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Abstract In addition, no fixed window shape works well for all
pixels. Pixels that are close to a disparity discontinuigy f
Window size and shape selection is a difficult problem in quently require windows of different shapes to avoid cross-
area based stereo. We propose an algorithm which choosesng that discontinuity. That is why typical fixed window
an appropriate window shape by optimizing over a large methods give especially bad results near discontinuities.
class of “compact” windows. We call them compact be-  There were relatively few attempts to vary window’s size
cause their ratio of perimeter to area tends to be small. or shape. The best known is the adaptive window by Kanade
We believe that this is the first window matching algorithm and Okutomi [7]. They use a model of intensity and dispar-
which can explicitly construct non-rectangular windows. ity variation within a window to compute an uncertainty of
Efficient optimization over the compact window class is disparity estimate. This allows a search for a window with
achieved via the minimum ratio cycle algorithm. In prac- |ocally minimum disparity uncertainty. The window shape
tice it takes time linear in the size of the largest window in s limited to rectangles due to computational cost. While
our class. Still the straightforward approach to find the op- this method is elegant, in our experiments in does not give
timal window for each pixel-disparity pair is too slow. We sufficient improvement over fixed window methods. The
develop pruning heuristics which give practically the same problem might be its sensitivity to initial disparity estite.
results while reducing running time from minutes to sec- Geigeretal.[5] and A. Fusielloet al.[4] use a simpler
onds. Our experiments show that unlike fixed window algo'multiple window method. For each pixel and disparity a
rithms, our method avoids blurring disparity boundaries as |imijted number of distinct windows are tried, and the one
well as constructs large windows in low textured areas. The it pest correlation is retained. To be efficient, the numbe

algorithm has few parameters which are easy to choose, andyt \yindows is severely limited and cannot cover the whole
the same parameters work well for different image pairs. range of different sizes and shapes needed.

We propose a method which is similar in spirit to [5] and
[4]. However instead of trying a limited number of win-
1 Introduction dows, for each pixel-disparity pair we compute the match-
ing cost over a large class of “compact” windows. We use
Area correlation is one of the oldest approaches to densehis term loosely and it reflects the fact that our windows
stereo matching. To estimate match quality for a pjxat have small perimeter to area ratio. The size of this class
disparityd, sum of squared differences (SSD) or some other is €xponential in the maximum window height. As far as
measure is computed between a window centerpdrethe we know, this is the first window-matching method which
firstimage and the same window shifteddin the second ~ can explicitly construct non-rectangular windows. The ex-
image. For efficiency most methods use a rectangular win-act description of our compact shapes is in section 2.
dow of fixed size centered at Efficient optimization over such a large class of windows
There is a well known problem with this method. For a is achieved viaminimum ratio cyclealgorithm (MRC) for
reliable estimate window must be large enough to include graphs. Assuming that the largest window in the class is a
enough intensity variation, but small enough to cover only n by n square, for our graphs optimization tak@én+/n)
pixels at equal depth. However different pixels in the same time in theory, but linear time in practice. The MRC algo-
image frequently require windows of different sizes, and no rithm puts constraints on the window match cost, but it is
single window size works well: for a small size results are still quite general. In particular we can include normaliza
unreliable in low-textured areas; as the size is increasedtion by the window size which is crucial since we compare
results in low-textured areas get progressively reliatiidav ~ windows of different sizes. The match cost of the window is
disparity boundaries get increasingly blurred. described in detail in section 3, but in summary it is the av-



arcs, we limit it since a single pixel window is too unreli-

f ke St it B able. If the largest window is a by n square, then there
i ( are O(2") windows in the compact class. Notice that our
“ y windows tend to have low perimeter to area ratio, hence the
Y S T E name compact (however they do not contain all shapes that
{ !’ one might call compact). All rectangles which contain the
et P {{ T—> —1 smallest allowed one are in our class. However our class is
A ‘ much more general than the rectangles, the rectangles form
< =< only a smallO(n*) part.
1 et Y Although our window shape is not completely general it
I I = P seems adequate for our purposes. Our goal is to construct
a sufficiently large window of pixels that fit well to a single
(a) GraphG,4 (b) Edge directions in disparity while avoiding those that do not. In contrast our
each quadrant windows may not work for applications like image segmen-
tation since the goal there is to extract all pixels in a ragio
) Fig. 4(h) shows examples of the windows we find.
Figure 1.

The compactness of our windows has an advantage over
general shape. The best window of general shape may have

erage measurement error with bias towards Iargerwindows.thln subparts which do not belong to the disparity of the

. . window but do match well at that disparity due to the image
wir;l;jho?/vs}t(;?lgggr? rvxsglj_ da}lsgoar:rm ;ri]ra;;ogzl;tii tvr\]/ﬁ] dboe;t structure or noise. Unless there is a special treatment, the
. N P parily pair dep . . results may be plagued by these artifacts.
size, which is too slow. We devised simple pruning heuris-
tics which significantly reduce the number of optimal win- . .
dow computations while giving practically the same results 3 Window Matching Cost
Experiments on real imagery with ground truth show that

not only our method outperforms fixed window algorithm, ~ 1here are three important terms in our window match-
but it is also competitive with other algorithms which were N9 €OSt. The basic term accumulates over a whole window

designed to work well at discontinuities. In addition our pa the measurement error for assigning dispaditp pixel p.

rameters are easy to choose and the same parameters work''C€ We compare windows of different sizes, our second
well for different stereo pairs. In our framework we can essential term normalizes by window size. The first two

handle brightness differences between images, as well a$€rms combined give the average window error. Itis a good
nonlinear noise. see section 6 for details criterion to exclude outliets since inclusion of outliers in-

creases average error. We need more that that however. If
] two windows have different sizes but approximately equal

2 The Compact Window Class average error we want to favor the larger one since larger
windows are more reliable. Thus our last term implements

For each pixe|_disparity pa(m’ d), the compact window a bias towards Iargerwindows. Itis particularly imporliimt
class is defined through the gragh,. An exampleG,, is low texture areas where most windows have approximately
shown in Fig. 1(a). The squares correspond to image pix_equal low average error. Thus our window cost is the aver-
els, and the central thick square is pixeBlack dots inthe ~ @ge measurement error with bias towards larger windows.
corner of pixel squares are the graph nodes, and directed ar- We now describe the general matching cost we can han-
rows are the graph edges. Edges connect only the closeddle and narrow it down to the one we use in practice. Let
nodes. Fig. 1(b) summarizes the edges we include: the cen{p. d) be a pixel-disparity pair for which we want to com-
tral gray region has no edges inside, and each of the fourPute the matching cost. L&, denote the set of all com-
quadrants has only the edges in the direction shown. pact windows for thep, d)-pair. For simplicity a window

Every directed cycle if7,, encloses a connected area, Contains only pixels of the first image. For € Syq let
and this connected area is a window in our class. An exam-Cw be the corresponding cycle, andbe an edge of'y .
ple Windoyv is shown in gray in Fig.. 1(a), with correspond- Spew err(a.d) + X, cc,, ble. d)
ing cycle in dashed arrows.There is one to one correspon- EW) = d)
dence between cycles {fi,; and compact windows, thus quW n{a;

we say “cycle correspondmg to the window” or vice versa. Ouitliers are p|?<els whose measurement error differs sigmifly frqm
that of the other pixels in the window. The term comes frormustistatis-

The |arg_eSt Wind_OW _Size is limited by the grap_h Size_- The ics, which deals with outliers by decreasing their weighaiwindow. In
smallest window size is set by the central region with no contrast we aim to avoid outliers altogether.




Hereerr(q,d) models the measurement error for pixel

at disparityd; n(q,d) is used for normalization and has to et
be positive;b(e, d) can be arbitrary, and is used for bias P
towards larger windows. Notice thiafe, d) andn(q, d) may ° < H}["HH
depend on the particulat ¢ andd, however we do not use . +
this in practice. Our actual cost is: [
err(q,d) + b JE“ ¥
E(W) — ZqEW (q ) ZGECW (1) |
ZQEW 1
. . . ) +
which can be rewritten in words: - e L I
error of all pixels window perimeter .
B(w) = ST &IPXEs ,  WINCOW PETIMETEr ) PMPJJ x
window size window size ‘

The first term in equation 2 is just the average window er- (a) Edgee lies above  (b) Cycle in dashed arrows,
ror. The second term is smaller for larger compact windows pixel p. window in gray color

since area scales approximately quadratically while p&rim

ter scales approximately linearly. We seto a low value )

since we want the bias term to differentiate only between Figure 2.
windows with approximately equal average error.

o ] o ] For general graphs witf (n) nodes and edges, negative
4 Minimization viaMinimum Ratio Cycle cycle detection worst case complexity (¥n?), see [1].
We have shown in [2] how to reduce the running time to
The MRC algorithm was first introduced to the vision O(n+/n) worst case for our graphs, the proofis omitted here
community by Jermyn and Ishikawa in their interesting im- due to the space constraints. However in practice it takes
age segmentation work [6]. In this section we sketch the passes over the graph on average. Thus on average we find
MRC problem and its complexity, and also describe how the minimum ratio cycle aftef passes over the graph.
we use it to minimize the cost function in equation 1. For a

full deSCfiption of MRC algorithms see [1] 4.2 ConversiontoMinimum Ratio Cycle

4.1 Minimum Ratio Cycle To find the optimum window in our class for a pixel-

disparity pair(p, d), we should search for a minimum ratio
cycle in the graplt7,; with properly defined weight func-
tionsw andr. First we need more notation. We treat hor-
izontal and vertical graph edges differently. A horizontal
edgee lies above some pixel of the image, and we use no-
which minimizes the ratiou(C) = M The MRC tation p. to denote this pixel. For example in Fig. 2(a) the

€
Z.ew 7(e) . thick edgee lies above pixep.. We use notatiop, | i to
problem can be reduced to a detection of a negative cycle. ¢ ¢

. : o denote the pixel directly below, by i spots, andi(p.) to
Suppose:* is the optimal value ofi(C'), andji is a guess . . Cl
atu*. Setthe new edge weighte) = w(e) — i - 7(e). It denote the total number of pixels directly below pixel

is easy to see that if there is a negative cycle with the new | "€ Weightfunctions = w; +w; andr are as follows:

Supposer = (V, E) is a directed graph with functions
w: E —- Randrt : E — R on its edges. Function
w can be arbitrary whil§_ - 7(e) must be positive over
every cycle C. The problem then is to find a directed cytle

weights, theniz > p*. Similarly if there is a zero weight Z’?_(%e) err(pe | i,d) if e points right
cycle theni = p*, and if there is no negative cycle then ) (o) = { _ iﬁﬁz&e) err(pe ill- d) if e points left
< pr. 0 if e is vertical

We can use negative cycle detection and either binary or
sequential search to fing*. Theory favors binary search, That is an edge that points to the right accumulates the pos-
but in practice we found sequential search to be faster. Ititive error in the column below it, and an edge pointing to
works as follows. Supposgis an upper bound op*. We the left accumulates the negative error in the column below.
start withjy = @, and computé(e). If there is a zero weight Now consider a window?” and its corresponding cycle
cycle, theru* = j1 and we terminate the search. Ifthereisa Cw. Each column ofi¥ is bounded by cycle edge&son

negative CyCId/V’ we setj; = M(W) as our next guess and 2There is a special case wherlies on the very bottom edge of the

continue. There can be no positive cycle Sifics always  image so that there is no pixel below it. In this case weigpt) = —1,
an upper bound. In practice it tak&#erations on average.  and we set the value of the empty sum to 0.




top ande on the bottom, as illustrated in Fig. 2(b). Edge

€ points to the right ané points to the left. The weight

wy (€) accumulates the positive error in the column starting

for all (p,d) do
V(p,d) = 0; MIN (p) = 0o; MIN,(p) = oo

at pixelp= and all the way down. All pixels that contribute SOt all(p, d) inincreasing order ofs (W, ).

to wy (€) are marked with “+” sign in Fig. 2(b). The edge

weightw; (e) accumulates the negative error in the column

starting at pixelp. and all the way down. All pixels that
contribute tow; (¢) are marked with “-” sign in Fig. 2(b).
Thus the sum ofuv; (€) andw; (e) gives exactly the total
error in the window column between edgeande. From

this fact we deduce that the sum over all the edge weights

wy in the cycleCy gives the total error in the windoW’ .
Similarly we can define- so that the sum of weights

over a cycle gives the total number of pixels in the corre-

sponding window:
if e points right

h(pe) +1
—(h(pe) + 1) if e points left
0 if e is vertical

T(e) =

for each(p, d) in sorted ordedo
if V(p,d) = 0and E,(W,,;)/c < MIN,(p) then
find optimalWy, € Spa.
for all ¢ € W7, do
Vig,d) =1,
if E(W,,) < MIN(q) then
MIN(q) = E(Wy,); Bestp(q) = d
MIN,(q) = Ea(W5,);

Figure 3. Compact window with pruning.

Now consider a paitp, d) with low E(W,;) and sup-
poseq € Wp,. ThenE(W},) is a good approximation

Now we only have to add a bias towards larger windows, to E(W¢,). Indeed, sinceZ(W;,) is low andE(W?,) <

which we do by definingus (e) = b. Itis easy to check that

with w(e) = ws(e) + wa(e) andr as definedu(Cw) =

E(W) for window W and corresponding cycléyy .
Observe that satisfies the restriction of the MRC algo-

E(W;,), window W7, consists mostly of pixels with low
error. Thus there are many pixels aroupavith low er-

ror, and soE (W) is likely to be small. In contrast sup-
pose now thatz (W) is large. Then there still may be

rithm, i.e. its sum over any cycle is positive since it is just many pixels ini¥’;; with low error, since such pixels bring
the number of pixels in the corresponding window. This the cost down from the initial high upper bound. Thus
holds because by construction our cycles are always clocksomeg € W7, may have many pixels nearby with low

wise. For any counterclockwise cyctewould accumulate

error. ThereforeZ(1W7;) may be significantly lower than

negative window size, and we could not use MRC algo- E( pod). Note that since average error carries much more

rithm. If MRC placed no restrictions on, then we could

weight than the bias term, we omitted analysis of bia&in

find the best window of general shape (on the graph which ~ There is another way to see the point above. Suppose we

contains all possible edges between the closest vertices).

5 Compact window algorithms

The time to compute the optimal window for a pixel-
disparity pair(p, d) depends on the largest windowdh,.

Thus the straightforward algorithm which finds the best W2, we setE(W,) =

window for all (p, d) pairs is too slow. We develop two

expand our window class by allowing grap&ig,; which
are not necessarily centeredgat ThenW, is a low cost
window for ¢ in the expanded class. Thus placigpat d
should have a low cost which we approximate{v,,).

The discussion above leads us to the our first pruning
heuristic. We start computing optimal windows fgr, d)-
pairs in the order of increasing(W,,). For a computed
E(Wg,) forallg € W2, and do not
compute the optimal window fdg, d). We may get several

simple pruning heuristics. The first one is based on the fol- estimates on& (W) in which case we retain the lowest

lowing observation. If the optimal window for sonfg, d)

pair has low cost, then not only pixglshould have a low
matching cost at disparity, but other pixels in this window
should have a low matching costdt This idea allows us

to significantly reduce the number of optimal window com-

putations. We now explain it in details.

More notation first. Leti¥;, denote the optimal win-
dow in Spq and W, the smallest window irS,4. Obvi-
ously E(W;,) is an upper bound of(W,). Sometimes

one.
Now we turn to the second pruning step. Before com-
puting the optimal window for &p, d) pair, we check ifp
already has a good match at disparitywith computed or
estimatedE (W, ). If E,(W;,)/c > E (W), we ex-
clude (p, d) from optimal window computation. Constant
c should be> 1, and we set = 1.5. This step improves
efficiency by excluding unlikely pixel-disparity pairs fro
computation. In addition itimproves results for thin oligec

we need to compute just the average error over a window,Suppose we do not make this pruning. Consider a pixel

without the bias term. LeE, (W) be such a window cost,
given by the first term in the sum of equation 2.

on a thin object against a background, and suppose the true
disparities of the object and background dgeandd,. At



d, the optimal window forp is small and has low average
error. Atd, the optimal window fop is large, with large er-

which works well in textured areas of an image. This func-
tion exploits local differences in intensities, retainiogly

rors for pixelp and other object pixels and small errors for their signs and not the magnitude. Let us define functions

the background. So the average errafiatnay also be low.
Since we have bias towards larger windowgjV;, ) may
be larger thart2(W, ), andp may be placed at,, which

is wrong. The pruning above significantly improves results
for thin objects, since the average window error cannoystra

too far from the average error in the window center.
The algorithm is summarized in Fig. 3.

MIN (p) holds the minimum ofZ(WW;,) found so far for

pixel p, with M IN,(p) holding correspondingz, (Wp,),

andBestp(p) the corresponding disparity. Sorting can be

performed in linear time with the bucket sort.

6 Experimental Results

6.1 Measurement Error

sgni(q), sgny(q), sgna(q), andsgn;(q) as follows:

-1 if IL(q)—IL(q—)i) <0
sgni(q) = 1 ifIg(q)—1Ir(g—i)>0
0 ifIL(q) —Ir(g—i)=0

Hereq — i stands for the pixel to the left, right, above,

Variable or below ofq if i = I,7,a,b correspondingly. Functions

sgni(q @ d), sgnr(q © d), sgna(q ® d), andsgny(q @ d)
are defined similarly on the right image. Now define
erra(q,d) = f( Y [sgni(a) — sgni(a & d))),
ie{l,r,a,b}
where x ifx <4
oo otherwise

@)= {

Thuserrsy (g, d) measures how well signs of local variations
match aroung in the leftimage ang&d in the rightimage.

Different image pairs have varying degree and types of i is very robust to many nonlinear changes. Notice that

noise. For low noise image pairs our algorithm performs

very well with err(p, d) set to SSD or SAD (sum of abso-

lute differences). However frequently there is brightness

if the argument to functiorf is larger thant, less than two
of sgn; functions match, so the use@fr, is unreliable and
it is set to infinity. This is expected in low textured areas,

difference between corresponding image patches or ever,,q sq our final measurement error is a combination:

nonlinear errors, especially in areas with fine texturesrwhe
cameras’ baseline is large. For such image pairs it is ben-
eficial to useerr(p, d) which models the above distortions.

We develop one sudhrr(p, d) below.
We use the smallest windoW;, to estimate the average
brightness in the left and right image patches argunigc.

- 1
I1(p) = w5 Z I (q)
Weal S
- 1
I d) = —— I d
R(p@ ) W;d|quW:sd R(q@ )

Herel, (p) is the intensity op in the left image, andg (p®
d) is the intensity ofp shifted byd in the right image. The
number of pixels idV;, is given by|W;d .

CT'T(q, d) = min (67'7"1 (q, d), ETT2 (q7 d))
6.2 Results

Our algorithm works well with the same parameters for
all image pairs we tried. For all the experiments, we set the
minimum window to a 3 by 3 square, the maximum window
to a 31 by 31 square, both centered at The remaining
parameters are= 1.5, andb = 1.

We make comparisons with a fixed window method and
the adaptive window algorithm in [¥] For these algorithms
we chose parameters which gave the smallest error in dis-
parity compared to ground truth. Adaptive window algo-
rithm was initialized with the results of the fixed window

Now suppose there is a shift in brightness between themethod. We also compare our results with the graph cuts

left and right corresponding image patches. Thajig) ~
Ir(q@d)+s. Thenlz(p) ~ Ir(p@d)+ s, and we can get
rid of brightness shifs by subtractingl . (p) from the left
andl z (p @ d) from the right image pixels. Thus we define

err1(q,d) = [I1(q) — I1.(p) — Ir(q & p) + Ir(p & d)|.

This estimate would be more reliable if all pixels iy,
were used to computl, andI z. However we do not know
Wy, in advance. In our experimentsd’;,| is 9, and per-
forms reliably. Note that¢rr; model is another reason why
we put a limit on the smallest window we allow.

algorithm in [3]. This algorithm was designed to accurately
localize discontinuities, and it gives the best published r
sults on the Tsukuba data. The algorithm imposes a prior on
the distribution of a disparity map. We chose the Potts prior
which has only one parametar Larger\ values encour-
age less discontinuities in the disparity map. We found that
graph-cuts algorithm works very well for a correctly cho-
sen\. However the optimal value depends on a particular
scene and may vary significantly for different scenes. The
paper in [3] gives no way to chooseautomatically, and it

is obviously hard since it depends on unknown scene con-

There are frequently nonlinearities in the corresponding €nt- We compare our results with the graph cuts algorithm

intensities. We develop one more error functiom, (g, d)

3Implementation found on Internet



for the best value oAA. Besides the efficiency, our advan- picture for the fixed window method, but its best results are
tage over the graph cuts algorithm is that our parameters ardor window size5 x 5 with 45% exact and 61%:1 correct
easy to choose and the same parameters work well on differdisparities. Here our algorithm gives the same percentage
ent scenes. In addition we can model brightness differenceof exact disparities and even betteil correct disparities
between two images. than graph cuts method. There are more discontinuities in
Figs. 4(a,b) show the left image of a stereo pair and its this scene than in the previous one. Therefore the optimal
ground truth from Tsukuba university. Figs. 4(c-g) show the A for graph cuts algorithm is 4 times smaller than for the
results of a fixed window, adaptive window, graph-cuts, our previous stereo pair. The table below summarizes exact and
compact window and compact window with pruning algo- %1 correct disparities for these two scenes and diffekent

rithms. Under each image we show running time, percent | A 1 S 10 20 100
of exactly correct disparities, and percent of disparitiffs Fig4 | 71,93| 84,93| 89,93 | 90,95| 85,92
by +1 from the correct answer. Fig5 | 53,79| 56,82 | 42,72 | 44,72 | 32,34
The adaptive window algorithm actually worsens results ~ For the Tsukuba ground truth data we conclude that our

of the fixed window method. Our methods are significantly algorithm performs better than the fixed and adaptive win-
better in+1 correct disparities than the fixed and adaptive dow algorithms and it is competitive with graph cuts algo-
window algorithms. Although the percentage of the exactly rithm. Note that our parameters are fixed while parameters
found disparities is almost the same, keep in mind that for for other algorithms are manually optimized.

our algorithms parameters are fixed, while for all otheralgo ~ Fig. 6 shows results of our algorithm with pruning on
rithms parameters are manually optimized to give the bestother common stereo images. Two results are shown, one
performance. Superiority of our methods is most obvious for narrow and one for wide baselines. For the wide base-
around disparity discontinuities, which are localizechifig i€, the shrub sequence has significant brightness differ-
cantly better. The table below lists the percent of corradta  €nces, and the tree sequence has nonlinear errors especiall
+1 correct disparities for pixels which are within distance N the grass region. Our algorithm performs well, the fine
1,2, 3 and4 from a discontinuity. We omit the adaptive win- branch detail is preserved and the slopes of the ground
dow results in this table, its results are slightly worsentha Planes are captured.

that of the fixed window.

distance from disc| 1 2 3 4 Acknowledgments
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give significantly less exact disparities, howeveritiecor- dense ground truth.

rect disparities are the same. We have no prior on disparity
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where the measurement error for the disparity that our al-
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We now compare our compact window algorithms with [2] Authors. Stereo matching by compact windows via minimum
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tween the two isl0%. However most of these differences [3] Y. Boykov, O. Veksler, and R. Zabih. Fast approximatergge
are=1 disparity and are due to close matching costs in low minimization yia graph cuts. Imternational Conference on
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these algorithms. Note also that as predicted, thin objects[ 1 A. Fusiello and V. Roberto. iclent stereo with mulep

. . - windowing. InIEEE Conference on Computer Vision and
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Fig. 4(h) shows several optimal windows found for pix- [5] D. Geiger, B. Ladendorf, and A. Yuille. Occlusions and
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Fig. 5 shows another stereo pair with ground truth from 1994,

the Tsukuba database. Due to space constraints we omit the



(b) Ground truth: 14 disparities

(e) Graph cutsX = 20): 66 sec; 90%, 95% (f) Compact window: 22 min; 73%, 95%

(g) Compact window with pruning: 18 sec; 73%,95% (h) Samplénaal windows

Figure 4. Imagery with ground truth



(c) Graph cutsX = 5): 72 sec; 56% 82% (d) Compact window W|th pruning: 24 se@/p584%

Figure 5. Imagery with ground truth

(b) Small baseline:565esp9 di

f

(c) Tree sequence: 256 by 233 (d) Small baseline: 4 sec, 6 disp (e) Large baselme 223ec 25 disp

Cu
LI

Figure 6. Results of our algorithm on other real imagery



