
Multi-label Moves for MRFs with Truncated Convex
Priors

Olga Veksler

Computer Science Department
University of Western Ontario

London, Canada
olga@csd.uwo.ca

Abstract. Optimization with graph cuts became very popular in recent years.
As more applications rely on graph cuts, different energy functions are being
employed. Recent evaluation of optimization algorithms showed that the widely
used swap and expansion graph cut algorithms have an excellent performance for
energies where the underlying MRF has Potts prior. Potts prior corresponds to as-
suming that the true labeling is piecewise constant. While surprisingly useful in
practice, Potts prior is clearly not appropriate in many circumstances. However
for more general priors, the swap and expansion algorithms do not perform as
well. Both algorithms are based on moves that give each pixel a choice of only
two labels. Therefore such moves can be referred to as binary moves. Recently,
range moves that act on multiple labels simultaneously were introduced. As op-
posed to swap and expansion, each pixel has a choice of more than two labels
in a range move. Therefore we call them multi-label moves. Range moves were
shown to work better for problems with truncated convex priors, which imply
a piecewise smooth labeling. Inspired by range moves, we develop several dif-
ferent variants of multi-label moves. We evaluate them on the problem of stereo
correspondence and discuss their relative merits.

1 Introduction

Energy optimization with graph cuts [1,2,3] is increasingly used for different applica-
tions in computer vision and graphics. Some examples are image restoration [2], stereo
and multi-view reconstruction [4,5,2,6,7], motion segmentation [8,9,10], texture syn-
thesis [11], segmentation [12,13,14,15], digital photomontage [16]. Optimization with
graph cuts either results in an exact minimum or an approximate minimum with non-
trivial quality guarantees. This frequently translates into a result of high accuracy, given
that the energy function is appropriate for the application.

A typical energy function to be minimized is as follows:

E(f) =
∑

p∈P
Dp(fp) +

∑

(p,q)∈N
Vpq(fp, fq). (1)

In Eq. (1), L is a finite set of labels, representing the property needed to be estimated at
each pixel, such as intensity, color, etc.P is the set of sites that one needs to assign labels
to. Frequently P is set of image pixels. The label assigned to pixel p ∈ P is denoted

D. Cremers et al. (Eds.): EMMCVPR 2009, LNCS 5681, pp. 1–13, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

2 O. Veksler

by fp, and f is the collection of all pixel-label assignments. The first sum in Eq. (1) is
the data term. In the data term, Dp(fp) is the penalty for pixel p to be assigned label
fp. The data term usually comes from the observed data. The second sum in Eq. (1) is
the smoothness term, and it uses the prior knowledge about what the likely labelings f
should be like. The sum is over ordered pixel pairs (p, q) ∈ N . Often N is the 4 or 8
connected grid, however longer range interactions are also useful [5]. Without loss of
generality, we assume that if (p, q) ∈ N then p < q.

Any choice for Dp is easy to handle. The choice of Vpq determines whether the
energy function can be efficiently minimized. The Vpq’s often specify the smooth-
ness assumptions on the labeling f . Different choices of Vpq’s correspond to different
smoothness assumptions. A common choice is the Potts model, which is Vpq(fp, fq) =
wpq ·min {1, |fp − fq|}. The coefficients wpq’s can be different for each pair of neigh-
boring pixels. Potts model penalizes any difference between fp and fq by the same
amount. Intuitively, it corresponds to the prior knowledge that f should be piecewise
constant, that is it consists of several pieces where pixels inside the same piece share
the same label.

Another common choice is Vpq(fp, fq) = wpq · min {T, |fp − fq|a}. If a = 1 the
model is called a truncated linear, and if a = 2, it is called a truncated quadratic. These
Vpq’s correspond to the piecewise smooth assumption on f , that is the assumption that
f consists of several pieces, where the labels between neighboring pixels inside each
piece vary “smoothly”1. Parameter T is called a truncation constant. Without the trun-
cation, that is if Vpq is the absolute linear or quadratic difference, the energy in Eq. (1)
can be optimized exactly with a graph cut [17], but the corresponding energies are not
discontinuity preserving. Energy in Eq. (1) is NP-hard to optimize if discontinuity pre-
serving Potts, truncated linear or quadratic Vpq’s are used [2].

Recently, Szeliski et.al. [18] performed an experimental evaluation of several opti-
mization methods popular for minimizing energies in Eq. (1) : the graph cut based ex-
pansion and swap algorithms [2], sequential tree-reweighted message passing
(TRW-S) [19], and loopy belief propagation (LBP) [20]. They show that for Potts
model, both expansion and swap algorithms have an excellent performance, they find
an answer within a small percentage of the global minimum. TRW-S performs as well
as graph cuts, but takes significantly longer to converge. An additional benefit of graph
cuts over TRW-S is when longer range interactions are present. Szeliski et.al. [18] stud-
ied only the case when N is the 4-connected grid. Kolmogorov and Rother [21] per-
formed a comparison between graph cuts and TRW-S when longer range interactions
are present, and they concluded that graph cuts perform significantly better in terms of
energy than TRW-S in this case. For the truncated linear Vpq’s the expansion and swap
algorithms still perform relatively well, but for the truncated quadratic Vpq the energy
value is noticeably worse than that of TRW-S.

Recently [22] developed a new type of moves, called the range moves for optimizing
energies with truncated convex priors. A truncated quadratic and linear are examples of
truncated convex prior. Informally, truncated convex priors correspond to assuming that
f is piecewise smooth. The insight in [22] is that both expansion and swap algorithms
give a pixel a choice of only two labels, but for problems where piecewise smoothness

1 The term “smoothly” is used informally here.

Multi-label Moves for MRFs with Truncated Convex Priors 3

assumptions are appropriate, to obtain a good approximation, a pixel should have a
choice among more than two labels. The range moves that they develop act on a larger
set of labels than the expansion and swap moves. Because of this property, we call the
range moves multi-label moves. In [23] they use a similar idea to develop multi-label
moves for an energy function useful for single-view scene reconstruction. The energy
function in [23] is neither Potts nor truncated convex, and thus not directly related to
our work.

We further explore the idea of multi-label moves for truncated convex priors. One
can regard the range moves developed in [22] as a generalization of the swap move. In
this paper, we develop a multi-label move that is can be regarded as a generalization
of the expansion move. The optimal multi-label expansion move can be found only ap-
proximately. We explore an additional move that we call multi-label smooth swap. Note
that simultaneously but independently, [24] developed a move similar to our multi-label
expansion [25]. Their graph construction is very similar, with some minor differences
in edge weights. They also do not find an optimal multi-label expansion move, but
its approximation. The ideas that lay behind our multi-label moves (as, indeed, the
ideas behind any move-making optimization algorithm) are related to the framework of
majorization-minimization [26].

We evaluate our new multi-label moves on the energy functions arising in stereo
correspondence, and discuss their relative merits as well as compare them with the
range moves.

2 Prior Work

In this section, we briefly explain the prior work on optimization with graph cuts.

2.1 Assumptions on the Label Set

For the rest of the paper we assume that the labels can be represented as integers in the
range {0, 1, ...k− 1}, which is necessary since the construction is based on that in [17].

2.2 Convex Priors

Ishikawa [17] develops a method to find the exact minimum of the energy function in
Eq. (1) when Vpq are convex functions of the label differences. Specifically,Vpq(l1, l2) =
wpq · g(l1 − l2) is said to be convex if and only if for any integer x, g(x+ 1)− 2g(x)+
g(x − 1) ≥ 0. It is assumed that g(x) is symmetric2. In [27,28] they extend the results
in [17] to handle a more general definition of convexity.

We follow [22] to describe the work in [17]. Ishikawa’s method is based on comput-
ing a minimum cut in a particular graph. There are two special nodes in the graph, the
source s and the sink t. For each p ∈ P , we create a set of nodes p0, p1, ..., pk, see Fig. 1
Node p0 is connected with the source s with an edge of infinite capacity. Similarly, we
connect pk with the sink t with an edge of infinite capacity. This way p0 is essentially
identified with the source, and pk with the sink. We connect node pi to node pi+1 with a

2 A function is symmetric if g(x) = g(−x).

4 O. Veksler

Fig. 1. Graph construction for convex Vpq . Thick links indicate edges of infinite capacity.

directed edge ep
i for i = 0, 1, ..., k−1. In addition, for i = 1, ..., k, node pi is connected

to node pi−1 with a directed edge of infinite weight. This ensures that for each p, only
one of the edges of type ep

i will be in the minimum cut. If an edge ep
i is cut, then pixel

p is assigned label i, thus any cut C induces a labeling fC .
Furthermore, for any (p, q) ∈ N , an edge epq

ij which connects node pi to node qj is
created for i = 0, ..., k and j = 0, ..., k. The weight of this edge is

w(epq
ij) =

wpq

2
[g(i − j + 1) − 2g(i − j) + g(i − j − 1)]. (2)

The edge weight defined by Eq. (2) is non-negative, since g(x) is convex.
The weights ep

i are defined as follows:

w(ep
i) = Dp(i) −

∑

q∈Np

wpq · h(i),

where Np is the set of neighbors of pixel p, and h(i) = − 1
2 [g(k + 1 − i) + g(i + 1)]

Under this edge weights assignment, the cost of any finite cut C is exactly E(fC) plus
a constant, see [22]. Therefore the minimum cut gives the optimal labeling.

Note that [29] develops an algorithm for minimizing energy with convex Vpq which
is more memory and time efficient. However it can be used only when the Dp’s are
convex.

2.3 Expansion and Swap Algorithms

Boykov et.al. [2] develop the expansion and swap algorithms. These methods can be
applied when Vpq is Potts, truncated linear or quadratic, but the answer is only approx-
imate, since the energy is NP-hard to optimize in these cases [2].

Multi-label Moves for MRFs with Truncated Convex Priors 5

Both the expansion and the swap algorithms find a local minimum of the energy
function in the following sense. For each f , we define a set of “moves” M(f). We say
that f is a local minimum with respect to the set of moves, if E(f ′) ≥ E(f) for any
f ′ ∈ M(f).

Given a labeling f and a label pair (α, β), a move from f to f ′ is called an α-β swap
if fp �= f ′

p ⇒ fp, f
′
p ∈ {α, β}. M(f) is then defined as the collection of α-β swaps for

all pairs of labels α, β ∈ L.
Given a labeling f and a label α, a move f ′ is called an α-expansion if fp �= f ′

p ⇒
f ′

p = α. M(f) is then defined as the collection of α-expansions for all labels α ∈ L.
The optimal α-expansion and the optimal α-β swap can be found as a minimum

cut in a certain graph [2]. Thus the expansion and swap algorithms find a local mini-
mum with respect to expansion or swap moves, correspondingly. Starting with an initial
labeling f , optimal swap (or expansion) moves are found until convergence.

The energy with truncated linear Vpq can be optimized by both expansion and swap
algorithms, whereas for truncated quadratic Vpq , only the swap algorithm applies di-
rectly. In practice, however, it is possible to apply the expansion algorithm with a “trun-
cation trick” [30]. The resulting labeling is no longer guaranteed to be a local minimum
with the respect to expansion moves, but the energy is guaranteed to go down.

2.4 Range Moves for Truncated Convex Priors

In this section we review the range moves of [22]. Based on the notion of convexity
in [17], Vpq is truncated convex if there exists a symmetric function g(x) such that
g(x + 1) − 2g(x) + g(x − 1) ≥ 0 and

Vpq(l1, l2) = wpq · min{g(l1 − l2), T }. (3)

Throughout the rest of the paper, we assume truncated convex Vpq’s.
Recall that L = {0, 1, ..., k − 1}. Let Lαβ = {α, α + 1, ..., β}, where α < β ∈

L. Given a labeling f , we say that f ′ is an α-β range move from f , if fp �= f ′
p ⇒

{fp, f
′
p} ⊂ Lαβ . The α-β range moves can be viewed as a generalization of α-β swap

moves. An α-β swap move reassigns labels α, β among pixels that are currently labeled
α and β. An α-β range move reassigns the labels in the range {α, α + 1, .., β} among
the pixels that currently have labels in the range {α, α + 1, .., β}.

In [22], they show how to find an optimal α-β range move if |α−β| ≤ T 3. The basic
idea is as follows. Let T = {p|α ≤ fp ≤ β}. Notice that the truncated convex terms Vpq

become convex when p, q ∈ T , since for any p, q ∈ T , Vpq(fp, fq) = wpqg(fp − fq) ≤
wpq · T . Non-convex term arise only on the boundary of T , but they can be arranged in
a graph construction by adding appropriate constants to edges ep

i , see Section 2.2.
Just as with α-β swaps, the algorithm starts at some labeling f . Then it iterates over

a set of label ranges {α, .., β} with |α − β| = T , finding the best α-β range move f ′

and switching the current labeling to f ′.
The α-β range move can be slightly generalized. As previously, let |α−β| = T and,

as before, let T = {p|α ≤ fp ≤ β}. Let

Lαβt = {α − t, α − t + 1, ..., β + t − 1, β + t} ∩ L,

3 If |α − β| > T , α-β range move is NP-hard to find.

6 O. Veksler

that is Lαβt extends the range of Lαβ by t in each direction, making sure that the
resulting range is still a valid range of labels in L.

Let
Mαβt(f) = {f ′|f ′

p �= fp ⇒ fp ∈ Lαβ , f ′
p ∈ Lαβt}.

That is Mαβt(f) is a set of moves that change pixels labels from Lαβ to labels in
Lαβt. Notice that Mαβ(f) ⊂ Mαβt(f). It is not possible to find the optimal move in
Mαβt(f), but [22] shows how to find f̂ ∈ Mαβt(f) s.t. E(f̂) ≤ E(f∗), where f∗ is
the optimal move in Mαβ(f). Thus labeling f̂ is not worse than the optimal move in
Mαβ(f), and if one is lucky, E(f̂) could be significantly better than the optimal move
in Mαβ(f). In practice, t is set to a small constant. Let us call this generalized range
move as α-β-t-range move.

3 Multi-label Moves

The key idea of the range moves in [22] is to allow a pixel to choose among several
labels in a single move. This is in contrast to the swap and expansion moves, which
allow each pixel a choice between only two labels. We are going to refer to moves that
allow a choice of more than two labels as multi-label. Multi-label moves have already
proven successful in [22,23,24]. There is a multitude of such moves possible. In this
paper, we develop several different multi-label moves for truncated convex priors and
compare their performance. To have a clear terminology, we are going to rename to
the generalized α-β-t-range move with as multi-label α-β-t-swap. There is no need to
rename the α-β-range move since it is a special case of α-β-t-range move with t = 0.

In [22], the idea was to find a subset of pixels P ′ and a subset of labels L′ s.t. when
the Vpq terms are restricted to P ′ and L′, they are convex. The boundary terms are easy
to implement, as shown in [22]. Throughout the remainder of this section, we are going
to exploit different ways of selecting P ′ and L′. The two new moves that we develop
are called multi-label expansion and multi-label smooth swap.

In order to perform iterative energy optimization that reduces the energy of the cur-
rent labeling f , it seems necessary to ensure that the labels of pixels in P ′ under labeling
f are contained in L′. This ensures that the current labeling f is also within the set of al-
lowed moves, and the lowest energy move is not worse than the current labeling. For the
multi-label smooth swap, we are able to enforce this condition. For multi-label expan-
sion, we are not able to always enforce it. We will still guarantee though that the energy
goes down at each iteration by simply rejecting any move whose energy is higher than
that of the current labeling.

3.1 Multi-label Smooth Swap

Let f be a current labeling. Let P ′ be a subset of pixels ofP . We call P ′ a smooth subset
under labeling f , if for any (p, q) ∈ N , whenever {p, q} ⊂ P ′, then |fp − fq| ≤ T ,
where T is the truncation constant in Eq. (3). In words, if a subset P ′ is smooth under
f , then the label difference for any two pixels contained in P ′ is not larger than the
truncation constant.

Multi-label Moves for MRFs with Truncated Convex Priors 7

Let f be the current labeling and P ′ be a smooth subset under f . Let L(P ′, f) =
{fp|p ∈ P ′}, that is L(P ′) is the collection of labels that pixels in P ′ have under
labeling f .

Given a smooth subset P ′ under f , let Msmooth(f,P ′) = {f ′|f ′
p �= fp ⇒ p ∈

P ′ and f ′
p ∈ L(P ′, f)}. Msmooth(f,P ′) describes exactly the set of all multi-label

smooth swap moves. In words, a smooth swap move takes a smooth set of pixels under
f , collects their labels, and reassigns their labels among them.

Just as it was possible to generalize the multi-label swap move by extending the range
of labels, it is possible to generalize the multi-label smooth swap. Let t be a constant
for extending the range of labels L′(P ′, f). Let us define the extended range of labels
as

L′(P ′, f, t) = {l ∈ L|∃l′ ∈ L′(P ′, f) s.t. |l − l′| ≤ t} ∩ L.

In words, to get L′(P ′, f, t) we add to L′(P ′, f) labels that are at distance no more than
t from some label already in L′(P ′, f). The intersection with L is performed to make
sure that after the “padding”, the augmented set is still contained in L. Let the set of
smooth swap moves augmented by t be denoted by Msmooth(f,P ′, t).

A multi-label smooth swap is naturally related to a multi-label swap. In a multi-
label swap move, the pixels participating in a move have labels in a range limited by
truncation, i.e. all the labels are between some α and β with |α − β| < T. In a multi-
label smooth swap, the domain of pixels participating in a move can be larger than
that compared to the multi-label swap. That is the pixels participating in the move can
have labels between some α and β with |α−β| > T. The restriction is that in the pixels
participating in a smooth swap must form a “smooth” component in the current labeling
f , that is the labels of any two neighbors cannot differ by more than T .

There are two questions that remain to be answered: how to choose the smooth sub-
sets P ′ and how to optimize with smooth swap moves. Let us first consider the question
of optimization.

In general, it is not possible to find the optimal smooth swap move, given a smooth
subset P ′ and the current labeling f . However, we are able to find a good swap move,
the one that improves the current labeling f .

Let S be a subset of pixels in P and let us define:

ES(f) =
∑

p∈S
Dp(fp) +

∑

(p,q)∈N ,{p,q}∩S�=∅
Vpq(fp, fq).

In words, ES(f) is the sum all the terms of the energy function which depend on pixels
in S. Let us further define:

Eopen
S (f) =

∑

p∈S
Dp(fp) +

∑

(p,q)∈N ,{p,q}⊂S
Vpq(fp, fq).

In words, Eopen
S (f) is the sum of all the terms of the energy function which depend

only on pixels in S. It is clear that for any S ∈ P , E(f) = ES(f) + Eopen
P−S(f).

Let f be the current labeling, and let P ′ be a smooth subset under f . Let f ′ be a
smooth swap move from f , i.e. f ′ ∈ Msmooth(f,P ′, t).

We use basically the same construction as in Section 2.4. We construct a graph for
pixels in P ′. However, the label range is L′(P ′, f, t), and we identify it with label set

8 O. Veksler

{0, 1, ..., |L′(P ′, f, t)| − 1}. Otherwise, the graph construction is identical to that in
Section 2.4.

Let C be any finite cost cut in our graph. Notice that a cut of finite cost assigns labels
(as described in Section 2.2) only to pixels in P ′. Let fC be the labeling corresponding
to the cut C, which we define as follows: fC

p = fp for p �∈ P ′, and for p ∈ P ′, fC
p

is equal to the label assigned to pixel p by the cut C. Let w(C) be the cost of cut C.
By graph construction, w(C) = ẼP′(fC) + K , where K is a constant and Ẽ(f) is the
same energy as E(f), except there is no truncation in Vpq terms for p, q ∈ P ′. That is
for p, q ∈ P ′, Vpq(fp, fq) = wpq · g(fp − fq) in the energy Ẽ.

For any f , EP′(f) ≤ ẼP′(f), since the only difference between E and Ẽ is that
the Vpq terms are not truncated in Ẽ for p, q ∈ P ′. Recall that for any f , E(f) =
EP′(f) + Eopen

P−P′(f). Also, Eopen
P−P′(f) = Ẽopen

P−P′(f), since Ẽ is not different from E
outside of set P ′.

Let f be the current labeling. Notice that EP′(f) = ẼP′(f), since Vpq terms in f

do not need to be truncated on the set P ′. Let Ĉ be the minimum cost cut, and let f̂ be
its corresponding labeling, defined as above. Let f be the current labeling (notice that
f ∈ Msmooth(f,P ′, t)), and let C be the cut which corresponds to it in the graph. We
have that ẼP′(f̂) + K = w(Ĉ) ≤ w(C) = ẼP′(f) + K. Since EP′(f̂) ≤ ẼP′(f̂)
and EP′(f) = ẼP′(f), we get that EP′(f̂) ≤ EP′(f). Now, for any labeling f ′′,
E(f ′′) = EP′(f ′′)+Eopen

P−P′(f ′′). We have that Eopen
P−P′(f̂) = Eopen

P−P(f ′), and therefore

we get that E(f̂) ≤ E(f). This shows that the minimum cut gives a labeling f̂ with
energy not larger than the current labeling f . So if we cannot find the optimal smooth
swap move, we can at least guarantee smooth swap move does not increase energy.

The question remains of how to find smooth subsets P ′. In general, given a current
labeling f , we can partition it into a set of P1,P2...Pd, s.t.

⋂
i Pi = P and each Pi

is smooth. This partition can be performed by computing connected components. This
partition is not unique, however. To remove bias due to visitation order, we compute
connected components in random order. That is we pick a pixel p at random, compute a
maximal smooth subset P1 containing p, then choose another pixel q �∈ P1, compute a
maximal smooth subset P2 containing q, and so on, until all pixels are partitioned into
smooth subsets. Then we compute smooth swap moves for each Pi. This is not the only
way to proceed, but we found it to be effective. Computing all smooth swap moves for
a partition P1,P2...Pd constitutes one iteration of the algorithm. We perform iterations
until convergence.

The advantage of the multi-label smooth swap move over the multi-label swap is
that it converges faster. If we start from a good solution (typically we start from the
results of the binary expansion algorithm), the number of smooth subsets in a partition
of P is small, so the number of moves is smaller compared to the multi-label swap. The
disadvantage is that it gives energies that are slightly higher in practice.

3.2 Multi-label Expansion

We now develop a multi-label expansion move. Let α and β be two labels s.t. α < β.
The idea behind multi-label expansion move is similar to that of a binary expansion
move. We wish to construct a move in which each pixel can either stay with its old

Multi-label Moves for MRFs with Truncated Convex Priors 9

(a) (b)

Fig. 2. Graph construction for multi-label expansion

label, or switch to a label in the set {α, α + 1, ..., β}. The name “expansion”, as before,
reflects the fact that labels in the set {α, α + 1, ..., β} expand their territory.

Let Mαβ(f) = {f ′|f ′
p �= fp ⇒ f ′

p ∈ Lαβ}. That is Mαβ(f) is exactly the set of all
α-β multi-label expansion moves from labeling f . Unfortunately, the optimal expansion
move cannot be computed exactly, so we are forced to approximate it.

Suppose that we are given a labeling f and we wish to approximate the optimal α-β
expansion move, where |α − β| = T . The construction is similar to that in Section 2.2.
We identify label set {α, α + 1, ..., β} with set {0, 1, ..., T}. One of the differences is
that now all pixels participate in a move. First we build a graph exactly like in Sec. 2.4,
except the links between the source and p0 are not set to infinite, for all pixels p. We
create an auxiliary pixel apq between each pair of neighboring pixels (p, q)4. We con-
nect p0 to apq, q0 to apq, and s to apq , as illustrated in Fig. 2 (a). If the minimum cut
severs edge between s and p0, then p is assigned its old label in the move. Otherwise,
the label assignment is exactly like in Sec. 2.4.

For the construction in 2.4 if we sever links ep
i and eq

j , then the cost of all the links
epq

ij that have to be severed adds up to C + Vpq(i, j). The costs of the new links that we
create for the expansion algorithm are as in Fig. 3.

This construction insures that if a links between s and p0 and between q0 and q1

are broken, then the cost of all edges severed corresponds exactly to Vpq(fp, α) plus a
constant, which is exactly what is needed. Similarly the correct thing happens if links
between s and q0 and between p0 and p1 are broken, and if the link between s and apq

4 Note that auxiliary pixel is not necessary, see [3], but it clarifies the explanation.

10 O. Veksler

link weight
p0 to apq Vpq(fp, α) + C/2
q0 to apq Vpq(β, fq) + C/2
s to apq Vpq(fp, fq)+C
s to p0 Dp(fp)
s to q0 Dp(fq)

Fig. 3. Weights of the new links

is broken. Unfortunately in other cases, as long as the new links in Fig. 3 are involved,
the Vpq value can be underestimated or overestimated. The minimum graph cut is not
even guaranteed to reduce the energy from that of the current labeling f . Still in practice
we found that many minimum cuts correspond to an assignment with a lower energy.
Therefore, to make sure that the energy never goes up, if f ′ is the assignment returned
by our approximate multi-label expansion, we first test if E(f ′) < E(f), where f is
the current labeling. If yes, we accept f ′ as the new current labeling. If no, we reject it.

As with the multi-label swap, the range of labels involved in multi-label expansion
can be extended by some t. The construction changes appropriately, similar to what is
done when extending the range of multi-label swap moves see Sec. 2.4.

In practice, we found the following version of the multi-label expansions to work
better. Let T = {p ∈ P|fp ≤ β} and let B = {p ∈ P|fp ≥ α}. We perform the multi-
label expansion on pixels in set T using the graph like in Fig. 2(a), and an expansion on
pixel in set B using the graph like in Fig. 2(b), with symmetrically modified weights in
Fig. 3 for the second case. The weights also have to be corrected because there are pixels
not participating in the move, so the “border” conditions resulting from such pixels
have to be incorporated into edge weights ep

i , just like in Sec. 2.4. The improvement
is probably due to the fact that more Vpq’s are correctly represented by this split graph
construction. Another improvement is probably due to the fact that pixels on the border
not participating in the move pull the energy in the right direction by having their Vpq

terms correctly modeled through the edge weights ep
i .

4 Experimental Results

In this section, we present our results on stereo correspondence for the Middlebury
database stereo images5. We took four pairs of stereo images for evaluation, namely:
Venus,Sawtooth,Teddy,Cones. This database was constructed by D. Scharstein and R.
Szeliski, and these images are the top benchmark in evaluating the performance of
stereo algorithms [31,32].

For stereo correspondence, P is the set of all pixels in the left image, L is the set
of all possible stereo disparities. We take the disparity labels at sub-pixel precision,
in quarter of a pixel steps. That is if |fp − fq| = 1, then the disparities of pixels p
and q differ by 0.25 pixels. Let dl stand for the actual disparity corresponding to the

5 The images were obtained from www.middlebury.edu/stereo

Multi-label Moves for MRFs with Truncated Convex Priors 11

Venus Sawtooth Teddy Cones
Swap 7,871,677 9,742,107 16,376,181 21,330,284
Expansion 8,131,203 9,418,529 15,829,221 21,020,174
α-β-2 swap 7,188,393 9,371,745 15,421,437 20,490,753
Multi-Label Smooth Range 7,193,823 9,373,126 15,616,999 20,515,493
α-β-2 Expansion 7,188,404 9,377,494 15,408,234 20,626,809

Fig. 4. Energies on Middlebury database. The minimum in each column is highlighted.

integer label l, for example label 2 corresponds to disparity 0.75. The data costs are
Dp(l) =

∣∣IL(p) − [IR(p − dl) · (dl − dl) + IR(p − dl)(dl − dl)]
∣∣ , where x stands for

rounding down, x stands for rounding up, and p − x stands for the pixel that has the
coordinates of pixel p shifted to the left by x.

We use the truncated quadratic Vpq(fp, fq) = 100 · min{(fp − fq)2, 25}. Using
spatially varying weights wpq improves results of stereo correspondence, since it helps
to align disparity discontinuities with the intensity discontinuities. We set all wpq = 10,
since the main purpose of our paper is to evaluate and compare the multi-label moves,
and not to come up with the best stereo algorithm. Fig. 4 compares the energies obtained
with the expansion algorithm, swap algorithm, multi-label swap moves (or range moves
in terminology of [22]), multi-label expansion moves, and smooth swap moves.

From the Table 4, we can make the following conclusions. First let us consider the
“binary” swap and expansion moves. The swap and expansion algorithms are clearly
inferior when it comes to truncated convex priors. Even though the swap algorithm is
guaranteed to find a best swap move and the expansion algorithm is not guaranteed
to find the best move under the truncated quadratic model, expansion algorithm does
performs better for all scenes except “Venus”. This is probably explained by the fact
that expansion moves are more powerful than the swap moves. Even if we do not find
the optimal expansion, a good expansion may be better than the optimal swap.

Now let us discuss the multi-label moves. First of all, the running times for the multi-
label swap move was on the order of minutes (from 5 to 10 minutes). The smooth range
move achieved the energy very close to that of the multi-label swap, but its running
time is about 2 or 3 times faster. The multi-label expansion move is almost always
slightly worse that the multi-label swap, it is better only on the “Teddy sequence”. One
would expect a better performance from the expansion move, but since we cannot find
the optimal one, only an approximate one, these results are not entirely surprising. The
running time for the expansion move is much worse than for other multi-label moves,
since the graphs are much bigger. Multi-label expansion takes about 9-10 times longer
than multi-label swap.

We should mention that the running times of our algorithms can be significantly
improved using the ideas in [33]. They employ techniques such as good initialization,
reducing the number of unknown variables by computing partially optimal solutions,
and recycling flow. All of these are directly transferable to the implementation of our
multi-label moves. Their speed ups are around a factor of 10 or 15.

12 O. Veksler

4.1 Discussion

In this paper develop and compare two new multi-label moves for energies with trun-
cated convex prior, as well compare the new moves with the previously known multi-
label moves called range moves. Clearly, there are more interesting multi-label moves
that can be developed for multi-label energies. An interesting question is whether it is
possible to discover automatically new multi-label moves with good properties for a
given energy, rather than develop them by hand.

References

1. Ishikawa, H., Geiger, D.: Occlusions, discontinuities, and epipolar lines in stereo. In:
Burkhardt, H.-J., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1406, p. 232. Springer,
Heidelberg (1998)

2. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts.
PAMI 23(11), 1222–1239 (2001)

3. Kolmogorov, V., Zabih, R.: What energy functions can be minimized via graph cuts? In:
Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2352,
pp. 65–81. Springer, Heidelberg (2002)

4. Boykov, Y., Veksler, O., Zabih, R.: Markov random fields with efficient approximations. In:
CVPR, pp. 648–655 (1998)

5. Kolmogorov, V., Zabih, R.: Computing visual correspondence with occlusions via graph cuts.
In: ICCV, vol. II, pp. 508–515 (2001)

6. Kolmogorov, V., Zabih, R.: Multi-camera scene reconstruction via graph cuts. In: Heyden,
A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2352, pp. 82–96.
Springer, Heidelberg (2002)

7. Lempitsky, V., Boykov, Y., Ivanov, D.: Oriented visibility for multiview reconstruction. In:
Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3953, pp. 226–238.
Springer, Heidelberg (2006)

8. Wills, J., Agarwal, S., Belongie, S.: What went where. In: CVPR, vol. I, pp. 37–44 (2003)
9. Xiao, J., Shah, M.: Motion layer extraction in the presence of occlusion using graph cuts.

PAMI 27(10), 1644–1659 (2005)
10. Schoenemann, T., Cremers, D.: High resolution motion layer decomposition using dual-

space graph cuts. In: CVPR, pp. 1–7 (2008)
11. Kwatra, V., Schödl, A., Essa, I., Turk, G., Bobick, A.: Graphcut textures: Image and

video synthesis using graph cuts. ACM Transactions on Graphics, SIGGRAPH 2003 22(3),
277–286 (2003)

12. Boykov, Y., Jolly, M.: Interactive graph cuts for optimal boundary and region segmentation
of objects in n-d images. In: ICCV, vol. I, pp. 105–112 (2001)

13. Blake, A., Rother, C., Brown, M., Perez, P., Torr, P.: Interactive image segmentation using an
adaptive GMMRF model. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3021,
pp. 428–441. Springer, Heidelberg (2004)

14. Rother, C., Minka, T., Blake, A., Kolmogorov, V.: Cosegmentation of image pairs by his-
togram matching: Incorporating a global constraint into mrfs. In: CVPR, vol. I, pp. 993–1000
(2006)

15. Kolmogorov, V., Criminisi, A., Blake, A., Cross, G., Rother, C.: Probabilistic fusion of stereo
with color and contrast for bilayer segmentation. PAMI 28(9), 1480–1492 (2006)

16. Agarwala, A., Dontcheva, M., Agrawala, M., Drucker, S., Colburn, A., Curless, B., Salesin,
D., Cohen, M.: Iteractive digital photomontage. In: ACM Transactions on Graphics,
SIGGRAPH (2004)

Multi-label Moves for MRFs with Truncated Convex Priors 13

17. Ishikawa, H.: Exact optimization for markov random fields with convex priors. PAMI 25(10),
1333–1336 (2003)

18. Szeliski, R., Zabih, R., Scharstein, D., Veksler, O., Kolmogorov, V., Agarwala, A., Tappen,
M., Rother, C.: A comparative study of energy minimization methods for markov random
fields with smoothness-based priors. IEEE Transacions on Pattern Analysis and Machine
Intellegence 30(6), 1068–1080 (2008)

19. Kolmogorov, V.: Convergent tree-reweighted message passing for energy minimization.
PAMI 28(10), 1568–1583 (2006)

20. Pearl, J.: Probabilistic reasoning in intelligent systems: networks of plausible inference.
Morgan Kaufmann, San Francisco (1988)

21. Kolmogorov, V., Rother, C.: Comparison of energy minimization algorithms for highly con-
nected graphs. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3952,
pp. 1–15. Springer, Heidelberg (2006)

22. Veksler, O.: Graph cut based optimization for mrfs with truncated convex priors. In: CVPR,
pp. 1–8 (2007)

23. Liu, X., Veksler, O., Samarabandu, J.: Graph cut with ordering constraints on labels and its
applications. In: CVPR, pp. 1–8 (2008)

24. Kumar, M.P., Torr, P.H.S.: Improved moves for truncated convex models. In: Koller, D.,
Schuurmans, D., Bengio, Y., Bottou, L. (eds.) Advances in Neural Information Processing
Systems 21, pp. 889–896 (2009)

25. Torr, P.H.S.: In: Personal communication (2008)
26. Hunter, D.R., Lange, K.: A tutorial on MM algorithms. The American Statistician (58) (2004)
27. Schlesinger, D., Flach, B.: Transforming an arbitrary minsum problem into a binary one.

Technical Report TUD-FI06-01, Dresden University of Technology (2006)
28. Darbon, J.: Global optimization for first order markov random fields with submodular priors.

In: Brimkov, V.E., Barneva, R.P., Hauptman, H.A. (eds.) IWCIA 2008. LNCS, vol. 4958,
pp. 229–237. Springer, Heidelberg (2008)

29. Kolmogorov, V.: Primal-dual algorithm for convex markov random fields. Technical Report
MSR-TR-2005-117, Microsoft (2005)

30. Rother, C., Kumar, S., Kolmogorov, V., Blake, A.: Digital tapestry. In: CVPR, vol. I,
pp. 589–596 (2005)

31. Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo corre-
spondence algorithms. IJCV 47(1-3), 7–42 (2002)

32. Scharstein, D., Szeliski, R.: High-accuracy stereo depth maps using structured light. In:
CVPR, vol. I, pp. 195–202 (2003)

33. Alahari, K., Kohli, P., Torr, P.: Reduce, reuse, recycle: Efficiently solving multi-label mrfs.
In: CVPR, pp. 1–8 (2008)

	Multi-label Moves for MRFs with Truncated Convex Priors
	Introduction
	Prior Work
	Assumptions on the Label Set
	Convex Priors
	Expansion and Swap Algorithms
	Range Moves for Truncated Convex Priors

	Multi-label Moves
	Multi-label Smooth Swap
	Multi-label Expansion

	Experimental Results
	Discussion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

