
Stereo Matching by Compact Windows via Minimum Ratio Cycle

Olga Veksler
NEC Research Institute, 4 Independence Way Princeton, NJ 08540

olga@research.nj.nec.com

Abstract

Window size and shape selection is a difficult problem in
area based stereo. We propose an algorithm which chooses
an appropriate window shape by optimizing over a large
class of “compact” windows. We call them compact be-
cause their ratio of perimeter to area tends to be small.
We believe that this is the first window matching algorithm
which can explicitly construct non-rectangular windows.
Efficient optimization over the compact window class is
achieved via the minimum ratio cycle algorithm. In prac-
tice it takes time linear in the size of the largest window in
our class. Still the straightforward approach to find the op-
timal window for each pixel-disparity pair is too slow. We
develop pruning heuristics which give practically the same
results while reducing running time from minutes to sec-
onds. Our experiments show that unlike fixed window algo-
rithms, our method avoids blurring disparity boundaries as
well as constructs large windows in low textured areas. The
algorithm has few parameters which are easy to choose, and
the same parameters work well for different image pairs.

1 Introduction

Area correlation is one of the oldest approaches to dense
stereo matching. To estimate match quality for a pixelp at
disparityd, sum of squared differences (SSD) or some other
measure is computed between a window centered atp in the
first image and the same window shifted byd in the second
image. For efficiency most methods use a rectangular win-
dow of fixed size centered atp.

There is a well known problem with this method. For a
reliable estimate window must be large enough to include
enough intensity variation, but small enough to cover only
pixels at equal depth. However different pixels in the same
image frequently require windows of different sizes, and no
single window size works well: for a small size results are
unreliable in low-textured areas; as the size is increased,
results in low-textured areas get progressively reliable while
disparity boundaries get increasingly blurred.

In addition, no fixed window shape works well for all
pixels. Pixels that are close to a disparity discontinuity fre-
quently require windows of different shapes to avoid cross-
ing that discontinuity. That is why typical fixed window
methods give especially bad results near discontinuities.

There were relatively few attempts to vary window’s size
or shape. The best known is the adaptive window by Kanade
and Okutomi [7]. They use a model of intensity and dispar-
ity variation within a window to compute an uncertainty of
disparity estimate. This allows a search for a window with
locally minimum disparity uncertainty. The window shape
is limited to rectangles due to computational cost. While
this method is elegant, in our experiments in does not give
sufficient improvement over fixed window methods. The
problem might be its sensitivity to initial disparity estimate.

D. Geigeret al.[5] and A. Fusielloet al.[4] use a simpler
multiple window method. For each pixel and disparity a
limited number of distinct windows are tried, and the one
with best correlation is retained. To be efficient, the number
of windows is severely limited and cannot cover the whole
range of different sizes and shapes needed.

We propose a method which is similar in spirit to [5] and
[4]. However instead of trying a limited number of win-
dows, for each pixel-disparity pair we compute the match-
ing cost over a large class of “compact” windows. We use
this term loosely and it reflects the fact that our windows
have small perimeter to area ratio. The size of this class
is exponential in the maximum window height. As far as
we know, this is the first window-matching method which
can explicitly construct non-rectangular windows. The ex-
act description of our compact shapes is in section 2.

Efficient optimization over such a large class of windows
is achieved viaminimum ratio cyclealgorithm (MRC) for
graphs. Assuming that the largest window in the class is an by n square, for our graphs optimization takesO(npn)
time in theory, but linear time in practice. The MRC algo-
rithm puts constraints on the window match cost, but it is
still quite general. In particular we can include normaliza-
tion by the window size which is crucial since we compare
windows of different sizes. The match cost of the window is
described in detail in section 3, but in summary it is the av-

(a) GraphGpd (b) Edge directions in
each quadrant

Figure 1.

erage measurement error with bias towards larger windows.
The straightforward algorithm that computes the best

window for each pixel-disparity pair depends on window
size, which is too slow. We devised simple pruning heuris-
tics which significantly reduce the number of optimal win-
dow computations while giving practically the same results.

Experiments on real imagery with ground truth show that
not only our method outperforms fixed window algorithm,
but it is also competitive with other algorithms which were
designed to work well at discontinuities. In addition our pa-
rameters are easy to choose and the same parameters work
well for different stereo pairs. In our framework we can
handle brightness differences between images, as well as
nonlinear noise, see section 6 for details.

2 The Compact Window Class

For each pixel-disparity pair(p; d), the compact window
class is defined through the graphGpd. An exampleGpd is
shown in Fig. 1(a). The squares correspond to image pix-
els, and the central thick square is pixelp. Black dots in the
corner of pixel squares are the graph nodes, and directed ar-
rows are the graph edges. Edges connect only the closest
nodes. Fig. 1(b) summarizes the edges we include: the cen-
tral gray region has no edges inside, and each of the four
quadrants has only the edges in the direction shown.

Every directed cycle inGpd encloses a connected area,
and this connected area is a window in our class. An exam-
ple window is shown in gray in Fig. 1(a), with correspond-
ing cycle in dashed arrows.There is one to one correspon-
dence between cycles inGpd and compact windows, thus
we say “cycle corresponding to the window” or vice versa.

The largest window size is limited by the graph size. The
smallest window size is set by the central region with no

arcs, we limit it since a single pixel window is too unreli-
able. If the largest window is an by n square, then there
areO(2n) windows in the compact class. Notice that our
windows tend to have low perimeter to area ratio, hence the
name compact (however they do not contain all shapes that
one might call compact). All rectangles which contain the
smallest allowed one are in our class. However our class is
much more general than the rectangles, the rectangles form
only a smallO(n4) part.

Although our window shape is not completely general it
seems adequate for our purposes. Our goal is to construct
a sufficiently large window of pixels that fit well to a single
disparity while avoiding those that do not. In contrast our
windows may not work for applications like image segmen-
tation since the goal there is to extract all pixels in a region.
Fig. 4(h) shows examples of the windows we find.

The compactness of our windows has an advantage over
general shape. The best window of general shape may have
thin subparts which do not belong to the disparity of the
window but do match well at that disparity due to the image
structure or noise. Unless there is a special treatment, the
results may be plagued by these artifacts.

3 Window Matching Cost

There are three important terms in our window match-
ing cost. The basic term accumulates over a whole window
the measurement error for assigning disparityd to pixel p.
Since we compare windows of different sizes, our second
essential term normalizes by window size. The first two
terms combined give the average window error. It is a good
criterion to exclude outliers1, since inclusion of outliers in-
creases average error. We need more that that however. If
two windows have different sizes but approximately equal
average error we want to favor the larger one since larger
windows are more reliable. Thus our last term implements
a bias towards larger windows. It is particularly importantin
low texture areas where most windows have approximately
equal low average error. Thus our window cost is the aver-
age measurement error with bias towards larger windows.

We now describe the general matching cost we can han-
dle and narrow it down to the one we use in practice. Let(p; d) be a pixel-disparity pair for which we want to com-
pute the matching cost. LetSpd denote the set of all com-
pact windows for the(p; d)-pair. For simplicity a window
contains only pixels of the first image. ForW 2 Spd letCW be the corresponding cycle, ande be an edge ofCW .E(W) = Pq2W err(q; d) +Pe2CW b(e; d)Pq2W n(q; d) :1Outliers are pixels whose measurement error differs significantly from
that of the other pixels in the window. The term comes from robust statis-
tics, which deals with outliers by decreasing their weight in a window. In
contrast we aim to avoid outliers altogether.

Here err(q; d) models the measurement error for pixelq
at disparityd; n(q; d) is used for normalization and has to
be positive;b(e; d) can be arbitrary, and is used for bias
towards larger windows. Notice thatb(e; d) andn(q; d)may
depend on the particulare, q andd, however we do not use
this in practice. Our actual cost is:E(W) = Pq2W err(q; d) +Pe2CW bPq2W 1 (1)

which can be rewritten in words:E(W) = error of all pixels
window size

+ b � window perimeter
window size

(2)

The first term in equation 2 is just the average window er-
ror. The second term is smaller for larger compact windows
since area scales approximately quadratically while perime-
ter scales approximately linearly. We setb to a low value
since we want the bias term to differentiate only between
windows with approximately equal average error.

4 Minimization via Minimum Ratio Cycle

The MRC algorithm was first introduced to the vision
community by Jermyn and Ishikawa in their interesting im-
age segmentation work [6]. In this section we sketch the
MRC problem and its complexity, and also describe how
we use it to minimize the cost function in equation 1. For a
full description of MRC algorithms see [1].

4.1 Minimum Ratio Cycle

SupposeG = (V;E) is a directed graph with functionsw : E ! R and � : E ! R on its edges. Functionw can be arbitrary while
Pe2C �(e) must be positive over

every cycle C. The problem then is to find a directed cycleC
which minimizes the ratio:�(C) = Pe2C w(e)Pe2C �(e) : The MRC

problem can be reduced to a detection of a negative cycle.
Suppose�� is the optimal value of�(C), and�̂ is a guess
at��. Set the new edge weightsl(e) = w(e) � �̂ � �(e). It
is easy to see that if there is a negative cycle with the new
weights, then̂� > ��. Similarly if there is a zero weight
cycle then�̂ = ��, and if there is no negative cycle then�̂ < ��.

We can use negative cycle detection and either binary or
sequential search to find��. Theory favors binary search,
but in practice we found sequential search to be faster. It
works as follows. Suppose� is an upper bound on��. We
start with�̂ = �, and computel(e). If there is a zero weight
cycle, then�� = �̂ and we terminate the search. If there is a
negative cycleW , we set�̂ = �(W) as our next guess and
continue. There can be no positive cycle since�̂ is always
an upper bound. In practice it takes3 iterations on average.

(a) Edgee lies above
pixel pe (b) Cycle in dashed arrows,

window in gray color

Figure 2.

For general graphs withO(n) nodes and edges, negative
cycle detection worst case complexity isO(n2), see [1].
We have shown in [2] how to reduce the running time toO(npn)worst case for our graphs, the proof is omitted here
due to the space constraints. However in practice it takes2
passes over the graph on average. Thus on average we find
the minimum ratio cycle after6 passes over the graph.

4.2 Conversion to Minimum Ratio Cycle

To find the optimum window in our class for a pixel-
disparity pair(p; d), we should search for a minimum ratio
cycle in the graphGpd with properly defined weight func-
tionsw and� . First we need more notation. We treat hor-
izontal and vertical graph edges differently. A horizontal
edgee lies above some pixel of the image, and we use no-
tationpe to denote this pixel. For example in Fig. 2(a) the
thick edgee lies above pixelpe. We use notationpe # i to
denote the pixel directly belowpe by i spots, andh(pe) to
denote the total number of pixels directly below pixelpe. 2

The weight functionsw = w1+w2 and� are as follows:w1(e) = 8<: Ph(pe)i=0 err(pe # i; d) if e points right�Ph(pe)i=0 err(pe # i; d) if e points left0 if e is vertical

That is an edge that points to the right accumulates the pos-
itive error in the column below it, and an edge pointing to
the left accumulates the negative error in the column below.

Now consider a windowW and its corresponding cycleCW . Each column ofW is bounded by cycle edgese on2There is a special case whene lies on the very bottom edge of the
image so that there is no pixel below it. In this case we seth(pe) = �1,
and we set the value of the empty sum to 0.

top ande on the bottom, as illustrated in Fig. 2(b). Edgee points to the right ande points to the left. The weightw1(e) accumulates the positive error in the column starting
at pixelpe and all the way down. All pixels that contribute
to w1(e) are marked with “+” sign in Fig. 2(b). The edge
weightw1(e) accumulates the negative error in the column
starting at pixelpe and all the way down. All pixels that
contribute tow1(e) are marked with “-” sign in Fig. 2(b).
Thus the sum ofw1(e) andw1(e) gives exactly the total
error in the window column between edgese ande. From
this fact we deduce that the sum over all the edge weightsw1 in the cycleCW gives the total error in the windowW .

Similarly we can define� so that the sum of weights�
over a cycle gives the total number of pixels in the corre-
sponding window:�(e) =8<: h(pe) + 1 if e points right�(h(pe) + 1) if e points left0 if e is vertical

Now we only have to add a bias towards larger windows,
which we do by definingw2(e) = b. It is easy to check that
with w(e) = w1(e) + w2(e) and� as defined,�(CW) =E(W) for windowW and corresponding cycleCW .

Observe that� satisfies the restriction of the MRC algo-
rithm, i.e. its sum over any cycle is positive since it is just
the number of pixels in the corresponding window. This
holds because by construction our cycles are always clock-
wise. For any counterclockwise cycle� would accumulate
negative window size, and we could not use MRC algo-
rithm. If MRC placed no restrictions on� , then we could
find the best window of general shape (on the graph which
contains all possible edges between the closest vertices).

5 Compact window algorithms

The time to compute the optimal window for a pixel-
disparity pair(p; d) depends on the largest window inSpd.
Thus the straightforward algorithm which finds the best
window for all (p; d) pairs is too slow. We develop two
simple pruning heuristics. The first one is based on the fol-
lowing observation. If the optimal window for some(p; d)
pair has low cost, then not only pixelp should have a low
matching cost at disparityd, but other pixels in this window
should have a low matching cost atd. This idea allows us
to significantly reduce the number of optimal window com-
putations. We now explain it in details.

More notation first. LetW opd denote the optimal win-
dow in Spd andW spd the smallest window inSpd. Obvi-
ouslyE(W spd) is an upper bound onE(W opd). Sometimes
we need to compute just the average error over a window,
without the bias term. LetEa(W) be such a window cost,
given by the first term in the sum of equation 2.

for all (p; d) doV (p; d) = 0; MIN(p) =1; MINa(p) =1
Sort all(p; d) in increasing order ofE(W spd).
for each(p; d) in sorted orderdo

if V (p; d) = 0 and Ea(W spd)= < MINa(p) then
find optimalW opd 2 Spd.
for all q 2 W opd doV (q; d) = 1;

if E(W opd) < MIN(q) thenMIN(q) = E(W opd); BestD(q) = d;MINa(q) = Ea(W opd);
Figure 3. Compact window with pruning.

Now consider a pair(p; d) with low E(W spd) and sup-
poseq 2 W opd. ThenE(W opd) is a good approximation
to E(W oqd). Indeed, sinceE(W spd) is low andE(W opd) �E(W spd), windowW opd consists mostly of pixels with low
error. Thus there are many pixels aroundq with low er-
ror, and soE(W oqd) is likely to be small. In contrast sup-
pose now thatE(W spd) is large. Then there still may be
many pixels inW opd with low error, since such pixels bring
the cost down from the initial high upper bound. Thus
someq 2 W opd may have many pixels nearby with low
error. ThereforeE(W oqd) may be significantly lower thanE(W opd). Note that since average error carries much more
weight than the bias term, we omitted analysis of bias inE.

There is another way to see the point above. Suppose we
expand our window class by allowing graphsGqd which
are not necessarily centered atq. ThenW opd is a low cost
window for q in the expanded class. Thus placingq at d
should have a low cost which we approximate byE(W opd).

The discussion above leads us to the our first pruning
heuristic. We start computing optimal windows for(p; d)-
pairs in the order of increasingE(W spd). For a computedW opd we setE(W oqd) = E(W opd) for all q 2W opd and do not
compute the optimal window for(q; d). We may get several
estimates onE(W oqd) in which case we retain the lowest
one.

Now we turn to the second pruning step. Before com-
puting the optimal window for a(p; d) pair, we check ifp
already has a good match at disparityd0 with computed or
estimatedE(W opd0). If Ea(W spd)= > Ea(W opd0), we ex-
clude(p; d) from optimal window computation. Constant should be� 1, and we set = 1:5. This step improves
efficiency by excluding unlikely pixel-disparity pairs from
computation. In addition it improves results for thin objects.
Suppose we do not make this pruning. Consider a pixelp
on a thin object against a background, and suppose the true
disparities of the object and background aredo anddb. At

do the optimal window forp is small and has low average
error. Atdb the optimal window forp is large, with large er-
rors for pixelp and other object pixels and small errors for
the background. So the average error atdb may also be low.
Since we have bias towards larger windows,E(W opdo) may
be larger thanE(W opdb), andp may be placed atdb, which
is wrong. The pruning above significantly improves results
for thin objects, since the average window error cannot stray
too far from the average error in the window center.

The algorithm is summarized in Fig. 3. VariableMIN(p) holds the minimum ofE(W opd) found so far for
pixel p, with MINa(p) holding correspondingEa(W opd),
andBestD(p) the corresponding disparity. Sorting can be
performed in linear time with the bucket sort.

6 Experimental Results

6.1 Measurement Error

Different image pairs have varying degree and types of
noise. For low noise image pairs our algorithm performs
very well with err(p; d) set to SSD or SAD (sum of abso-
lute differences). However frequently there is brightness
difference between corresponding image patches or even
nonlinear errors, especially in areas with fine textures when
cameras’ baseline is large. For such image pairs it is ben-
eficial to useerr(p; d) which models the above distortions.
We develop one sucherr(p; d) below.

We use the smallest windowW spd to estimate the average
brightness in the left and right image patches aroundp, i.e.IL(p) = 1jW spdj Xq2W spd IL(q)IR(p� d) = 1jW spdj Xq2W spd IR(q � d)
HereIL(p) is the intensity ofp in the left image, andIR(p�d) is the intensity ofp shifted byd in the right image. The
number of pixels inW spd is given byjW spdj.

Now suppose there is a shift in brightness between the
left and right corresponding image patches. That isIL(q) �IR(q�d)+s. ThenIL(p) � IR(p�d)+s, and we can get
rid of brightness shifts by subtractingIL(p) from the left
andIR(p� d) from the right image pixels. Thus we defineerr1(q; d) = jIL(q)� IL(p)� IR(q � p) + IR(p� d)j:
This estimate would be more reliable if all pixels inW opd
were used to computeIL andIR. However we do not knowW opd in advance. In our experimentsjW spdj is 9, and per-
forms reliably. Note thaterr1 model is another reason why
we put a limit on the smallest window we allow.

There are frequently nonlinearities in the corresponding
intensities. We develop one more error functionerr2(q; d)

which works well in textured areas of an image. This func-
tion exploits local differences in intensities, retainingonly
their signs and not the magnitude. Let us define functionssgnl(q), sgnr(q), sgna(q), andsgnb(q) as follows:sgni(q) =8<: �1 if IL(q)� IL(q ! i) < 01 if IL(q)� IL(q ! i) > 00 if IL(q)� IL(q ! i) = 0
Here q ! i stands for the pixel to the left, right, above,
or below ofq if i = l; r; a; b correspondingly. Functionssgnl(q � d), sgnr(q � d), sgna(q � d), andsgnb(q � d)
are defined similarly on the right image. Now defineerr2(q; d) = f(Xi2fl;r;a;bg jsgni(q) � sgni(q � d)j);
where f(x) = � x if x � 41 otherwise

Thuserr2(q; d) measures how well signs of local variations
match aroundq in the left image andq�d in the right image.
This is very robust to many nonlinear changes. Notice that
if the argument to functionf is larger than4, less than two
of sgni functions match, so the use oferr2 is unreliable and
it is set to infinity. This is expected in low textured areas,
and so our final measurement error is a combination:err(q; d) = min (err1(q; d); err2(q; d))
6.2 Results

Our algorithm works well with the same parameters for
all image pairs we tried. For all the experiments, we set the
minimum window to a 3 by 3 square, the maximum window
to a 31 by 31 square, both centered atp. The remaining
parameters are = 1:5, andb = 1.

We make comparisons with a fixed window method and
the adaptive window algorithm in [7]3. For these algorithms
we chose parameters which gave the smallest error in dis-
parity compared to ground truth. Adaptive window algo-
rithm was initialized with the results of the fixed window
method. We also compare our results with the graph cuts
algorithm in [3]. This algorithm was designed to accurately
localize discontinuities, and it gives the best published re-
sults on the Tsukuba data. The algorithm imposes a prior on
the distribution of a disparity map. We chose the Potts prior
which has only one parameter�. Larger� values encour-
age less discontinuities in the disparity map. We found that
graph-cuts algorithm works very well for a correctly cho-
sen�. However the optimal� value depends on a particular
scene and may vary significantly for different scenes. The
paper in [3] gives no way to choose� automatically, and it
is obviously hard since it depends on unknown scene con-
tent. We compare our results with the graph cuts algorithm3Implementation found on Internet

for the best value of�. Besides the efficiency, our advan-
tage over the graph cuts algorithm is that our parameters are
easy to choose and the same parameters work well on differ-
ent scenes. In addition we can model brightness differences
between two images.

Figs. 4(a,b) show the left image of a stereo pair and its
ground truth from Tsukuba university. Figs. 4(c-g) show the
results of a fixed window, adaptive window, graph-cuts, our
compact window and compact window with pruning algo-
rithms. Under each image we show running time, percent
of exactly correct disparities, and percent of disparitiesoff
by�1 from the correct answer.

The adaptive window algorithm actually worsens results
of the fixed window method. Our methods are significantly
better in�1 correct disparities than the fixed and adaptive
window algorithms. Although the percentage of the exactly
found disparities is almost the same, keep in mind that for
our algorithms parameters are fixed, while for all other algo-
rithms parameters are manually optimized to give the best
performance. Superiority of our methods is most obvious
around disparity discontinuities, which are localized signifi-
cantly better. The table below lists the percent of correct and�1 correct disparities for pixels which are within distance1; 2; 3 and4 from a discontinuity. We omit the adaptive win-
dow results in this table, its results are slightly worse than
that of the fixed window.

distance from disc. 1 2 3 4
Compact window 57,79 62,84 65,86 67,87
Fixed window 46,69 50,72 53,73 56,75

Compared with the graph cuts method, our algorithms
give significantly less exact disparities, however the�1 cor-
rect disparities are the same. We have no prior on disparity
map, and for this stereo pair there are many large regions
where the measurement error for the disparity that our al-
gorithm chooses is slightly but consistently better than the
measurement error at the correct disparity.

We now compare our compact window algorithms with
and without pruning. The number of pixels different be-
tween the two is10%. However most of these differences
are�1 disparity and are due to close matching costs in low
textured areas. Thus disparity error counts are equal for
these algorithms. Note also that as predicted, thin objects
are found better by the algorithm with pruning.

Fig. 4(h) shows several optimal windows found for pix-
els at their computed disparities. Windows are black while
pixels for which windows were constructed are white. Ob-
serve that windows grow as large as they can without cross-
ing disparity continuities. Notice especially how the win-
dows in the corners of the lamp confine to its shape, the
small thin windows on the lamp and camera handle, and the
large window in the right upper textureless corner.

Fig. 5 shows another stereo pair with ground truth from
the Tsukuba database. Due to space constraints we omit the

picture for the fixed window method, but its best results are
for window size5� 5 with 45% exact and 61%�1 correct
disparities. Here our algorithm gives the same percentage
of exact disparities and even better�1 correct disparities
than graph cuts method. There are more discontinuities in
this scene than in the previous one. Therefore the optimal� for graph cuts algorithm is 4 times smaller than for the
previous stereo pair. The table below summarizes exact and�1 correct disparities for these two scenes and different�.� 1 5 10 20 100

Fig 4 71,93 84,93 89,93 90,95 85,92
Fig 5 53,79 56,82 42,72 44,72 32,34

For the Tsukuba ground truth data we conclude that our
algorithm performs better than the fixed and adaptive win-
dow algorithms and it is competitive with graph cuts algo-
rithm. Note that our parameters are fixed while parameters
for other algorithms are manually optimized.

Fig. 6 shows results of our algorithm with pruning on
other common stereo images. Two results are shown, one
for narrow and one for wide baselines. For the wide base-
line, the shrub sequence has significant brightness differ-
ences, and the tree sequence has nonlinear errors especially
in the grass region. Our algorithm performs well, the fine
branch detail is preserved and the slopes of the ground
planes are captured.

Acknowledgments

We thank Dr. Y. Ohta and Dr. Y. Nakamura from the
University of Tsukuba for providing the images with the
dense ground truth.

References

[1] K. Ahuja, T. L. Magnati, and J. B. Orlin.Network Flows:
Theory, Algorithms, and Applications. Prentice Hall, 1993.

[2] Authors. Stereo matching by compact windows via minimum
ratio cycle. InTechnical report, 2000.

[3] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy
minimization via graph cuts. InInternational Conference on
Computer Vision, pages 377–384, 1999.

[4] A. Fusiello and V. Roberto. Efficient stereo with multiple
windowing. In IEEE Conference on Computer Vision and
Pattern Recognition, pages 858–863, 1997.

[5] D. Geiger, B. Ladendorf, and A. Yuille. Occlusions and
binocular stereo.International Journal of Computer Vision,
14:211–226, 1995.

[6] I. Jermyn and H. Ishikawa. Globally optimal regions and
boundaries as minimum ratio cycles.submitted to IEEE
Trans. on Pattern Analysis and Machine Intelligence, 2001.

[7] T. Kanade and M. Okutomi. A stereo matching algorithm with
an adaptive window: Theory and experiment.IEEE Trans.
on Pattern Analysis and Machine Intelligence, 16:920–932,
1994.

(a) Left image: 384 by 288 (b) Ground truth: 14 disparities

(c) Fixed window (11� 11): 1 sec; 72%,88% (d) Adaptive window: 300 sec; 72%, 86%

(e) Graph cuts (� = 20): 66 sec; 90%, 95% (f) Compact window: 22 min; 73%, 95%

(g) Compact window with pruning: 18 sec; 73%,95% (h) Sample optimal windows

Figure 4. Imagery with ground truth

(a) Left image: 320 by 240 (b) Ground truth: 25 disparities

(c) Graph cuts (� = 5): 72 sec; 56%, 82% (d) Compact window with pruning: 24 sec; 56%, 84%

Figure 5. Imagery with ground truth

(a) Shrub sequence: 512 by 480 (b) Small baseline:56sec, 9 disp (c)Large baseline: 140 sec, 26 disp

(c) Tree sequence: 256 by 233 (d) Small baseline: 4 sec, 6 disp (e) Large baseline: 22sec, 25 disp

Figure 6. Results of our algorithm on other real imagery

