
Simulating Classic Mosaics with Graph Cuts

Yu Liu, Olga Veksler, and Olivier Juan

Department of Computer Science
University of Western Ontario

London, Ontario
Canada, N6A 5B7

TEL: +1-519-661-2111 ext 81417
yliu382@csd.uwo.ca, olga@csd.uwo.ca,juan@csd.uwo.ca

Abstract. Classic mosaic is one of the oldest and most durable art
forms. There has been a growing interest in simulating classic mosaics
from digital images recently. To be visually pleasing, a mosaic should
satisfy the following constraints: tiles should be non-overlapping, tiles
should align to the perceptually important edges in the underlying digital
image, and orientation of the neighbouring tiles should vary smoothly
across the mosaic. Most of the existing approaches operate in two steps:
first they generate tile orientation field and then pack the tiles according
to this field. However, previous methods perform these two steps based on
heuristics or local optimisation which, in some cases, is not guaranteed
to converge. Some other major disadvantages of previous approaches
are: (i) either substantial user interaction or hard decision making such
as edge detection is required before mosaicing starts (ii) the number
of tiles per mosaic must be fixed beforehand, which may cause either
undesired overlap or gap space between the tiles. In this work, we propose
a novel approach by formulating the mosaic simulating problem in a
global energy optimisation framework. Our algorithm also follows the
two-step approach, but each step is performed with global optimisation.
For the first step, we observe that the tile orientation constraints can be
naturally formulated in an energy function that can be optimised with
the α-expansion algorithm. For the second step of tightly packing the
tiles, we develop a novel graph cuts based algorithm. Our approach does
not require user interaction, explicit edge detection, or fixing the number
of tiles, while producing results that are visually pleasing.

1 Introduction

Mosaic is one of the most ancient and durable art forms. Since ancient Greek
and Roman times, people used beautiful, fascinating mosaics to decorate floor
pavements, wall murals and ceilings. Classic mosaics are composed of a huge
number of small tiles with regular shapes, such as rectangles and squares. Sim-
ulating classic mosaics automatically is one of the areas in non-photorealistic
rendering that has been investigated by many researchers. In recent years, there
has been a rapid growth in non-photorealistic rendering techniques, since such
techniques can emphasise important aspects of a scene and create digital art.

There are two main challenges for mosaic simulating. First, tile orientations
should emphasise the edges of perceptually important shapes in the image. This
is achieved by placing tiles parallel to the edges to be emphasised. In addition,
tiles must be packed tightly while preserving their completeness. Inspired by the
artists’ work, many approaches have been developed for simulating this process.

(a) (b)

Fig. 1. Previous work: (a) Result from Hausner [1]. (b) Artifacts created by Elber
and Wolberg [2]. The feature curve outlined by the user is in white. Notice that even
the tiles that are far away in the background are still aligned with the outline of the
dinosaur, even though perceptually significant edges are present in the background.

An early and successful work on rendering classic mosaics was introduced by
Hausner [1], see Fig. 1(a). In Hausner, the user is required to identify the percep-
tually important edges. Then the distance transform to these edges is computed,
and the gradients of this distance map are adopted as the tile orientations. Fi-
nally the Centroidal Voronoi Diagram (CVD) based on Manhattan distance is
used to pack the tiles, assuming that the number of tiles is known.

Elber and Wolberg [2] also require a user to draw several closed curves around
the edges to be emphasised. A set of offset curves parallel to the feature curves
is computed to generate the orientation guide curves. These curves are trimmed
to eliminate self-intersection. Tiles are packed along these orientation guide lines
under the constraint that they should not touch each other and the gap space
between them is small. See Fig. 1(b) for their result.

The above approaches can produce visually pleasing results. However both
approaches are based on local heuristics which lead to certain problems. In Haus-
ner, the two main problems are: (a) the convergency of CVD algorithm is not
guaranteed and (b) the tile orientations change drastically at the discontinu-

ities of the distance transform gradient map, but these discontinuities usually
do not coincide with intensity edges. In Elber and Wolberg’s approach, there is
big gap space where the curvature of the orientation guide curve is very large
and discontinuity in tile orientations at the skeletons of the closed feature curves
provided by the user. In addition, both of these approaches require large amount
of user interaction to draw the feature edges. Furthermore, in [1], the number of
tiles per mosaic image has to be fixed before the algorithm’s start, which causes
either a lot of undesired overlapping or large gap space. An additional drawback
of Elber and Wolberg’s approach is that the tiles in the background which are
far away from the foreground objects are also aligned with the feature curves
outlined by the user, which creates the artifacts shown in Fig. 1(b).

Other approaches for simulating classic mosaics include Di Blasi and Gallo [3],
Battiato et. al [4], Schlechtweg et al. [5]. All of these approaches are based on
local optimisation. Some of them replace the user drawn curves with the results
of an edge detector. However the state of the art in edge detection does not
allow yet to find perceptually important edge robustly. Some commercial image
processing software also tries to simulating the visual effects of mosaics, such
as Adobe Photo shop [6], but they actually perform simple resolution reducing
processing which does not create effects similar to classic mosaics.

The goal of our work is automatic classic mosaic simulation without user
interaction or explicit edge detection. We observe that we can formulate the
tile orientation estimation and tile packing steps in a global energy optimisation
framework, which helps to avoid the problems of local optimisation mentioned
above. Like the previous approaches, we wish to make tiles align to perceptually
important edges in the image while optimising the gap space between tiles. Unlike
the previous approaches, we completely prohibit overlapping tiles.

Our algorithm has three major steps. In the first step, we generate a tile
orientation field. Each tile is encouraged to take orientation that aligns it to the
nearby strong intensity edges (if any) in the underlying image. In addition, tile
orientations are encouraged to vary smoothly over the image, which forces the
tiles to create a pleasing visual effect and also helps to reduce gap space between
tiles, since there is less gap space between neighbouring tiles with similar orien-
tations. We can encode the strong edge alignment and smoothness constraints
in a global energy function which we then optimise with the α-expansion al-
gorithm of [7]. The benefits of this approach to tile orientation generation is
that smoothness of tile orientations is enforced globally in the whole image (un-
like the distance transform approaches), and explicit edge detection (either by
the user or an edge detector) is eliminated. None of the existing methods ad-
dresses the smoothness of tile orientations with global optimisation. We chose
the α-expansion algorithm of [7] because it has been successfully applied to many
optimisation problems in vision and graphics, such as texture synthesis [8], image
stitching [9][10] and stereo correspondence [7][11][12].

After we have generated a smooth orientation field for the tiles, we can begin
mosaic building. Unfortunately, if we formulate tile packing for the final mosaic
as a global optimisation in the straightforward manner, the resulting energy is

prohibitively expensive to optimise, since the tile packing problem is essentially
a bin-packing problem. Our solution is inspired by the texture synthesis [8] and
image stitching algorithms [9][10] . We generate several mosaic layers and stitch
them together to form a final mosaic

Thus the second step of our algorithm is generating multiple candidate mosaic
layers, using a reasonable heuristic. These layers are usually not good enough
to be visually pleasing. There may be large gap space between tiles and many
tiles might cross sharp intensity edges, which blurs the final mosaic since the tile
colour is the average colour of the image pixels it covers. In the third and final
step, we develop a novel layer stitching algorithm, that selects good parts from all
the candidate layers and stitches them together to form the final mosaic. Here “a
good part” means a region in a candidate mosaic layer where the tiles are packed
tightly and do not cross strong intensity edges. This third step is also done in
the energy optimisation framework. The constraints of gap space minimisation,
edge avoidance, and prohibiting tile overlap are encoded in an energy function,
which is then optimised with a novel graph cuts based optimisation algorithm.

2 Energy Optimisation with Graph Cuts

In this section, we briefly review graph cuts based optimisation. Many problems
in vision and graphics can be naturally represented as labelling problems, such as
image segmentation, stereo, and motion. Let P be the set of all image pixels and
suppose for each p ∈ P we wish to assign some label fp ∈ L. Let f = {fp|p ∈ P}
be a labelling that assigns each pixel p ∈ P a label fp ∈ L. The following energy
function is formulated to measure the quality of f :

E(f) = Esmooth(f) + Edata(f) (1)

Here, Esmooth, which is often called the smoothness term, measures the extent
to which f is not smooth. Edata, usually called the data term, measures how
pixels in P like the labels that f assigns them. Edata is often formulated as

Edata(f) =
∑

p∈P

Dp(fp) (2)

where Dp is the penalty for assigning pixel p the label fp. A typical choice for
Esmooth is Esmooth =

∑

{p,q}∈N

Vpq(fp, fq) (3)

Usually, N consists of pairs of immediately adjacent pixels, that is the interac-
tions are given by the standard 4-connected grid. Graph cut [7] has been proved
to be very successful in optimising these types of energies [13]. We use max-flow
implementation of [14] for computing minimum cut.

3 Simulating Classic Mosaics with Graph Cuts

In this section, we give a detailed description of our algorithm. In section 3.1,
we give some necessary definitions, in section 3.2 we explain the first step of our

algorithm, which is generating smooth tile orientations, in section 3.3 we explain
the second step of our algorithm, which is generating multiple candidate mosaic
layers, and finally, in section 3.4 we explain our last step, which is stitching the
candidate mosaic layers together to obtain the final optimised mosaic.

3.1 Notation and Definitions

Let I be the rectangular image grid where we want to place the tiles and let P
be the collection of all pixels inside I. We assume that all tiles are square with
the side tSize. A tile is denoted by t = {pt, ϕt, Tt}. Here pt is a pixel inside the
image I such that pt is at the centre of tile t. The angle ϕt ∈ [0, π

2) is the tile
orientation. Since our tiles are rotationally symmetric, we need angles only in the
range of [0, π

2). Tt is the set of pixels in the image that tile t covers. To find the
pixels in Tt, we build a coordinate system with origin at pt, and the horizontal
and vertical axes parallel to that of the image plane I. If the orientation of tile t
is ϕt ∈ [0, π

2), then a pixel (x, y) is inside tile Tt, if its coordinates (x, y) satisfy:

|x × cos(ϕt) + y × sin(ϕt)| ≤
tSize

2

|y × cos(ϕt) − x × sin(ϕt)| ≤
tSize

2

(4)

Our discrete optimisation framework requires that the set of angles is finite.
Here we discretise the tile orientations into n angles. Let li be the ith angle, then
it is defined as:

li =
π

2n
× (i − 1), i = 1, 2, . . . , n

A label set L = {l1, l2, . . . , ln} represent the orientations. If pt is assigned li,
then tile t = {pt, ϕt, Tt} has an orientation of ϕt = li. We set n to 16.

3.2 Generating Tile Orientations

In this section, we describe how we compute the tile orientation field. That is
for each pixel p, we compute the appropriate tile orientation, assuming that a
tile will be placed with its centre at pixel p in the final mosaic. Of course, in the
final mosaic only a fraction of all pixels will, in fact, become tile centres. Most
of the pixels will be covered by some tile, but will not be in the centre of the tile
that covers them, and some pixels will be in the gap space, that is they will not
be covered by any tile. Selecting pixels that will become tile centres is addressed
in the second and third step of the algorithm, described in sections 3.3 and 3.4.

Our energy function for smooth tile orientation field is given by equations (1),
(2), and (3), where fp is the orientation label assigned to pixel p. This energy
encodes the constraints of edge alignment and strong edge avoidance in the data
term Dp(fp), and the smoothness of orientation between neighbouring pixels
in the smoothness term Vpq(fp, fq). The α-expansion method based on graph
cuts [7] is applied to minimise this energy.

Data Term. We first discuss our data term, which has the following form:

Dp(fp) = Ealign
p (fp) + Eavoid

p (fp), (5)

where Ealign
p (fp) encodes edge alignment constraints, Eavoid

p (fp) encodes edge
avoidance constraints. Assuming that a pixel p will become a tile centre, and
knowing the tile size, it is fairly easy to estimate which orientation is appropriate
for a square tile of fixed size with the centre at pixel p, so that it aligns with a
strong intensity edge in its neighbourhood, if any. It is defined as:

Ealign
p (fp) = we × max

i=1...4
‖Cri

(p) − Cbi
(p)‖ (6)

Let t be the tile t = {p, fp, Tt}. The darker yellow and green rectangles in Fig. 2
show how regions bi are defined, and the light yellow and green rectangles in
Fig. 2 illustrate the ri regions. Cri

(p) is the average colour vector in region ri

and Cbi
(p) is the average colour vector in region bi. ‖Cri

(p) − Cbi
(p)‖ is the

magnitude of the average colour difference between regions ri and bi.
This term encourages pixel p which is close to an edge to be assigned the

(a) (b)

Fig. 2. Definition of Ealign
p (fp). A tile t = {pt, ϕt, Tt} is shown by the red dotted

squares in (a) and (b).Region ri is inside tile t and it shares one edge with tile t, for
example, in (a), r1 and r3 are shown in lighter green and yellow rectangles inside the
tile t. In (b), regions r2 and r4 are illustrated by the lighter yellow and lighter green
rectangles. Region bi is a rectangle on the border of tile t and bi shares the same edges
with tile t and region ri. The darker green and darker yellow rectangles in (a) are
regions b1 and b3 when (b) shows regions b2 and b4. The average colour differences
between ri and bi is measured in Ealign

p .

orientation that aligns the tile centred at p with the edge. The weight of the
colour difference term we is set to be negative. Thus when there is a high response
on the colour difference between the pixels inside the tile and that outside the
tile, the term Ealign

p (fp) is negative, encouraging high contrast.

Strong edge avoidance is encoded in Eavoid
p (fp), which is defined as:

Eavoid
p (fp) = wv ×

∑

q∈Tt

‖g(q)‖ (7)

Let I(p) be the intensity at pixel p and ‖g(p)‖ be the magnitude of the gra-
dient at pixel p. Let p = (x, y), then g(p) = g(x, y) = 〈gx(x, y), gy(x, y)〉. We
approximate gradient by the standard Sobel operator. This term measures the
intensity variance inside the tile, therefore we call it the variance term. If the
label fp makes the tile overlap a strong intensity edge, then the variance term
will penalise the overlap between the edge and the tile. This term is particularly
important for pixels close to the edges of an object. The weight of wv is set to
be positive, since we want high gradient to be penalised.

Notice that the Dp(fp) term involves summation over a potentially large
group of pixels (if tSize is large). To compute the data term Dp(fp) efficiently,
the ”integral image” [15] is used in our approach. The integral image approach
allows computing Dp(fp) in constant time, independent of the tile size tSize.

Smoothness Term. We define the interaction term Vpq(fp, fq) as:

Vpq(fp, fq) = ws × |fp − fq|mod(π

2
) (8)

where

|fp − fq|mod(π

2
) =

{
|fp − fq| if |fp − fq| ≤

π
4

π
2 − |fp − fq| otherwise

This interaction reflects the fact that the angle of π
2 leads to the same tile

placement as the angle of 0, due to the symmetry of the square shape. The
smoothness term encourages orientations to propagate smoothly over the image.

3.3 Generating Mosaic Layers

In the second step of our algorithm, we generate a set of mosaic layers. Recall
that in the first step of our algorithm, for each pixel p we compute an orientation
fp s.t. if a tile t is placed with its centre at pixel p, it will have orientation fp.
Thus for each pixel, we have a “candidate” tile t for possible inclusion in the
final mosaic. We build multiple mosaic layers out of these candidate tiles. To give
every candidate tile a chance to be included in the final mosaic while keeping the
number of candidate layers to a minimum, we insure that the candidate mosaic
layers have no tiles in common, and that every candidate tile is present in one of
the candidate layers. We also insure that each candidate mosaic layer does not
have overlapping tiles, this is crucial for our algorithm in step 3, see section 3.4.

Mosaic layers are generated iteratively, in a region growing manner. In each
iteration we build one mosaic layer and make sure that the current mosaic layer
does not contain any of the tiles which are already present in a previous mosaic
layer. To build one mosaic layer, we starting at some random pixel s which is not
included in any candidate mosaic layer yet. We greedily choose a nearby pixel

p in such a way that the candidate tiles centred at s and p do not overlap but
the gap space between the tiles s and p is small. In addition, the candidate tile
centred at p must not have been selected yet for any candidate layer.

3.4 Stitching Two Mosaic Layers

After generating a set of candidate mosaic layers, our last step is to stitch them
together to form the final mosaic. The stitching should minimise the gap space
and and should not contain any “broken” tiles. In addition, tiles are encouraged
to avoid crossing strong intensity edges. Therefore, we must take edge avoidance
into account. In this section, we develop a novel graph cuts algorithm to solve
this stitching problem in an energy optimisation framework.

Minimising gap spaces and prohibiting tile overlap. Suppose all the
candidate tiles are indexed as t1, t2, . . . , tn, and D = {ti : i = 1, . . . , n}. A
mosaic layer is just a subset of tiles in D. Let M1, M2, . . . , Mk be the mosaic
layers. In the second step, we generated them in such a way that for any i 6= j,
Mi∩Mj = ∅, and

⋃
i=1,...,k Mi = D. Also, for all i = 1, . . . , k, if t 6= t′ ∈ Mi, then

tiles t and t′ do not overlap, that is for t = {pt, ϕt, Tt} and t′ = {pt′ , ϕt′ , Tt′},
Tt ∩ Tt′ = ∅.

Our stitching algorithm is iterative. We start from a random mosaic layer Mi,
setting it to be our current solution Mc. In each iteration, we select a random
layer M = Mj , and then find a tile preserving cut between the current solution
Mc and the random layer M . Let R be the result of stitching layers Mc 6= M ,
that is R ⊂ (Mc ∪ M).

fs Ds(fs) Layer

fs = 0 0 s ∈ Mc

fs = 1 As

fs = 1 0 s ∈ M

fs = 0 As

(a): Ds(fs) without
Edge Avoidance.

fs Ds(fs) Layer

fs = 0 wg × |gs| s ∈ Mc

fs = 1 As

fs = 1 wg × |gs| s ∈ M

fs = 0 As

(b): Ds(fs) with
Edge Avoidance.

(fs, fr) Vsr(fs, fr)

(0,0) 0

(0,1) ∞

(1,0) Osr

(1,1) 0

(c): Vsr(fs, fr)

Table 1. Energy for stitching two layers Mc, M

We formulate the problem of stitching two mosaic layers Mc 6= M together
as a labelling problem. Let tile set S = M ∪Mc. Our label set is {0, 1}. Labelling
f = {fs|s ∈ S} assigns a label fs ∈ {0, 1} to every s ∈ S. Any labelling f
corresponds to a stitching Rf ⊂ S in the following way. For every t ∈ Mc, if
ft = 0, then tile t ∈ Rf and if ft = 1,tile t /∈ Rf . For every t ∈ M , ft = 1 means
that tile t ∈ Rf and if ft = 0, then t /∈ Rf . Notice that the meaning of labels
{0, 1} is reversed for tiles in layers Mc and M .

We define the following energy function:

E(f) =
∑

s∈S

Ds(fs) +
∑

s,r∈N

Vsr(fs, fr), (9)

where the neighbourhood system N is:

N = {(s, r)|s ∈ Mc, r ∈ M and Ts ∩ Tr 6= ∅}

The data term Ds(fs) is given in Table 1(a). In this table, As is the size of
the region which is covered only by tile s, see Fig. 3.

The interaction term Vsr(fs, fr) is defined as table 1(c). Here Osr denotes
the size of the overlapping region between tiles s ∈ Mc and r ∈ M , see Fig. 3.
This interaction term insures that no tile overlap occurs in the stitching R which
has finite energy E(fR), see Fig. 3. Notice that the gap space that mosaic layers

(a) (b) (c) (d)

Fig. 3. A simple example to illustrate data and interaction terms. In (a), mosaic layer
M = {r} is shown by the solid square and Mc = {s} is shown by the dotted square.
Ar is the region covered only by tile r and As is the region covered only by tile s. Osr

is the size of overlapping region between s and r. Both tiles s and r presented in the
result stitching, therefore, the energy is ∞. In (b), tile s is assigned label 0 and not
present in the result stitching. The energy for this case is As. In (c), tile r is removed
and the energy is Ar. In (d), both tiles are removed, then Vsr(1, 0) = Osr.

Mc and M have in common can not be filled in by their stitching R. If M is a
mosaic layer, let

G(M) = {p ∈ P|p /∈
⋃

s∈M

Ts},

That is G(M) is the gap space in mosaic layer M . It is easy to see that for any
fR such that E(fR) < ∞,

E(fR) = |G(R)| − |G(M) ∩ G(Mc)| (10)

That is the energy of fR is the number of pixels in the gap space of R which were
not in the gap space of either M or Mc. Since for any Mc and M , |G(M)∩G(Mc)|
is a constant with respect to our optimisation problem, the optimal fR will
correspond to the stitching R which has G(R), or the gap space, as small as
possible. This is exactly the kind of stitching that we desire, minimising the gap
space while prohibiting tile overlap.

Edge avoidance. There is an additional constraint that we wish to add to
our stitching algorithm. For a visually pleasing mosaic, tiles should be placed to

(a) Input painting

(b) Output Mosaic

Fig. 4. Starry Night

Fig. 5. Libyan Sibyl Mosaic. The input image is zoomed out and illustrated in the
right bottom corner.

avoid crossing strong intensity edges inside the underlying image, since otherwise
the resulting mosaic is blurred (a colour of a tile is just the average colour of the
underlying image pixels that the tile covers). Let g be the intensity gradients
for the given image I, where the gradients are computed by standard Sobel
operator. The sum of gradient values inside tile s = {ps, ϕs, Ts} is denoted by
|gs| =

∑
p∈Ts

|g(p)|, where |g(p)| is the magnitude of gradient at pixel p. To
incorporate the intensity variance with our energy function defined in Eq. (9),
we redefine the data term Ds(fs) as Table 1(b). The weight of gs, denoted by
wg, is positive.

With the introduction of the edge avoidance constraint, the energy of stitch-
ing current layer changes from that in Eq. (10) to the one below:

E(fR) = |G(R)| − |G(M) ∩ G(Mc)| + wg ×
∑

t∈R

|g(t)|. (11)

It can be seen that the energy in Eq. (11) is submodular [16], and therefore
we can optimised it exactly by computing a minimum cut in a certain graph [16].
However, this energy is not quite what we need to measure the quality of stitching
R. The Ẽ(R) below is what we really need, since it accounts for the total gap
space:

Ẽ(fR) = |G(R)| + wg ×
∑

t∈R

|g(t)| = E(fR) + |G(M) ∩ G(Mc)| (12)

Ẽ(fR) simply adds the area of the gap space and the intensity variance inside the
mosaic tiles. The problem is that even though for a given layer M , optimising
the energy in Eq. (11) gives us the best stitching R ⊂ (Mc ∪ M) of current
layer Mc and the new layer M , the common gap space |G(M)∩G(Mc)| that we
cannot optimise for may be too large to give the actual decrease of the desired
energy in Eq. (12). The way we solve the problem is as follows. After optimising

the energy in Eq. (11), we only switch to the stitching R if Ẽ(fR) goes down.
The steps generating a new layer M , stitching it with the current layer Mc, and
updating the current solution in case of decrease in Ẽ(fR) are performed until
the maximum number of iterations.

4 Experimental Results

In this section, we show some results generated by our algorithm. We used the
following settings of parameters for all the experiments in this paper: the edge
alignment we = −50, the edge avoidance wv = 20, the smoothness ws = 20, and,
finally, the layer stitching wg = 0.015. These values were determined experimen-
tally to give good results for all the images.

In Figs. 5 and 4 we show the original images and our simulated mosaics for the
Libyan Sibyl and the Starry Night paintings. The mosaics are visually pleasing,
possessing the desired effects. The tile orientations emphasise the shapes of the
objects and vary smoothly across the image. For the dinosaur image, see Fig. 6,

(a) Input Image

(b) Output Mosaic

Fig. 6. Dinosaur

(a) Input Image (b) Mosaic with small tiles (c) Mosaic with large tiles

Fig. 7. Mosaic images for characters.

the tiles in the mosaic are aligned with the edges of the dinosaurs inside the
image, and the tiles in the background are aligned with significant background
shapes, unlike the results of Elber and Wolberg [2] in Fig. 1(b). This is because
we do not make hard decisions about the boundaries to be emphasised, rather
we let our algorithm to discover those boundaries automatically.

To make sure every candidate tile has a chance to appear in the final mosaic,
the number of candidate mosaic layers and the number of iterations when stitch-
ing the layers together must be large enough. Figs. 8 and 9 show how these two
parameters affect the final result. We increase these two parameters gradually
until the final result is visually pleasing.

(a) Starting Layer (b) Mosaic after 64 itera-
tions

(c) Mosaic after 198 itera-
tions

Fig. 8. Mosaics generated with different numbers of iterations

In our work, we set all the tiles to have the same size and same square
shape. It is important to choose an appropriate tSize for synthetic images. In

(a) Mosaic with 10 candidate layers (b) Mosaic with 100 candidate layers

Fig. 9. Mosaics generated with different numbers of candidate layers

Fig. 7(b), the tile size is too small compared to the strokes of the characters. To
keep the resulting mosaic from being blurred, the tiles located at the edges of
the characters are removed, therefore, the characters in the mosaic look much
thinner than those in the input image. In Fig. 7(c), the previous problem is
solved by increasing the tiles size, such that tSize is almost the thickness of the
character strokes, and the result is much improved.

For some images, we need to vary the tile size for different regions of the
image. Small tiles are needed in the image regions which have many fine details,
and large tiles work well in areas with larger details. For example, in Fig. 10(b),
the background is visually pleasing with the tile size of 10× 10 pixels, however,
the facial details of the people inside the image are blurred, because the tile size
is too large to represent the fine facial details. We plan to incorporate different
tile sizes and shapes to our future work.

References

1. Hausner, A.: Simulating decorative mosaics. In: Proceedings of SIGGRAPH2001.
(2001) 573–580

2. Elber, G., Wolberg, G.: Rendering traditional mosaics. The Visual Computer 19

(2003) 67–78
3. Blasi, G.D., Gallo, G.: Artificial mosaics. The Visual Computer 21 (2005) 373–383
4. Battiato, S., Blasi, G.D., Farinella, G.M., Gallo, G.: A novel technique for opus ver-

miculatum mosaic rendering. In: proceedings of ACM/WSCG2006. (2004) 3247–
3259

5. Schlechtweg, S., Germer, T., Strothotte, T.: Renderbots-multi-agent systems for
direct image generation. Computer Graphics Forum 24(2) (2005) 137–148

6. PhotoShop: Adobe photoshop (2006)
7. Boykov, Y., Veksler, O., Zabih, R.: Efficient approximate energy minimization via

graph cuts. IEEE transactions on PAMI 21(12) (2001) 1222–1239

(a) Input Image (b) Output Mosaic

Fig. 10. Family

8. Kwatra, V., Schodl, A., Essa, I., Turk, G., Bobick, A.: Graphcut textures: Image
and video synthesis using graph cuts. ACM Transactions on Graphics, SIGGRAPH
2003 22(3) (2003) 277–286

9. Agarwala, A., Dontcheva, M., Agrawala, M., Drucker, S., Colburn, A., Curless, B.,
Salesin, D., Cohen, M.: Interactive digital photomontage. ACM Transaction on
Graphics (Proceedings of SIGGRAPH2004) 23(3) (2004) 294–302

10. Eden, A., Uyttendaele, M., Szeliski, R.: Seamless image stitching of scenes with
large motions and exposure differences. In: Proceedings of 2006 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition. Volume 2. (2006)
2498–2505

11. Kolmogorov, V., Zabih, R.: Computing visual correspondence with occlusion via
graph cuts. In: Proceedings of IEEE International Conference on Computer Vision.
(2001) 508–515

12. Kim, J., Kolmogorov, V., Zabih, R.: Visual correspondence using energy minimiza-
tion and mutual information. In: Proceedings of IEEE International Conference
on Computer Vision. Volume 2. (2003) 1033–1040

13. Szeliski, R., Zabih, R., Scharstein, D., Veksler, O., Kolmogorov, V., Agarwala, A.,
Tappen, M.: Comparative study of energy minimization methods for markov ran-
dom fields. In: European Conference on Computer Vision, ECCV 2006,. Volume 2.
(2006) 16–29

14. Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow
algorithms for energy minimization in vision. In IEEE Transactions on Pattern
Analysis and Machine Intelligence(PAMI) 24 (2004) 137–148

15. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple
features. In: Proceedings of the IEEE CVPR2001. Volume 1. (2001) 511–518

16. Kolmogorov, V., Zabih, R.: What energy functions can be minimized via graph
cuts? IEEE Transactions on Pattern Analysis and Machine Intelligence 26(2)
(2004) 147–159

