
Star Shape Prior for Graph-Cut Image

Segmentation

Olga Veksler

University of Western Ontario
London, Canada
olga@csd.uwo.ca

Abstract. In recent years, segmentation with graph cuts is increasingly
used for a variety of applications, such as photo/video editing, medical
image processing, etc. One of the most common applications of graph
cut segmentation is extracting an object of interest from its background.
If there is any knowledge about the object shape (i.e. a shape prior), in-
corporating this knowledge helps to achieve a more robust segmentation.
In this paper, we show how to implement a star shape prior into graph
cut segmentation. This is a generic shape prior, i.e. it is not specific to
any particular object, but rather applies to a wide class of objects, in
particular to convex objects. Our major assumption is that the center
of the star shape is known, for example, it can be provided by the user.
The star shape prior has an additional important benefit - it allows an
inclusion of a term in the objective function which encourages a longer
object boundary. This helps to alleviate the bias of a graph cut towards
shorter segmentation boundaries. In fact, we show that in many cases,
with this new term we can achieve an accurate object segmentation with
only a single pixel, the center of the object, provided by the user, which
is rarely possible with standard graph cut interactive segmentation.

1 Introduction

In the last decade, two important trends in image segmentation are the introduc-
tion of various user interaction techniques, and the development and increased
reliance on global optimization methods. Interactive segmentation ([1–7]) be-
came popular because in different domains, user interaction is available, and
it can greatly reduce the ambiguity of segmentation caused by complex object
appearance, weak edges, etc. Global optimization ([8–10, 5, 11–13,7, 14, 15]), of-
ten formulated as a graph problem, became popular because it is more robust
compared to the local methods such as thresholding or region-growing [16].

In this paper, we address the segmentation of an object from its background
in the graph cut framework [5, 7]. The advantage of this framework is that it
guarantees a globally optimal solution for a wide family of energy functions [17],
allows incorporation of regional and boundary constraints, and provides a simple
user interaction interface. The user has to mark some pixels as object and some
pixels as background. Such pixels are usually called ”seeds”.

2

If one has prior knowledge about the shape of an object (or a ”shape prior”),
incorporating this knowledge makes segmentation more robust. Shape prior re-
duces ambiguity by ruling out all segments inconsistent with the prior. Using
shape priors to improve segmentation has been investigated in the level set and
curve evolution frameworks [18–21]. Level set methods are usually not numeri-
cally stable and are prone to getting stuck in a local minimum.

There has been some work on shape priors for graph cuts. The authors in [22]
use an elliptical prior, which is implemented only approximately within an it-
erative refinement process. In [23], a prior which encourages the object to be a
convex blob centered around a certain point is implemented. Another example of
a blob like prior is in [24]. The above shape prior assumptions are useful, but are
quite restrictive on the shape of the object. In [25], an interesting ”connectivity”
prior is used, that is they enforce the object region to be connected. In [26, 27],
an object specific shape prior is used, with no restriction on the object shape.
However, a shape model has to be registered to an image, which is a challenging
and computationally expensive problem.

Fig. 1. Star shape examples. First three shapes are convex and therefore are stars with
respect to any inside point as the center. Last three shapes are stars with respect to
the specified center, however there are multiple other valid centers.

In this paper, we investigate a generic shape prior for graph cut segmentation.
Our prior is generic because it is not based on a shape of a specific object class
(like a ”cow” class), but rather it is based on simple geometric properties of an
object, similar to the ellipse assumption in [22]. Our shape prior is much more
general than an ellipse though. We call it a star shape prior, defined as follows.
A star shape is defined with respect to a center point c. An object has a star

shape if for any point p inside the object, all points on the straight line between
the center c and p also lie inside the object. Some star shapes are in Fig. 1.

We assume that the user marks the star center. In many cases this informa-
tion is enough to accurately segment the object, see Sec. 5.

Star shaped objects are abundant in the environment. A special case of a
star is a convex shape, and in this case we have an additional advantage that
the user can choose any point inside the object as the center, since a convex
shape is a star with respect to any inside point. For many other shapes there are
multiple candidates that make a valid center, so, in general, the user does not
have to be very careful in choosing the center. For example, for the heart shape
in Fig. 1, most points, except the ones in approximately the top fifth part of the
shape, make a valid center.

3

The advantage of using a generic star shape prior is that it can be directly
incorporated in the optimization procedure, no expensive registration between
the model and the image, like in [26, 27] is required. The disadvantage is that
only a shape obeying a generic star shape is extracted, we cannot guarantee that
the extracted shape will be a circle, or a rectangle, etc.

An important positive side effect of the star shape prior is that we can include
in the objective function a length-based ”ballooning” term that encourages a
larger object segment. This term helps to counterbalance the known bias of a
graph cut to small segments. It is not as aggressive as the previously used area-
based ”ballooning” terms. With the new term, it is frequently enough for a user
to provide just the object center, additional information about the object may
be unnecessary, making segmentation very undemanding for user interaction.
Note that [23, 24] also support a single-click segmentation with graph cuts.

This paper is organized as follows. In Section 2 we review graph cut seg-
mentation, In Section 3 we explain how to incorporate the star shape prior in
graph cut segmentation, in Section 4 we explain how we incorporate bias to-
wards longer segmentation boundaries, and, finally, in Section 5 we present the
experimental results.

2 Graph Cut Segmentation

We now briefly review the graph cut segmentation algorithm of [5].

2.1 Graph Cut

Let G = (V, E) be a graph with vertices V and edges E. Each edge e ∈ E has a
non-negative cost we. There are two special vertices called terminals: the source,
s and the sink, t. A cut C ⊂ E is a subset of edges, such that if C is removed
from G, then V is partitioned into two disjoint sets S and T = V − S such that

s ∈ S and t ∈ T . The cost of the cut C is the sum its edge weights: |C| =
∑

e∈C

we.

The minimum cut is the cut with smallest cost. The max-flow/mincut algo-
rithm [28] can be used to find the minimum cut in polynomial time. We use the
max-flow algorithm of [29], which has linear time performance in practice [29].

2.2 Object/Background Segmentation with a Graph Cut

Segmenting an object from its background is formulated as a binary labeling
problem, i.e. each pixel in the image has to be assigned a label from the label set
L = {0, 1}, where 0 and 1 stand for the background and the object, respectively.

Let P be the set of all pixels in the image, and let N be the standard 4 or
8-connected neighborhood system on P , consisting of ordered pixel pairs (p, q)
where p < q. Let fp ∈ L be the label assigned to pixel p, and f = {fp|p ∈ P} be

4

the collection of all label assignments. The energy function commonly used for
segmentation is as follows:

E(f) =
∑

p∈P

Dp(fp) + λ
∑

(p,q)∈N

Vpq(fp, fq). (1)

In Eq. (1), the first term is called the regional or data term because it in-
corporates regional constraints. Specifically, it measures how well pixels fit into
the object or background models. Dp(fp) is the penalty for assigning label fp to
pixel p. The more likely fp is for p, the smaller is Dp(fp). The object/background
models could be known beforehand, or modeled from the seeds provided by the
user. To insure that the seeds are segmented correctly, for any object seed p, one
sets Dp(0) = ∞, and for any background seed p, one sets Dp(1) = ∞.

The second sum in Equation (1) is called the boundary term because it in-
corporates the boundary constraints. A segmentation boundary occurs whenever
two neighboring pixels are assigned different labels. Vpq(fp, fq) is the penalty for
assigning labels fp and fq to neighboring pixels. Most nearby pixels are expected
to have the same label, therefore there is no penalty if neighboring pixels have
the same label and a penalty otherwise. Typically, Vpq(fp, fq) = wpq ·I(fp 6= fq) ,
where I(·) is 1 if fp 6= fq and 0 otherwise.

To align the segmentation boundary with intensity edges, wpq is typically
a non-increasing function of |Ip − Iq |, where Ip is the intensity of pixel p. For
example, the following is frequently used [5]:

wpq = e−
(Ip−Iq)2

2σ2 . (2)

Parameter λ ≥ 0 in Eq. (1) weights the relative importance between the
regional and boundary terms. Smaller λ makes regional terms more important.

In [5] they show how to construct a graph such that the labeling correspond-
ing to the minimum cut is the one optimizing the energy in Eq. (1). In general,
[17] shows which binary energies can be optimized exactly with a graph cut.

3 Implementing the Star Shape Prior

We now show how to implement the star shape prior in the graph cut segmen-
tation. We assume that the center of the star shape c is known. In interactive
segmentation it is provided by the user. In certain restricted domains, such as
in medical imaging, it may be possible to calculate the center automatically.

Consider Fig. 2(a). The center of the star shape is marked with a black dot
c, and an example of a star shape is outlined in green. Some of the straight lines
passing through c are shown in black. Let 1 and 0 be the object label and the
background labels, respectively. To get an object segment of a star shape, for
any point p inside the object, we have to insure that every single point q on the
straight line connecting c and p is also inside the object. This implies that if p

5

(a) (b)

Fig. 2. (a) An example of a star shape is in green. The center of the star is marked
with a red dot c. Let p and q be pixels on the line passing through c, and q lies between
c and p. If p is labeled as the object, then q must be also labeled as the object; (b)
Discretized lines are displayed with random colors.

is assigned label 1, then every point between c to p (on a straight line) is also
assigned 1. The following pairwise shape constraint term Spq implements this:

Spq(fp, fq) =

0 if fp = fq,
∞ if fp = 1 and fq = 0,
β if fp = 0 and fq = 1

(3)

Eq. (3) assumes that q is between c and p. A segmentation with a finite cost
never violates the star shape constraints. Parameter β is discussed later.

In discrete implementation, c, p, and q are pixels. Observe that the shape
constraint term Spq in Eq. (3) does not need to be placed between all pairs of
pixels p, q that lie on a line passing through c. It is enough to put an Spq only
between neighboring pixels p and q. Indeed, if the star shape is violated along
some line passing through c, then there may be several pairs of pixels p and q,
(with q in between c and p) that violate the constraint. There will be a pair of
pixels p and q with the smallest distance between them, and such two pixels must
be neighbors. Conversely, if the star shape constraints are not violated between
all the neighboring pixels pairs, they are not violated between pairs of pixels
that are not neighbors, and therefore the shape is a star. Thus the neighborhood
system for incorporating the star constraints is the same as for the boundary
constraints, making the efficiency overhead for the shape prior negligible. Also
note that using the star shape constraints is equivalent to adding a flux field [30].

In practice we have to discretize the set of lines passing through the center c.
We consider all the lines that pass through the center pixel c and any other image
pixel p. This is the finest possible discretization at the given image resolution.

We have to be careful when implementing the shape constraints on discrete
lines. Continuous lines intersect only at the center c. Discrete lines can ”intersect”
at more than one pixel. Consider Fig. 3(a). One discretized line is shown in red,
and another line with a larger slope is shown in black. These two lines first

6

(a) (b) (c)

Fig. 3. (a) the red and black discrete lines ”intersect” at more than one point; (b) the
black line is merged into the red line; (c) the red line is merged into the black line.

intersect at pixel p, and then at pixels q and r. After pixel p, these two lines
become essentially indistinguishable at image precision. Therefore at the first
detected intersection pixel, in this case pixel p, we merge either the black line
into the red one (Fig. 3 (b)) or vice versa (Fig. 3 (c)), chosen at random.

Fig. 2(b) shows with random colors the discrete merged lines that are used
for star shape constraints (generated from a particular example). Closer to the
center of the star shape, the density of lines is smaller than the density towards
the image borders, because more lines have to be merged closer to the center.

With the shape constraints, the our energy function becomes:

E(f) =
∑

p∈P

Dp(fp) + λ
∑

(p,q)∈N

Vpq(fp, fq) +
∑

(p,q)∈N

Spq(fp, fq). (4)

In Eq. (4), the Vpq terms are as defined in Sec. 2, and the shape constraint Spq

terms are as defined in Eq. (3). According to [17], the energy in Eq. (4) can be
optimized exactly with a graph cut if all the pairwise terms are submodular,
where a binary function g of two variables is submodular if g(0, 0) + g(1, 1) ≤
g(1, 0)+g(0, 1). Both the Vpq and Spq terms are clearly submodular, and what is
more interesting, the Spq terms are submodular for any finite choice of β. If we
set b = 0, then the labeling minimizing the energy in Eq. (4) is the same as the
one optimizing the standard energy in Eq. (1), except the optimal object segment
is star shaped. However, we can do more interesting things. Notice that β can
be set to a negative value. This enables a bias towards a longer segmentation
boundary, as explained in the next section.

4 Bias toward Longer Segment Boundaries

4.1 Boundary Based Ballooning

A graph cut has a well known bias towards shorter boundaries. When a reliable
model for the object and background is available, the data term in Eq. (4) can
be given a large weight relative to the boundary term, by setting λ to a relatively

7

smaller value. In this case, the bias to shorter boundaries is actually helpful to
the segmentation process, since it serves to regularize the data terms. The data
term can be known beforehand or it can be estimated from the seeds [7].

In the absence of a reliable model for the foreground/background, the data
term has to be weighted low relative to the boundary term. In such a case, bias
towards shorter boundaries is not helpful. The extreme case is when nothing
about the appearance is known, and therefore the only non-zero data terms
are those for the background/foreground seeds. If the user marks only a few
seeds, then in most cases the result will consist of most pixels assigned to the
same label. By marking enough seeds, the correct segmentation can always be
achieved, but the amount of user interaction may be excessive.

If a user enters only a few seeds, estimating a reliable appearance model may
be impossible. Furthermore, in the case when the background and foreground
objects have similar appearance, it may be difficult or impossible to construct
reliable appearance models. Consider the image in Fig. 4(a). The heart object
and its background have identical intensity histograms. If the appearance model
is based only on the intensity histogram, it cannot distinguish between the fore-
ground and the background. A user has to provide a significant number of seeds
to segment this object. Notice that this image is not simple to segment with
local algorithms because of intensity variation and weak boundaries.

(a) (b)

Fig. 4. (a) the heart object and its background have identical histograms; (b) Our
result, the seed point is in red, only one object seed pixel is provided by the user, the
border of the image is assumed to be the background.

To prevent the shrinking bias of a graph cut in the absence of a strong
data term, a bias towards a longer boundary is needed, or, in other words, a
”ballooning” force. We can easily incorporate such bias by setting β in Eq. (4)
to a negative value. The last summation term in Eq. (4) is roughly proportional
to the length of the boundary, and setting β to a negative value implies that
longer segmentation boundaries decrease the energy function more as compared

8

to the shorter boundaries1. The question is how to choose an appropriate β
value, since the best value is likely to be different for each image.

In the related work on ratio cycles and regions [31], [11], [32], a ratio energy
Eratio(f) = fcost1 + β · fcost2 is considered. Here fcost1 is usually related to the
cost of the object boundary, and fcost2 is related to the object area or boundary
length. A minimum ratio region is found by searching for β that s.t. the optimum
value of Eratio is 0. Usually binary search is used to find such β, and the energy
Eratio is repeatedly optimized for different β values. The optimum region has
the smallest normalized fcost1, where normalization is by length or by area,
depending on fcost2. Typically fcost1 is related to the contrast on the boundary,
and therefore the region with highest normalized contrast is found.

Our energy in Eq. (4) is basically the same as the ratio energy. Ignoring
the data terms, our energy is approximately fweight + β · flength, where fweight

is the sum of wpq weights on the boundary between the object and the back-
ground segments, and flength is the length of the boundary, or the sum of all
Spq terms. Therefore we could follow the strategy similar to the ratio regions
by finding the highest contrast boundary. However, we observe that the highest
contrast boundary may not be what the user wants. For example, if every image
is placed in a ”frame” with high contrast, this frame would always be the ”best”
segmentation.

Instead, we pursue a different strategy. We find the smallest β such that the
object segment is at least some minimum specified size, which we set to 100
in all the experiments. Let β1 < β2, and let f1 be the labeling minimizing the
energy in Eq. 4 with β = β1 and f2 be the labeling minimizing the energy in
Eq. 4 with β = β2 . It is easy to see that f1

weight < f2
weight and f1

length < f2
length.

That is a smaller (or large negative) value of β results in a larger object segment
with a larger sum of boundary weights wpq. The sum of the boundary weights
wpq is just the standard cost of a labeling in Eq. (1), without ballooning (and
ignoring the data terms). Therefore our strategy is equivalent to searching for
a minimum cost labeling (without ballooning) that gives the object segment of
size at least 100. To find such β, we use binary search, in the range from 0 to 50.

To test the effectiveness of our approach, we do not use background/foreground
models for all the experiments presented in this paper. We set the pixels on the
border of the image to be the background seeds, and the user provides a single
foreground seed which is the center of the star shape. We could also incorporate
the data term, of course, but it makes it harder to evaluate the effectiveness of
the shape prior and the parameter search strategy. Fig. 4(b) shows our segmen-
tation result on the image in Fig. 4(a). The first strategy for setting β was used.
The value of β that gave the first large enough object segment is −1.97.

Notice that we do not need to rerun the graph cut algorithm from scratch
when searching for the value of β. We can use the idea of [33] to reuse the flow
computation from the previous run. Thus the overhead we pay for the search
is minimal, on average, the algorithm is 2.3 times slower with the search for

1 This is due to the merging of discrete lines, discussed in the previous section.

9

β than without2. The algorithm in [33], while performing well in practice, has
no guarantees on the computational efficiency, in general. The parametric max-
flow algorithm of [32] does have theoretical guarantees, but unfortunately their
method has certain restrictions that are not applicable to our approach.

4.2 Relation to other ”ballooning” methods

To encourage larger object segment, we balloon (or encourage) longer boundary.
Our ballooning is effectively equivalent to the ratio cycle method in [11]. The
difference is that we work in the graph cut framework, and can easily implement
user interaction, use background models, and all the other advantages of the
graph cut framework. Another difference that instead of finding the ”cycle” with
the best ratio (or best average) contrast, we find a large enough ”cycle” with a
good contrast, which has certain advantages, as already mentioned above.

There are other ways to add a ”ballooning” force. For example, uniform area
based ballooning [34] can be used, which is implemented by adding a bonus
to each pixel in the image if it is assigned the foreground label. The problem
with uniform ballooning is that the object region is no longer guaranteed to
be connected. in addition, area ballooning is more aggressive compared to the
boundary ballooning, in the sense that it may prefer a larger region to a smaller,
but also reasonable cost region. This may also happen with length ballooning,
but it is less likely. We can show that if a region can be extracted with the area
ballooning, than it can be extracted with length ballooning, but not vice versa.

Let Elength(f) = fcost + β · flength be the energy with length ballooning and
Earea(f) = fcost+β ·farea be the energy area ballooning, where fcost is the cost of
the boundary related to its contrast, flength is the length of the object segment
and farea is the area of the object segment. Let f1 be the optimal labeling
with β = 0 for Earea, and f2, f3 be two other labelings, with f2

cost < f3
cost

and f2
area < f3

area. Suppose that we can extract f2 with area ballooning, i.e.

there is β s.t. Earea(f2) < Earea(f3). Then it is easy to see that
f2

cost−f1
cost

f2
area−f1

area
<

β <
f3

cost−f2
cost

f3
area−f2

area
. Since area grows quadratically in terms of length, we have

that farea ≈ (flength)2, and therefore,
f2

cost−f1
cost

f2
length

−f1
length

< β · (f2
length + f1

length) <

f3
cost−f2

cost

f3
length

−f2
length

f3
length+f1

length

f3
length

+f2
length

, approximately. Since
f3

length+f1
length

f3
length

+f2
length

< 1, we have

f2
cost−f1

cost

f2
length

−f1
length

< β <
f3

cost−f2
cost

f3
length

−f2
length

, which is exactly the necessary condition for

f2 to be preferred over f3 for some choice of β.
The reverse is not true, that is, for some choices of f2, f3 with f2

cost < f3
cost

and f2
length < f3

length, there are β s.t. Elength(f2) < Elength(f3) but no β s.t.

Earea(f2) < Earea(f3). Instead of proving this, we show in example. In Fig. 5,
the original image is in (a), our results (with boundary ballooning) are in (b),
and the results with uniform area ballooning are in (c). For area ballooning, just

2 The graph cut code for ”recycling” the flow was downloaded from
http://www.adastral.ucl.ac.uk/˜vladkolm/software.html

10

as for our algorithm, we chose the smallest β giving the object segment of size
at least 100 pixels. Since for larger β segments get larger, with uniform area
ballooning, for no choice of β is it possible to extract the seal (with only a single
seed provided by the user).

Another type of ballooning force is non-uniform area ballooning, for example,
in [35] the ballooning force decreases at the rate of 1/r where r is the distance
from the pixel to the center c. In general, this ballooning force works quite well,
giving results similar to ours in most cases. The problem with such non-uniform
ballooning is that it is biased towards including pixels closer to the center c,
since such pixels get ”ballooned” more. Consider Fig 6. It shows an oval object
front of two smaller oval objects. The contrast between the larger ovals and two
smaller ones is weak. Because of the star shape, we are able to extract the oval,
shown in (b). With non-uniform ballooning, all three ovals are extracted because
the smaller ovals get stronger ”ballooning” than the lower two thirds of the large
oval, since they are closer to the seed.

(a) (c) (b)

Fig. 5. (a) Original image; (b) Our algorithm; (c) Area ”ballooning”

5 Experimental Results

In this section, we present our experimental results. First we summarize the ex-
perimental setup. The border of the image are fixed to be the background seeds.
The user provides a single object seed pixel, which is assumed to be the center
of the star shape. Using binary search, we find the smallest β resulting in object
segment larger than 100 pixels. Although we could make further corrections for
the boundary with the help of user interaction, we choose not to do so to make
the evaluation of the star shape effects easier.

We set λ = 20, although its particular choice is not important, since changing
β changes the relative weight between the regional and boundary terms. The
only remaining parameter is σ in Eq. (2). Typically [5] one sets σ as an average
absolute intensity difference between neighboring pixels. Such choice for σ is
motivated by the following. If the difference in intensities between two pixels is
twice larger than the typical (average) difference, then the weight of connection
wpq between these pixels is very small, allowing to place an edge between them

11

(a) (c) (b)

Fig. 6. (a) Original image; (b) Our results; (c) Non-uniform area ”ballooning”

at a very small cost. If the intensity difference is smaller than the average, then
wpq is large. When the difference is in the range from the average to twice larger
than the average, the weights wpq decrease at the exponential rate. We use the
same idea, except for pixels p and q we set σ to be the absolute average intensity
difference in the box around p and q, not the whole image. The box size is set
to be 20 by 20. This approach is helpful to encourage the boundary along the
edges that may be relatively weak as far as the whole image is concerned, but
are significantly strong if one looks only at their local neighborhood.

Fig. 7 shows results. Some of the images are from the Berkeley database [36],
and others are from the Web. The odd columns show the original image, and the
even columns show segmentation results. All the images are gray scale, which
makes the segmentation problem much more challenging compared to the color
images. The object segment is shown with its original intensities, and the back-
ground is shown in black. The seed pixel is a red square. For β = 0, for all the
images shown, the object segment consists of either the single seed pixel or just
a few pixels. Therefore the standard graph cut algorithm without bias to longer
object boundaries.

The results are very promising, especially considering that they were obtained
with a single user click. In many cases, the extracted segment is a meaningful
object or a collection of objects. We are able to deal with weak boundaries, and
complex foreground and background. In some cases, a meaningful part of the
object is found. For example, for the duck image in the third row in Fig. 7, the
legs of the duck were cut out due to the star shape constraints. In the third row

12

Fig. 7. Some results.

13

of Fig. 7, the door part is segmented even though the whole car is a star shape.
This is because there is due to a strong intensity edge around the door part.

In cases when only a part of the object has been segmented, the extracted
part can be used for improving segmentation without further user interaction.
For example, for the snake image in the bottom row of Fig. 7, we can get a reliable
texture model from the extracted part, and then rerun the graph cut with this
data term without the star shape constraints. This would make the algorithm
similar to the Grab Cut [37]. In Grab Cut, an initial region containing the object
is specified by the user as a box. However, this box usually contains a significant
part of the background, making appearance modeling less reliable. Our method
can find a large significant part of the foreground, mostly without the background
pixels, making it more appropriate for modeling the object appearance.

The running times on a 2.66 GHz computer with 2.0 GB or RAM were
between a fraction of a second to less than 2 seconds, depending on the image
size, which was in the range from 100 by 100 to 512 by 512.

Acknowledgments

We thank Daniel Cremers for suggesting the name to our shape prior. We also
thank the anonymous reviewers for numerous comments which helped to improve
the paper.

References

1. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. IJCV 2

(1998) 321–331
2. Falaco, A.X., Udupa, J., Samarasekara, S., Sharma, S.: User-steered image seg-

mentation paradigms: Live wire and live lane. In: Graphical Models and Image
Processing. Volume 60. (1998) 233–260

3. Mortensen, E.N., Barrett, W.A.: Interactive segmentation with intelligent scissors.
In: Graphical Models and Image Processing (GMIP). Volume 60. (1998) 349–384

4. Osher, S., Sethian, J.: Fronts propagating with curvature dependent speed: Algo-
rithm based on hamilton jacobi formulations. Journal of Computational Physics
79 (1988) 12–49

5. Boykov, Y., Jolly, M.P.: Interactive graph cuts for optimal boundary and region
segmentation. In: ICCV. Volume I. (2001) 105–112

6. Blake, A., Rother, C., Brown, M., Perez, P., Torr, P.: Interactive image segmenta-
tion using an adaptive gmmrf model. In: ECCV. (2004) Vol I: 428–441

7. Boykov, Y., Funka Lea, G.: Graph cuts and efficient n-d image segmentation.
International Journal of Computer Vision 69(2) (September 2006) 109–131

8. Wu, Z., Leahy, R.: An optimal graph theoretic approach to data clustering: Theory
and its application to image segmentation. PAMI 15(11) (November 1993) 1101–
1113

9. Shi, J., Malik, J.: Normalized cuts and image segmentation. In: IEEE Conference
on Computer Vision(ICCV). (1997) 731–737

10. Veksler, O.: Image segmentation by nested cuts. In: CVPR. (2000) I: 339–344

14

11. Jermyn, I., Ishikawa, H.: Globally optimal regions and boundaries as minimum
ratio weight cycles. PAMI 23(10) (October 2001) 1075–1088

12. Felzenszwalb, P., Huttenlocher, D.: Efficient graph-based image segmentation.
IJCV 59(2) (September 2004) 167–181

13. Wang, S., Kubota, T., Siskind, J., Wang, J.: Salient closed boundary extraction
with ratio contour. PAMI 27(4) (April 2005) 546–561

14. Grady, L., Schwartz, E.L.: Isoperimetric graph partitioning for image segmentation.
PAMI 28(3) (March 2006) 469–475

15. Schoenemann, T., Cremers, D.: Globally optimal image segmentation with an
elastic shape prior. In: ICCV. (2007) 1–6

16. Gonzalez, Woods: Digital Image Processing. Second edn. Prentice Hall, Berlin
Heidelberg New York (1996)

17. Kolmogorov, V., Zabih, R.: What energy function can be minimized via graph
cuts? IEEE Transaction on PAMI 26(2) (February 2004) 147–159

18. Leventon, M., Grimson, W., Faugeras, O.: Statistical shape influence in geodesic
active contours. In: CVPR. (2000) I: 316–323

19. Tsai, A., Yezzi, Jr., A., Wells, III, W., Tempany, C., Tucker, D., Fan, A., Grimson,
W., Willsky, A.: Model-based curve evolution technique for image segmentation.
In: CVPR. (2001) I:463–468

20. Rousson, M., Paragios, N.: Shape priors for level set representations. In: European
Conference on Computer Vision. (2002) II: 78–92

21. Cremers, D., Osher, S., Soatto, S.: Kernel density estimation and intrinsic align-
ment for shape priors in level set segmentation. IJCV 69(3) (September 2006)
335–351

22. Slabaugh, G., Unal, G.: Graph cuts segmentation using an elliptical shape prior.
In: ICIP. (2005) II: 1222–1225

23. Funka-Lea, G., Boykov, Y., Florin, C., Jolly, M., Moreau-Gobard, R., Ramaraj, R.,
Rinck, D.: Automatic heart isolation for ct coronary visualization using graph-cuts.
In: ISBI. (2006) 614–617

24. Das, P., Veksler, O., Zavadsky, S., Boykov, Y.: Semiautomatic segmentation with
compact shapre prior. In: CRV. (2006) 28–36

25. Vicente, S., Kolmogorov, V., Rother, C.: Graph cut based image segmentation
with connectivity priors. In: CVPR. (2008)

26. Freedman, D., Zhang, T.: Interactive graph cut based segmentation with shape
priors. In: CVPR. (2005) I: 755–762

27. Kumar, M., Torr, P., Zisserman, A.: Obj cut. In: IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). (2005) I: 18–25

28. Ford, L., Fulkerson, D.: Flows in Networks. Princeton University Press (1962)
29. Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow

algorithms for energy minimization in vision. PAMI 26(9) (September 2004) 1124–
1137

30. Kolmogorov, V., Boykov, Y.: What metrics can be approximated by geo-cuts, or
global optimization of length/area and flux. In: ICCV. (2005) I: 564–571

31. Cox, I., Rao, S.B., Zhong, Y.: ”ratio regions”: A technique for image segmentation.
In: ICPR. (1996) 557–565

32. Kolmogorov, V., Boykov, Y., Rother, C.: Applications of parametric maxflow in
computer vision. In: ICCV. (2007) 1–8

33. Kohli, P., Torr, P.: Dynamic graph cuts for efficient inference in markov random
fields. PAMI 29(12) (December 2007) 2079–2088

34. Cohen, L., Cohen, I.: Finite-element methods for active contour models and bal-
loons for 2-d and 3-d images. PAMI 15(11) (November 1993) 1131–1147

15

35. Appleton, B., Talbot, H.: Globally optimal geodesic active contours. JMIV 23(1)
(2005) 67–86

36. Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural
images and its application to evaluating segmentation algorithms and measuring
ecological statistics. In: ICCV. Volume 2. (July 2001) 416–423

37. C., R., V., K., A., B.: ”grab-cut”- interactive foreground extraction using iterated
graph cuts. ACM Transaction on Graphics 23(3) (2004) 309–314

