. f ′T is a smooth sublabeling,

4Word “comb” stands for “combination”

E(comb(f̂ , f ′, T )) ≥ E(f̂) (i.e. f̂ is a local minimum with
respect to smooth sublabelings). Then E(f̂) ≤ 2E(f∗),
where f∗ is the global minimum of the energy.
Proof: Let f∗ be the optimal labeling. We can split P into
disjoint subsets T1, T2, ...Tt s.t. P =

⋃
i=1,...,t Ti and for

every i, f∗Ti
is a smooth sublabeling. There are many pos-

sible such decompositions of P . Let us take the decom-
position which has the smallest number of subsets Ti, that
is t is as small as possible. Notice that this implies that
for any i 6= j, and any p ∈ Ti, q ∈ Tj s.t. p and q
are neighbors, |f∗p − f∗q | > T . Otherwise we could ob-
tain a smaller decomposition by uniting sets Ti and Tj .
Since f̂ is a local minimum with respect to smooth subla-
belings, E(comb(f̂ , f∗, Ti)) ≥ E(f̂). To simplify the no-
tation, let us use hi to denote the labeling comb(f̂ , f∗, Ti).
We have that ETi

(hi) ≥ ETi
(f̂), since labelings f̂ and hi

are identical outside the set Ti. Furthermore, ETi(hi) ≤
ETi

(f∗), since hi and f∗ are identical inside the set Ti, and
Vpq(f∗p , f∗q ) = T , its maximum value, for neighboring pix-
els p and q s.t. exactly one of p and q is in Ti. There-
fore, ETi(f̂) ≤ ETi(f

∗). Summing up over all i, we get:
E(f̂) ≤ ∑

i ETi(f̂) ≤ ∑
i ETi(f

∗) ≤ 2E(f∗) ¤
The theorem above implies that to get a good approxima-

tion to the optimal energy, we should be trying to find moves
that are ’smooth’, where a move from f to f ′ is smooth
if f ′T is a smooth sublabeling, where T = {p|fp 6= f ′p}.
This means that we should be developing moves where each
pixel can choose from one of several labels, and not just
one out of two labels, like with the expansion or swap al-
gorithms. In the next 2 sections we develop such moves.

3.1. α-β Range Moves
Recall that the label set is L = {0, 1, ..., k}. Let Lαβ =

{α, α + 1, ..., β}, where α < β ∈ L. That is Lαβ is the
subset of labels containing consecutive integers. Given a
labeling f , we say that f ′ is an α-β range move from f ,
if fp 6= f ′p ⇒ {fp, f

′
p} ⊂ Lαβ . The α-β range moves

can be viewed as a generalization of α-β swap moves. An
α-β swap move reassigns labels α, β among pixels that are
currently labeled α and β. An α-β range move reassigns
the labels in the range {α, α + 1, .., β} among the pixels
that currently have labels in the range {α, α + 1, .., β}.

Of course, if we knew how to find the best α-β range
move for α = 0 and β = k, we would find the global
optima of the energy function, which is impossible since
the problem is NP-hard, in general. However, we can find
the best α-β range move from f if |α− β| ≤ T .

3.2. α-β Range Moves for |α− β| ≤ T

To simplify the description, we will assume that |α −
β| = T , but it is trivial to extend the construction in this
section to handle the case when |α − β| < T . Sup-
pose that we are given a labeling f and we wish to find



the optimal α-β range move, where |α − β| = T . The
graph construction is similar to that in Section 2.2. Let
T = {p|α ≤ fp ≤ β}. Notice that the truncated convex
terms Vpq become convex when p, q ∈ T , since for any
p, q ∈ T , Vpq(fp, fq) = wpqg(fp − fq) ≤ wpq · T .

We identify label set Lαβ with label set {0, 1, ..., T} and
we employ the construction in Section 2.2 but only on the
pixels in the subset T and with a slight twist. First we need
more notation. Given a T ∈ P , let

Eopen
T (f) =

∑

p∈T
Dp(fp) +

∑

(p,q)∈N ,{p,q}⊂T
Vpq(fp, fq).

In words, Eopen
T (f) is the sum of all the terms of the en-

ergy function which depend only on pixels in T . Note that
Eopen
T (f) 6= ET (f) in most cases.
Let Mαβ(f) = {f ′|f ′p 6= fp ⇒ f ′p, fp ∈ Lαβ}. That

is Mαβ(f) is exactly the set of all α-β range moves from
labeling f . If we directly use the construction in Section 2.2
on pixels in T and labels in Lαβ then we will find the f ′ ∈
Mαβ(f) s.t. Eopen

T (f ′) is as small as possible. However,
we actually want to find f ′ ∈ Mαβ(f) that makes ET (f ′)
is as small as possible. This is since for f ′ ∈ Mαβ(f),
E(f ′) = ET (f ′)+Eopen

P−T (f ′) = ET (f ′)+Eopen
P−T (f), (4)

where P − T denotes set difference. Thus the labeling
f ′ ∈ Mαβ(f) which minimizes ET (f ′) gives the biggest
decrease in energy from f to f ′ among all f ′ ∈ Mαβ(f).
Notice that since f ∈ Mαβ(f), f ′ ∈ Mαβ(f) and mini-
mizing ET (f ′) is guaranteed to have E(f ′) ≤ E(f).

Essentially, the problem is that the construction in Sec-
tion 2.2 does not consider the effect of terms Vpq on
the boundary of T , that is those Vpq for which we have
|{p, q} ∩ T | = 1. This boundary problem is easy to fix.
For each pixel p ∈ T , if there is a neighboring pixel q 6∈ T ,
we add to the weight of edge ep

i an additional cost which
equals to Vpq(i, fq), for all i = 0, 1, ..., k. Recall that we
identified the label set {α, α + 1, ...β} with the label set
{0, 1, ..., T}. Therefore Vpq(i, fq) = Vpq(i + α, fq). This
additional weight to edges ep

i makes sure that the terms Vpq

on the boundary of T are accounted for. Now this fixed
construction will find the f ′ ∈ Mαβ(f) which optimizes
ET (f ′).

Just as with α-β swaps, the algorithm starts at some la-
beling f . Then it iterates over a set of label ranges {α, .., β}
with |α − β| = T , finding the best α-β range move f ′ and
switching the current labeling to f ′.

3.3. α-β Generalized Range Moves

We can slightly generalize the construction in the previ-
ous section as follows. As previously, let |α − β| = T (the
case of |α − β| < T is basically identical) and, as before,
let T = {p|α ≤ fp ≤ β}. Let

Lαβt = {α− t, α− t + 1, ..., β + t− 1, β + t} ∩ L,

that is Lαβt extends the range of Lαβ by t in each direction,
making sure that the resulting range is still a valid range of
labels in L. Let

Mαβt(f) = {f ′|f ′p 6= fp ⇒ fp ∈ Lαβ , f ′p ∈ Lαβt}.

That is Mαβt(f) is a set of moves that change pixels la-
bels from Lαβ to labels in Lαβt. Notice that Mαβ(f) ⊂
Mαβt(f). We actually will not be able to find the opti-
mal move in Mαβt(f), but we can find f̂ ∈ Mαβt(f)
s.t. E(f̂) ≤ E(f∗), where f∗ is the optimal move in
Mαβ(f). Thus labeling f̂ is not worse than the optimal
move in Mαβ(f), and if we are lucky, E(f̂) could be sig-
nificantly better than the optimal move in Mαβ(f).

We use basically the same construction as in Section 3.2.
We construct a graph for pixels in T = {p|α ≤ fp ≤ β}.
However, the label range is now Lαβt, and as before, we
identify it with label set {0, 1, ..., |Lαβt| − 1}. Otherwise,
the graph construction is identical to that in Section 3.2.

Let C be any finite cost cut in our graph. Notice that a
cut of finite cost assigns labels (as described in Section 2.2)
only to pixels in T . Let fC be the labeling corresponding
to the cut C, which we define as follows: fC

p = fp for
p 6∈ T , and for p ∈ T , fC

p is equal to the label assigned to
pixel p by the cut C. Let w(C) be the cost of cut C. By
graph construction, w(C) = E¬T

T (fC) + K, where K is a
constant and E¬T (f) is the same as E(f), except there is no
truncation in Vpq terms for p, q ∈ T . That is for p, q ∈ T ,
Vpq(fp, fq) = wpq · g(fp − fq) in the energy E¬T . Note
also that for any labeling f ′, ET (f ′) ≤ E¬T

T (f ′), since the
only difference between E and E¬T is that the Vpq terms
are not truncated in E¬T for p, q ∈ T . Also note that for
any labeling f ′ ∈ Mαβ(f), ET (f ′) = E¬T

T (f ′), since Vpq

terms in f ′ ∈ Mαβ(f) do not need to be truncated on the
set T .

Let Ĉ be the minimum cost cut, and let f̂ be its corre-
sponding labeling, defined as above. Let f ′ be a labeling
in Mαβ(f), and let C ′ be the cut which corresponds to it
in the graph. Notice that this cut has finite cost. We have
that E¬T

T (f̂) + K = w(Ĉ) ≤ w(C ′) = E¬T
T (f ′) + K.

Since ET (f̂) ≤ E¬T
T (f̂) and ET (f ′) = E¬T

T (f ′), we
get that ET (f̂) ≤ ET (f ′). Now, for any labeling f ′′,
E(f ′′) = ET (f ′′)+EP−T (f ′′). We have that EP−T (f̂) =
EP−T (f ′), and therefore we get the desired result: E(f̂) ≤
E(f∗) where f∗ is the optimal move in Mαβ(f).

In practice we found that it is enough to set t to a small
constant. This is because the larger is the value of t, the
more the graph construction overestimates the interaction
penalty Vpq(fp, fq), and it is too costly to assign labels fp

and fq under such overestimated cost. Using small t saves
computational time, especially for the truncated quadratic
model, since the size of the graph is quadratic in the number
of labels in the truncated quadratic case.



4. Experimental Results
For all the experiments presented in this section, we use

the α-β generalized range moves presented in Section 3.3,
with t = 3 for all the experiments. For our implementa-
tion, we used the max-flow algorithm in [5]. We evaluate
the performance of our algorithm on the problems of image
restoration, image inpainting, and stereo correspondence.

4.1. Image Restoration
In image restoration, we want to reconstruct the original

image from the given noisy one. In this case, P is the set
of all image pixels, L is the set of all gray levels, that is
L = {0, 1, ..., 255}. We set Dp(fp) = (Ip− fp)2, where Ip

is the intensity of pixel p in the given noisy image. We used
truncated quadratic Vpq(fp, fq) = 8 ·min{(fp − fq)2, 50}.

Fig. 1(a) shows an artificial image we constructed, which
consists of circle and square in front of the background, and
the intensities inside the circle, square and background vary
smoothly. Fig. 1(b) shows image in (a) corrupted by zero
mean Gaussian noise with variance 16. Figs. (c) and (d)
show the result of the expansion and our algorithm, respec-
tively. We omit the results of the swap algorithm because
they are visually similar to the results of the expansion al-
gorithm. The energies of the ground truth, expansion al-
gorithm and our algorithm are listed in the figure. Notice
that our algorithm not only produces an answer with a sig-
nificantly lower energy, but also gives the answer which
looks smoother5. The expansion algorithm tends to assign
the same label to a subset of pixels that is too large, and
the resulting answer looks piecewise-constant as opposed to
piecewise smooth. This is because expansion moves seeks
to change a large subset of pixels to the same label, as op-
posed to our algorithm which can change a subset of pix-
els to a smooth range of labels. In addition to producing
a labeling which is more piecewise smooth, our answer is
much closer to the ground truth. This is due not only to the
fact that our energy is lower, but also to the fact that trun-
cated quadratic energy is appropriate for piecewise smooth
restoration. The absolute average error (compared to the
ground truth in (a)) for our answer is 0.82, for the swap al-
gorithm the error is 1.35, and for the expansion algorithm
the error is 1.38. Our algorithm does take twice longer to
run than the expansion algorithm on this example. Expan-
sion algorithm takes about 40 seconds, and our algorithm
takes about 80 seconds.

4.2. Image Inpainting
Image inpainting problem is similar to image restora-

tion, except that some pixels have been “occluded” and

5Depending on the printer resolution, the ground truth and our answer
in the hard copy version of the paper may actually appear not piecewise
smooth but piecewise constant. Zooming in on the electronic version,
one will see images that do look piecewise smooth for our answer and
the ground truth, and piecewise constant for the expansion algorithm.

(a) expansion algorithm (b) our results G(0,16)

Figure 2. Zoom in on the detail.

therefore they have no preference for any label, that is
for an occluded pixel p, Dp(l) = 0 for all l ∈ L. We
took an example from [27], available from D. Scharstein’s
web site6. We used the same energy as in [27], namely
Vpq(fp, fq) = 25 · min{(fp − fq)2, 200}. The expansion
algorithm gives a labeling with energy 16,091,118, the la-
beling from swap algorithm has energy 16,388,270, and our
energy is 15,332,536, which is significantly lower. Note
that the energies that swap and expansion algorithms give
in our implementation are slightly different from those pub-
lished in [27], probably because the iteration over labels is
performed in random order, and different runs of the swap
and expansion algorithms will give slightly different re-
sults. TRW-S algorithm does give better results than we
get, from [27] we get that the energy of the labeling pro-
duced by TRW-S is 15,100,492. Graph cuts, however, per-
form better than TRW-S when longer range interactions are
present [15].

4.3. Stereo Correspondence
In this section, we present our results on stereo cor-

respondence for the Middlebury database stereo images7.
This database was constructed by D. Scharstein and R.
Szeliski, and these images are the top benchmark in eval-
uating the performance of stereo algorithms [24, 25].

For stereo correspondence, P is the set of all pixels in
the left image, L is the set of all possible stereo dispari-
ties. We take the disparity labels at sub-pixel precision,
in quarter of a pixel steps. That is if |fp − fq| = 1,
then the disparities of pixels p and q differ by 0.25
pixels. Let dl stand for the actual disparity corre-
sponding to the integer label l, for example label 2
corresponds to disparity 0.75. The data costs are Dp(l) =∣∣IL(p)− [IR(p− dl) · (dl − dl) + IR(p− dl)(dl − dl)]

∣∣ ,
where x stands for rounding down, x stands for rounding
up, and p − x stands for the pixel that has the coordinates
of pixel p shifted to the left by x.

6http://vision.middlebury.edu/MRF/
7The images were obtained from www.middlebury.edu/stereo



(a) original Image, energy=419,076 (b) added noise G(0,16)

(c) expansion algorithm, energy=453,994 (d) our results, energy=388,730

Figure 1. Image Restoration Results.

Tsukuba Venus Teddy Cones
Our Algorithm 1,758,136 2,671,875 6,058,678 7,647,529
Swap 1,804,548 2,702,371 6,099,656 7,706,717
Expansion 1,765,386 2,690,970 6,124,697 7,742,709

Figure 3. Energies on Middlebury database.

We use the truncated quadratic Vpq(fp, fq) = 10 ·
min{(fp − fq)2, 16}. Using spatially varying weights wpq

improves results of stereo correspondence, since it helps to
align disparity discontinuities with the intensity discontinu-
ities. We set all wpq = 10, since the main purpose of our
paper is to evaluate our α-β range moves, and not to come
up with the best stereo algorithm. Fig. 3 compares the en-
ergies obtained with our method to those obtained with the
swap and expansion algorithms. The accuracy of the label-
ings is summarized in Fig. 4. Each number in Fig. 4 gives
the percentage of pixels away from ground truth by more
than 0.5 pixels. Tsukuba, Venus, Teddy, Cones are the name

of the four scenes in the Middlebury stereo database. No-
tice that our algorithm performs better not only in terms of
energy, but also in terms of ground truth. The accuracy im-
provement is slight, but consistent across all the images in
the database. At threshold 0.5, all algorithms are ranked 7th
out of 33 other algorithms at the submission time.

Fig. 2 shows a zoom in on the detail in the Cones se-
quence. Notice that our algorithm gives results that look
smoother over the surface of the cone than the expansion
algorithm.8

8To see the difference, it may be necessary to zoom in on these images
in the electronic version of the paper.



Tsukuba Venus Teddy Cones
Our Algorithm 6.7 3.25 15.1 6.79
Swap 7.47 4.04 15.8 7.64
Expansion 7.14 4.19 16.0 7.81

Figure 4. Accuracy on the Middlebury database.
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