
Dense Features for Semi-Dense Stereo Correspondence

Olga Veksler
NEC Research Institute

4 Independence Way Princeton, NJ 08540
olga@research.nj.nec.com

Abstract

We present a new feature based algorithm for stereo
correspondence. Most of the previous feature based
methods match sparse features like edge pixels, produc-
ing only sparse disparity maps. Our algorithm detects
and matches dense features between the left and right
images of a stereo pair, producing a semi-dense dispar-
ity map. Our dense feature is defined with respect to
both images of a stereo pair, and it is computed during
the stereo matching process, not a preprocessing step.
In essence, a dense feature is a connected set of pix-
els in the left image and a corresponding set of pixels
in the right image such that the intensity edges on the
boundary of these sets are stronger than their matching
error (which is the difference in intensities between cor-
responding boundary pixels). Our algorithm produces
accurate semi-dense disparity maps, leaving featureless
regions in the scene unmatched. It is robust, requires lit-
tle parameter tuning, can handle brightness differences
between images, nonlinear errors, and is fast (linear
complexity).

1 Introduction

Stereo correspondence is one of the oldest problems
in computer vision, with numerous applications. Due to
noise and image structure, establishing correspondence
is an ambiguous task. The very first designers of stereo
algorithms recognized this fact. A way to disambiguate
the problem is to make additional assumptions about the
data. One natural assumption made implicitly or explic-
itly by most stereo algorithms is that disparity varies
smoothly almost everywhere except the object bound-
aries. This assumption leads to a variety of quite dis-
tinct algorithms but with the following common princi-
ple. The disparity a pixel gets assigned should be influ-
enced by the neighbors of that pixel, that is image pixels
should cooperate in the stereo computation.

Stereo algorithms differ not only in the way they en-
code cooperation among pixels, but also in how much of
the image data is used. When designing a stereo algo-
rithm, one soon discovers that the textured regions in
a scene are relatively easy to match (although not in
the case of repeated texture), while textureless regions
are hard to match accurately. Stereo algorithms roughly
break down into two groups, depending on whether they
match textureless regions or not.

The first approach is generally called feature based.
See [16, 9, 17, 19, 22] for some examples. In this
approach, only the “feature” pixels are detected and
matched. These are the physically significant image
pixels, such as intensity edges or corners. Textureless
regions are left unmatched. The motivation is that the
pixels in textureless regions cannot be matched reliably
anyway. The advantage of the feature based methods is
that they produce accurate results. The results are rather
sparse, though. Many applications require dense mea-
surements, and measurement interpolation is a difficult
problem in itself. Feature based methods were espe-
cially popular in the early days of computer vision be-
cause image quality was generally poor and so compar-
ing the raw image intensities of pixels was not a reliable
measure for the likelihood of their correspondence.

The second approach is to match all (or almost all)
image pixels to produce dense disparity estimates. The
intuition is that by propagating disparity estimates from
the high texture areas, the disparity in low texture areas
can be inferred. The requirement of dense disparity es-
timates in many applications and the improvements in
image quality lead to a greater popularity of the dense
stereo algorithms in the recent years. We briefly summa-
rize dense stereo algorithms in section 2. For a compre-
hensive overview and comparison of dense stereo corre-
spondence methods, see [25, 24].

The motivation behind the sparse stereo methods is
that only the pixels in the textured image areas can
be matched reliably. The motivation behind the dense
stereo methods is that all or almost all image pixels can
be matched (some dense algorithms attempt to explicitly

Figure 1. An artificial stereo pair. Textureless square in fr ont of textureless background. Dis-
parity of the square is easy to determine, while the disparit y of the background is ambiguous.

detect and leave unmatched the occluded image pixels).
The reality might be a mixture of the two assumptions.
That is the disparity of textureless regions can be recov-
ered in some cases, but not the others. Consider an artifi-
cial example in Figure 1. This stereo pair shows a bright
textureless rectangle on a dark textureless background.
The square shifts by several pixels to the left between
the left and the right images of this stereo pair. Even
though the square completely lacks texture, its disparity
is easy to determine. The edges of the square give us
a clear cue for matching. However most people would
agree that the disparity of the background cannot be de-
termined with any certainty.

We propose a new approach to stereo correspon-
dence. The view that we will hold is that not all re-
gions of a stereo pair can be matched reliably. Thus
our aim is to detect only those regions of a stereo pair
which are easy to match accurately. We will call such re-
gions dense features. For example in Figure 1 the central
square in both images should be a good candidate for a
dense feature. In essence, a dense feature is a connected
set of pixels in the left image and a corresponding set of
pixels in the right image such that the intensity edges on
the boundary of these sets are stronger than their match-
ing error (which is the difference in intensities between
corresponding boundary pixels). We give our motiva-
tion behind this informal definition of dense features in
Section 3. For now notice that our dense features are
defined with respect to both images of the stereo pair
overlapped at some disparity. Thus each dense feature
has some disparity attached.

After all dense features are computed, pixels that be-
long to some dense feature get assigned the disparity of
that dense feature. We only need to disambiguate dis-
parity assignment for pixels which belong to more than
one dense feature. Due to descriptiveness of the dense
features, there is not a lot of ambiguity. Purely local,

and therefore efficient disambiguating step works well
enough. Each pixel which happens to be in more than
one dense feature chooses the disparity of the feature
which is “densest” with respect to that pixel. This pro-
cedure is described in Section 4.4.

Our approach is only superficially similar to the pre-
vious feature based methods. Most of the previous fea-
ture based algorithms match thin structures like edge
pixels or corners, producing only sparse results. In ad-
dition, matching with thin features still presents a lot of
ambiguities. Our dense features have several advantages
over the previously used features. The first obvious ad-
vantage is that the disparity maps we produce are semi-
dense, that is we match more pixels. The second advan-
tage is that our dense features help to reduce ambigu-
ities in correspondence because their structure is more
descriptive. Other advantages are that unlike the previ-
ous feature based methods, the detection of our dense
features is an integral part of the algorithm, not a pre-
processing stage. Furthermore, the threshold to detect
a feature is adaptive, it depends on how noisy are the
pixels being matched.

Besides feature-based approaches, our algorithm is
similar to segmentation based stereo. Our dense features
can be thought of as the appropriate segments to match.
However segmentation of dense features is an integral
part of our stereo algorithm, not a separate preprocessing
stage.

Another algorithm we share some similarities with is
the variable window algorithm [3]. In [3] a set of con-
nected components or “windows” is computed at each
disparity. These connected components contain only the
pixels for which that disparity is likely. The disparity
which gives the largest window is assigned to each pixel.
Our dense features can also be looked at as windows.
However [3] is not robust, its windows can grow to in-
clude many pixels which do not in fact belong to the

disparity of the window. The boundary condition that
we enforce helps to avoid this problem in our dense fea-
tures.

Some dense stereo algorithms [12, 30] compute a
confidence or certainty map. This maps assigns to each
pixel the confidence in its disparity estimate. Threshold-
ing disparity estimates at some confidence level results
in semi-dense disparity map which is presumably more
accurate. It is important to compare our semi-dense al-
gorithm with such thresholded disparity maps, which we
do in section 5.2. However a confidence map is usually
a byproduct of the correspondence algorithm, and we
found that thresholding it does not necessarily improves
the results significantly.

Our algorithm has many good properties. Its com-
plexity is linear in the number of pixels times the number
of disparities searched, so it is very fast, taking 1 second
for smaller images and 7 seconds for larger images. It is
even more efficient in its memory usage, which is linear
in the number of pixels. It produces accurate results as
tested by real data with ground truth, see Section 5. It
can handle brightness differences and monotonic errors
in intensities between the regions being matched. Even
though it is feature based, a large percentage of pixels is
matched, from 40 to 95 percent in our experiments. The
exact percentage of the pixels matched depends on the
particular imagery, of course. Occlusions do not need to
be handled, since most of the occluded pixels do not be-
long to any dense feature. Our parameters have intuitive
meaning, and we do not tune them separately for each
stereo pair. The algorithm can handle not only homoge-
neous regions but also repeated texture regions. We do
not need to produce a separate “uncertainty” map for the
disparity map. Only the “certain” pixels, that is pixels
belonging to some dense feature are assigned a dispar-
ity.

This paper is organized as follows. We start by dis-
cussing related work in Section 2. In Section 3 we de-
scribe the motivation behind our dense features. In Sec-
tion 4 we explain how we compute and choose among
the dense features. We conclude with experimental re-
sults in Section 5.

2 Related Work

In this section we briefly sketch most common dense
approaches to stereo correspondence. These methods
must deal with textureless regions. The basic idea be-
hind all of them is to encourage “cooperation” among
pixels, so that pixels in textureless regions get assigned
smoothly varying disparities. We roughly divided such
methods in a few groups below, according to the way
they encode cooperation among pixels.

Area correlation methods [18, 21, 8] assume that a
pixel is surrounded by a window of pixels with the same
disparity, and windows of pixels are matched. Coopera-
tion is encouraged because close-by pixels are matched
with only slightly different windows, and thus are likely
to be assigned the same disparity. However choosing an
appropriate window is a difficult problem, only a few re-
searchers have addressed it [12, 6, 14, 28, 20]. Area cor-
relation methods produce dense stereo maps, but can be
quite unreliable not only in homogeneous regions, but
also in textured regions for an inappropriately chosen
window size.

Cooperative methods [15, 30] directly encourage
nearby pixels to cooperate by local iterative schemes
which propagate information from a pixel to its neigh-
bors. Energy minimization methods [1, 7, 10, 4, 23]
also directly promote cooperation but use global opti-
mization. They design and minimize energy functions
which reward smooth or almost smooth disparity maps.
The cooperative and energy minimization methods fre-
quently have parameters which are difficult to set, and
they tend to be inefficient. Another drawback is that it
may still be difficult to assess whether a homogeneous
region was assigned the correct disparity, since in some
cases all pixels in a homogeneous region may be as-
signed the same, but nevertheless wrong disparity.

In the last group are the segmentation based meth-
ods. Their underlying idea is to use the results of an
image segmentation algorithm to locate regions which
are likely to belong to the same object, and match those
regions [5, 13, 26, 27], The actual details vary signifi-
cantly between these algorithms. Finding good regions
to match through image segmentation is, of course, a
difficult problem.

3 Dense Features for Stereo Correspon-
dence

In this section we give motivation behind our dense
features and describe them in detail. There are two main
questions in designing dense features. First we need an
intuitive understanding of what kind of properties make
some region a good candidate for a dense feature. That is
what kind of region is easy to match reliably. Secondly
we need to transfer this intuition into a computationally
feasible solution.

Our answer to the first question is as follows. Clearly
the presence of intensity edges on the boundary of a re-
gion gives a good cue for matching and we want to in-
corporate this cue in a dense feature. When dealing with
intensity edges, the usual problem is the selection of an
appropriate threshold. The threshold should be above
the noise level for a good performance. For stereo cor-
respondence, there is a natural way of estimating when

an intensity edge is strong enough. It is strong enough
if the intensity difference on the edge is larger than the
error of matching the edge pixels. Thus our dense fea-
ture is a connected set of pixels in the left image and
the corresponding set of pixels in the right image with
intensity boundaries stronger than the error of matching
the boundary pixels. We call this the “boundary” condi-
tion, and it is the main enabling idea of our algorithm:
the intensity change on the boundary must be more sig-
nificant than the noise level of the pixels being matched,
otherwise the boundary does not carry any useful infor-
mation, its significance is destroyed by noise.

Consider an example in Figure 2. The first two
columns are a stereo pair consisting of a foreground ob-
ject (a square with a hole) in front of a background. The
intensity of the foreground is170, and the intensity of
the background is140. The background and the fore-
ground are corrupted byN(0; 25) noise. The noise is
strong, but it is not strong enough to destroy the edges
of the foreground object in the left and the right images,
and these edges give us a good cue for correspondence.
The disparity of the foreground is10. Consider the error
surface at disparity10, where the error surface is just the
absolute difference between the left and the right images
overlapped at disparity 10. We marked with bright color
all pixels in this error surface where the error is smaller
than the edge strength at that pixel. The resulting image
is shown in the last column of figure 2. Observe that
the foreground region is surrounded by the bright edges.
Thus we are now facing the problem of segmentation,
where the task is to segment a region surrounded by the
bright edges.

We actually detect dense features not in the error sur-
face, but in another surface. Recall that our bound-
ary condition for dense features says that the intensity
change on the boundary must be greater than the er-
ror on the boundary. Notice that this definition treats
the boundary pixels differently from all the other pix-
els, thus enabling efficient detection of dense features.
However if we apply the boundary condition to the er-
ror surface, then we are checking only that the boundary
pixels form good matches at the disparity in question.
If due to image structure and noise we find some false
“good” boundary in the error surface, all the pixels in-
side are automatically matched, even if these pixels con-
tain two completely unrelated textures in the left and the
right images.

To avoid the problem described in the previous para-
graph, we apply the boundary condition to a surface
which we call the match surface. The match surface at
disparityd is set to1 for pixels that are likely to have
disparityd and it is0 otherwise. When enforcing the
boundary condition, dense features are allowed to con-
sist only of pixels which are set to1 in the match surface.

Thus not only the boundary pixels have to be checked as
a good match, but also the pixels inside the boundary.

We want to allow for significant brightness changes
between the corresponding regions, and thus pixels
which differ in intensity significantly should be allowed
to match. At the same time we wish to exclude from
consideration regions with unrelated textures. Setting
the match surface to1 for smoothly varying regions of
the error surface seems to work well for achieving these
two purposes simultaneously. Section 4.2 explains how
we compute the match surface in details.

We now come to the second question, which is how
to compute the dense features. We do not have a very
good answer to this question, it is a topic for further im-
provements. Ideally we need dense features which can
overlap several disparities, since a textureless region can
straddle many disparities. Also we would like to use a
good contour based segmentation algorithm. Currently
though we have only experimented with a very simple
segmentation approach and only search for dense fea-
tures which do not overlap several disparities. Further-
more we only test the left and the right boundaries of
a region satisfy the “boundary” condition. Even with
such a naive approach to dense feature computation we
achieve impressive results, see Section 5. This give us
some evidence that we are pursuing a useful direction in
stereo correspondence.

Here is our current simple approach to segment a
dense feature from the match surface. We indepen-
dently prune the left and right boundary of the match
surface until what remains satisfies the boundary con-
dition. Then we compute connected components in the
pruned match surface, and these connected components
are our dense features. This algorithm is explained in
details in Section 4.3.

4 Description of the Dense Feature Stereo
Algorithm

In this section we give a complete description of
our dense feature based stereo algorithm. We assume
that the images are rectified so that the epipolar lines
are the scanlines. We search in the disparity rangef0; : : : ;maxdg, wheremaxd is the maximum possible
disparity, the only parameter provided by the user in our
implementation. Right now we search with pixel pre-
cision, that is only integer disparitiesd are considered,
although the algorithm is easily extended to search in the
subpixel range.

The algorithm is organized as follows. We cycle
through alld 2 f0; : : : ;maxdg. For eachd there are
four main steps. First we overlap the left and the right
images at disparityd, and compute the error surface, see

Figure 2. Square with a hole in front of background stereo pai r. The last image shows in white
the pixels at the disparity of the foreground for which the ma tching error is less than edge
intensity at that pixel.

for all pixelsp dodisparity(p) = NONE
for d = 0; : : :maxd do

1. Compute the error surfaceE(d; p)
2. Compute the match surfaceM(d; p) fromE(d; p)
3. Find dense featuresff1d ; : : : fnd g in M(d; p)
4. for i = 0; : : : n

for p 2 f id do
if disparity(p) = NONE

disparity(p) = dFeatureDensity(p) = density(f id; p)
else if density(f id; p) > FeatureDensity(p)

disparity(p) = dFeatureDensity(p) = density(f id; p)
Figure 3. Overview of the algorithm.

Section 4.1. The second step is to compute the match
surface, see Section 4.2. The third step is to find all
the dense featuresff1d ; : : : fnd g in the match surface, see
Section 4.3. The last step is to go through allp 2 f id
and assign disparityd to p if the disparity ofp is still
uninitialized, or if f id is “denser” for pixelp thanf jd0 ,
whered0 is the current disparity assigned to pixelp andf jd0 is the feature containingp at disparityd0. Note that
this “density” can be different for distinct pixels of the
same dense feature, that is density is a function of pixel.
The importance of this property will be explained later.
This final step is in Section 4.4. The summary of our
algorithm is in Figure 3.

4.1 First Stage: Computing the Error Surface

In this section we explain how we find the error sur-
face. Let us denote the intensity of pixelp in the left
image byL(p) and the intensity of pixelp in the right
image byR(p). We will use notationE(d; p) for the
error surface at disparityd and pixelp.

To compute the error surface, we need a similarity
measure between pixelp in the left image and pixelp�d
in the right image, wherep� d is the pixel with coordi-
nates ofp shifted byd to the right. We will keep the sign
of that difference, because we will need it for the match
surface computation. Our error surfaceE(d; p) has two
components, namelyEr(d; p) andEs(d; p). The first
componentEr(d; p) just measures the difference in in-
tensities between the two images, that isEr(d; p) = L(p)�R(p� d):
However even in the absence of noise,Er(d; p) mea-
sure is not accurate for pixels overlapping a surface with
rapidly changing intensity when the pixel’s true intensity
is not integer. This happens because of image sampling
artifacts, see [2] for more details. Computing disparity at
subpixel accuracy helps to solve this problem, but as [2]
points out, the additional computation time may not be
worth it. Instead we use the method in [2] to construct
the the second component of error surfaceEs(d; p) to
be insensitive to image sampling.

First we defineR̂ as the linearly interpolated func-
tion between the sample points on the right scanline, and
then we measure how well the intensity atp in the left
image fits into the linearly interpolated region surround-
ing pixelp� d in the right imageeld(p) = minq2[p�d� 12 ;p�d+ 12 ℄ jL(p)� R̂(q)j:

For symmetry,erd(p) = minq2[p� 12 ;p+ 12 ℄ jL̂(q)�R(p� d)j:
ThusEs(p; d) is the symmetric measure of similarity
between pixelsp in the left image and pixelp� d in the
right image:Es(d; p) = sign(Er(d; p)) �min�eld(p); erd(p)	 :
Heresign() is the sign function, we use it to retain the
right sign of the error surface.

4.2 Second Stage: Computing the Match Sur-
face

With the error surface defined, we are ready to com-
pute the binary match surface. We denote this surface
for disparityd and pixelp byM(d; p). At this stage, we
want to setM(d; p) = 1 for pixels for which disparityd
might be the right disparity, and setM(d; p) = 0 for the
rest of pixels.

Left and right images of a stereo pair sometimes have
significant brightness differences, due to different cam-
era gains or changed light conditions, for example. We
want to allow pixels with significant brightness differ-
ence to match, provided that nearby pixels experience
similar brightness differences. At the same time we need
to exclude the unlikely matches from the match surface.
To satisfy these two goals simultaneously, we detect the
regions in the error surface with smoothly varying er-
rors, and set the match surface to1 for those regions.
This way we allow matching only between two regions
differing by a smooth surface. For example matching be-
tween two regions with smoothly varying or constant in-
tensities is allowed, even if these regions are of different
brightness, as long as the difference surface is smooth.
Matching a smoothly varying region with a textured re-
gion is not allowed, and matching between two regions
with different textures is also not allowed.

The algorithm to compute the match surface is in Fig-
ure 4. We start by initializing the match surface to 0.
Then we sort all pixels in order of increasingEs(d; p).
It can be done in linear time since the range ofEs(d; p)
is small. The next step is to go over all pixelsp in order
of increasingEs(d; p) and setM(d; p) = 1 if either of
two conditions hold. First condition is thatM(d; p) = 0
for all nearest neighborsq of p, where the nearest neigh-
bors ofp are just the pixels above, to the left, to the right,
and belowp. We denote the nearest neighbors ofp byNp. This condition initializes some “seeds” from which
to grow the match surface. It makes sense to take the
pixels with the smaller errors for the seeds, that is why
we sortEs(d; p)’s.

The second condition is that ifM(d; q) = 1 for someq 2 Np, then the distance between the two intervals[Es(d; p); Er(d; p)℄ and[Es(d; q); Er(d; q)℄ is less than�. This condition makes sure that all the regions which
are set to1 in the match surface correspond to smoothly
varying error surface. Notice that we use intervals of val-
ues[Es(d; p); Er(d; p)℄ instead of using justEr(d; p) orEs(d; p). The reason for using the whole interval is that
due to the image sampling error we do not know where
the matching error lies within this interval, we just know
that it is somewhere in the interval. Using an interval
works better in image regions with rapidly changing in-
tensity.

The value of� is related to the noise level in the im-
ages. However we found that in the imagery we ex-
perimented with, larger errors occur in textured regions,
and are related to the image sampling artifacts rather,
than to the camera noise. We set� = 3 for all the
experiments. This value might seem rather small, but
keep in mind that this is not the largest matching error
that we allow, rather it is the largest difference between
matching errors that we allow. Thus the two matched
regions can differ significantly in intensity, but this dif-
ference must be smooth. In textured regions two neigh-
boring pixels may have significantly different errors not
explained by just the smooth brightness differences be-
tween the regions. However in textured regions the inter-
val [Es(d; p); Er(d; p)℄ is larger than in the low textured
regions, and larger intervals are more likely to overlap.
Thus this value of� works well even in the textured re-
gions.

In practice, of course, there are always a few pixels
which do not obey our assumptions. To deal with these
pixels, we compute connected components in the match-
ing surface and patch all holes of small size, which we
set to 5 in our implementation. The reason for5 is the
following: if some pixel has an error not handled by our
assumptions, it can lead to a wrong choice for its 4 near-
est neighbors.
4.3 Third Stage: Detecting Dense Features

In this section we explain how we find dense features
in the match surface. Recall that to locate a dense fea-
ture, we need to find a region in the match surface which
satisfies our boundary condition, that is the boundaries
must be on intensity edges larger than the error sur-
face. This implies that we can match only regions where
change in disparity occurs together with a change in in-
tensity. In reality, of course, there are frequently uni-
form surfaces which straddle several disparities. To deal
with such surfaces, we need to detect features which
straddle several disparities. We plan to do so in the fu-
ture, see section 6. However in the current implementa-
tion, we can deal with some of such uniform surfaces by

for all pM(d; p) = 0
Sortp in the order of increasingEs(d; p)
for all p in order of increasingEs(d; p) do

if M(d; q) = 0 8q 2 NpM(d; p) = 1
else if 8q 2 Np s.t.M(d; q) = 1 intervals[Es(d; p); Er(d; p)℄ and[Es(d; q); Er(d; q)℄ overlap within�,M(d; p) = 1

Figure 4. Algorithm to compute the match surface at disparit y d.

for all p s.t.M(d; p) = 1 andMd(p� 1) = 0
while jEr(d; p)� avr(p; d)j + � > jL(p)� L(p� 1)j orjEr(d; p)� avr(p; d)j + � > jR(p� d)�R(p� d� 1)j

do M(d; p) = 0p = p+ 1
Figure 5. Algorithm to prune the left boundary.

enforcing our boundary condition only on the left and
right boundaries of a region. We do not enforce it on
the top or the bottom boundary. Thus we can at least
match low-texture surfaces sloping horizontally, like the
ground plane.

Recall that we have an interval[Es(d; p); Er(d; p)℄
for the error surface. So we have a choice of which value
in this interval to use when applying our boundary con-
dition. We choseEr(d; p) because it is the larger of the
two and thus gives a more conservative estimate.

We begin by pruning pixels on the left boundary of
the match surface until the error of pixels on that bound-
ary is smaller than the intensity edge on that boundary
in the left and the right image. However we also want
to correct for the brightness differences between the im-
ages. Therefore we subtract the average brightness dif-
ference around pixelp in the left image and pixelp � d
in the right image fromEr(d; p). We denote this dif-
ference byavr(p; d), and it is computed in the 3 by 3
window, that is ifWp is the 3 by 3 window aroundp,
then avr(p; d) = 19 Xq2Wp (L(q)�R(q � d)) :

The algorithm to prune the left boundary is given in
Figure 5. We begin by taking some pixelp which does
not satisfy our boundary condition. That isp is in the
match surface, pixel to the left ofp is not in the match
surface, andjEr(d; p) � avr(p; d)j + � is larger than
the intensity boundary betweenp andp � 1 in the left
image orjEr(d; p) � avr(p; d)j + � is larger than the

intensity boundary betweenp � d andp � d � 1 in the
right image.1 We remove suchp from the match sur-
face, that is we setM(d; p) = 0. Then we continue this
pruning process until all left boundary pixelsp satisfy
the boundary condition.

Notice a new parameter�, which we set to5 for all
our experiments. This is the second and the last signifi-
cant parameter of our algorithm. It is used to make sure
that the intensity on the boundary is not only larger, but
significantly larger (by�) than the error on the bound-
ary. The value of� should be above the noise level, that
is above�, but the best choice for both parameters is a
topic for future research.

We do similar pruning for the right boundary. Since
we treat each scanline independently for the dense fea-
ture detection, there may be some inconsistencies be-
tween the horizontal intervals of our dense feature. That
is a few horizontal lines may stick in and out our dense
feature. In principle, a better way to extract a dense
feature from the match surface would be to use some
boundary extraction algorithm, for example the one
in [11, 29]. However even our simple algorithm works
quite well with the following filtering step. If pixelp is
in a dense featurefd, but the pixels above and belowp
are not infd, thenp is also removed fromfd. Also if
pixel p is not infd, but pixels above and belowp are infd thenp is also placed infd.

After the filtering step, we find connected compo-
nents in the pruned match surface, and remove compo-1Notice that the left and the right images are treated in the same
way by our algorithm

nents less than some minimum size, which we set to25.
The rest of the connected components are our dense fea-
tures.

Figures 6(a,b) show the match surface and the dense
features at disparity 14 for the scene in Figure 9(a). This
is the correct disparity of the lamp. Pixels for which the
match surface is 1 and pixels which belong to a dense
feature are shown with bright intensity. Notice that the
match surface is 1 for the majority pixels in the scene.
However the match surface is 0 for the majority of the in-
tensity edges for which the correct disparity is other than
14. That is why when the match surface is pruned using
our “boundary” condition, most of the pixels are not in
any dense feature. The remaining regions correspond
to the lamp, few regions of repeated texture, and few
spurious small regions. Unfortunately, we loose most
of lamp handle because the intensity edge there is not
strong enough.

4.4 Forth Stage: Choosing Dense Features

Some pixelp can be a part of two dense features (no-
tice that these features are at different disparities, since
dense features at the same disparity do not overlap). One
reason is repeated texture. Consider Figure 7(a). This is
a cut out of a repeated texture region from the scene in
Figure 9(a). This region are the books right above the
lamp. Figures 7(b,c) shows dense features for this region
at the wrong and the right disparities, respectively. Pix-
els which belong to a dense feature are shown in bright
color, pixels which do not belong to any dense feature
are shown in black color. Notice that for the right dis-
parity, all the pixels are in a dense feature. Thus the
feature at the right disparity is “denser” for the pixels
which have a choice of features.

However most often features overlap is due not to re-
peated texture. It happens because we do not enforce the
boundary condition on the top and the bottom border.
This allows some dense feature to be joined by a few ex-
tra regions, usually fairly small. Consider Figure 8(a).
It shows a region occupied by a corner of the soda can
to the right and slightly above the lamp in Figure 9(a).
The background has texture due to the wall poster. Fig-
ure 8(b) shows the dense feature at the disparity of the
soda can. The can grabbed a thin horizontal region due
to the wall texture. Figure 8(c) shows dense feature at
the correct disparity for that thin wall region. Notice
that the correct disparity is “denser” for that region.

Now we will formalize what we mean by “denser”.
We need to estimate how many pixels are there in the
immediate surrounding ofp in a dense feature. We
found the following definition of density to work well
in practice. LetM(d; p) be the match surface, and letHnw(d; p) be Manhattan distance fromp in the north

west direction to the nearest pixelq such thatM(d; q) =0. Hnw(d; p) can be computed in one pass over the im-
age for all pixelsp. Similarly defineHne, Hsw, andHse to be the Manhattan distance fromp to the nearest
pixel q such thatM(d; q)=0 in the north east, south west,
and south east directions. Iff id is a feature at disparityd
containingp, thendensity(p; f id) = Hne +Hnw +Hsw +Hse:

Notice that density(p; f id) can be different fromdensity(q; f id). This is important since in many cases
some pixels of a dense feature do belong to the disparity
of that dense features while others do not. With this def-
inition of density, it is possible to break off the wrong
pixels from the dense feature in the final assignment,
while leaving the other pixels. With this definition of
density, the regions in Figures 7 and 8 are placed at the
correct disparities, as can be checked in Figure 9.

5 Experimental Results

In this section we present our experimental results on
real stereo pairs, several of which have known ground
truth. For all the experiments, the parameters were fixed
as follows:� = 3, � = 5, and minimum feature size was
set to25. On the disparity maps, brighter pixels have
larger disparity. Pixels for which no disparity was found
(that is the pixels which do not belong to any dense fea-
ture) are in black.

5.1 Handling of Nonlinear Errors

Before presenting our experimental results, we de-
scribe the last component, which is the handling of non-
linear errors in stereo imagery. In finely textured regions
when the baseline between cameras is large, the noise is
highly non linear. For such regions, even the sampling
insensitive error measureEs(d; p) does not help. How-
ever we can use another error measure developed in [28],
which seems to work well in textured regions. The basic
idea is that intensity monotonicity is preserved in these
regions, and it should be exploited instead of raw image
intensities.

Let us measure local differences in intensities, retain-
ing only their signs and not the magnitude. We define
functionssgnl(p), sgnr(p), sgna(p), andsgnb(p) as
follows:sgni(p) =8<: �1 if L(p)� L(p! i) < 01 if L(p)� L(p! i) > 00 if L(p)� L(p! i) = 0

Here p ! i stands for the pixel to the left, right,
above, or below ofp if i = l; r; a; b correspondingly.

(a) match surface atd = 14 (b) dense features atd = 14
Figure 6. Comparison of match surface and dense features

(a) left image (b) wrong disparity (c) right disparity

Figure 7. Dense feature overlap due to repeated texture

(a) left image (b) disparity of the can (c) disparity of the wall

Figure 8. Dense feature overlap due to spurious texture

(a) left image

(b) ground truth

(c) our algorithm

Figure 9. Real imagery with dense ground
truth

Functionssgnl(p � d), sgnr(p� d), sgna(p � d), andsgnb(p � d) are defined similarly on the right image.
Now defineEt(d; p) = f(Xi2fl;r;a;bg jsgni(p)� sgni(p� d)j);

where f(x) = � 1 if x � 20 otherwise

ThusEt(q; d) measures how well signs of local vari-
ations match aroundp in the left image andp� d in the
right image. This is robust to all monotonic nonlinear
changes. Notice that if the argument to functionf is
larger than2, less than three ofsgni functions match, so
the use ofEt(d; p) is unreliable and it is set to 0. This is
expected in areas of low texture.

We useEt(d; p) at a stage separate from the stage
where we use the interval[Es(d; p); Er(d; p)℄. This
second stage is for detecting textured regions effected
by nonlinear errors which might have been missed,
and it follows the stage we have described in Sec-
tion 4. Only nowEt(d; p) is used instead of the inter-
val [Es(d; p); Er(d; p)℄. This second stage for detecting
textured regions is even simpler, sinceEt(d; p) takes on
binary values. That is afterEt(d; p) is computed, we
find dense features in it directly without computing the
match surface. The value of� is also set to 5, as in the
first stage.

5.2 Tsukuba Stereo Pair

Figure 9(a) shows the left image of a stereo pair from
the university of Tsukuba. For this stereo pair the dense
ground truth is known, and it is in Figure 9(b). The
disparity map our algorithm computes is shown in Fig-
ure 9(c). The size of these images is 384 by 288, max-
imum disparity we search is 14. The running time is 1
sec, and 66% of pixels are matched. The three largest
regions which our algorithm leaves unmatched are the
upper right corner, the lower right corner, and the upper
part of the region under the table, which are textureless.
Some parts of on the table are also not matched.

Out of the pixels that we match, 3.78% are found in-
correctly, and 0.38% are off by not more than 1 pixel
from the correct answer. The absolute average error is
0.06. This is the best performance out of the all the
dense stereo algorithms compared in [24]. However di-
rect comparison with the dense stereo algorithms is not
fair because we only find a semi-dense disparity map.

There is a better way to compare our algorithm with
the dense stereo algorithms. Some dense stereo algo-

% matched pixels % � 1 errors % total errors
11 0.89 1.37
21 1.52 9.13
39 1.55 12.40
48 1.35 16.49
66 1.74 19.50
87 2.31 24.32
98 3.35 26.58

Figure 10. Percentage of matched pixels
versus errors for the compact window al-
gorithm

rithms compute a certainty map. A certainty map as-
signs higher numbers to pixels with higher confidence of
their disparity estimate. There are many ways to com-
pute a certainty map. One way is to assign high con-
fidence to pixels with better matching scores. Another
way is to assign high confidence to pixels if their esti-
mated disparity has a narrow peak in the plot of match-
ing cost versus disparity. In other words these are the
pixels with a unique disparity giving better matching
costs. These pixels typically lie in areas of high tex-
ture. We will threshold the certainty map and compare
the percentage of matched pixels versus errors for some
dense algorithms.

We have tried two methods of computing confidence
maps for the dense stereo methods. First we tried to
count only the disparity estimates from regions with
high texture. This method can be used on a disparity
map from any dense stereo algorithm, and we tried it on
the graph cuts method in [4]. However that did not seem
to give significant improvements in error counts.

Then we tried to threshold disparity map to leave only
the pixels with the better matching score. We applied
this thresholding to area correlation methods. We chose
the compact window algorithm [28] because it performs
reasonably well out of area correlation algorithms2. The
results are summarized in figure 10. For the smaller
percentage of pixels matched, the results do indeed im-
prove, but at the same percentage of pixels matched as
in our dense feature algorithm, which is66%, our algo-
rithm still performs significantly better.

5.3 Two Planes Stereo Pair

Figure 12(a) shows the left image of another stereo
pair for which the dense ground truth is also known.
This stereo pair is from Microsoft. Figures 12(b,c) show2See comparison of dense stereo methods at
http://www.middlebury.edu/stereo/eval/results.html

the ground truth and our answer, respectively. The im-
age sizes are 284 by 216, and the maximum disparity
we search for is 29. The running time was 2 seconds,
with 87% of pixels matched. Since the ground truth was
computed for the right image, we also computed our an-
swer for the right image. Notice that the black region on
the right is not matched, this region corresponds to the
occluded pixels. Only four small regions which should
be occluded are matched erroneously. Out of the pixels
which our algorithm matches, 18.50% are matched in-
correctly, 0.22% are off by not more than one pixel from
the correct disparity.

5.4 Other real imagery with ground truth

Recently D. Scharstein and R. Szeliski have collected
an impressive database of several stereo sequences for
which they were able to compute the dense ground
truth3. This database should become a long needed
benchmark for testing stereo algorithms. The results our
algorithm gives on this new data base are summarized in
the table in figure 11. Image sizes are 431 by 381, and
the largest disparity we search for is 21.

5.5 Birch Stereo Pair

Figure 13(a,b) shows the left and right birch tree im-
ages from SRI. The image size is 320 by 242, and the
maximum disparity we searched for is 28. The running
time was 2 seconds, with 41% of pixels matched. The
right image is approximately 15% brighter than the left
image. This difference is easily noticeable to the eyes,
that is why we show both the left and the right images.
In addition, the texture of the grass in the front part of the
left image is almost all lost. Only the two bright spots in
the very front and three bright spots further in the back
retain texture, the majority of other grass pixels in the
frontal half have intensity 0. This makes stereo corre-
spondence very challenging. Our algorithm, however,
successfully matches the trees and the five spots on the
grass which have not lost texture. It does not match the
grass which lost its texture because it cannot match the
textureless regions in the left image to the textured ones
in the right image. It is hard to notice in out displays,
but the two trees in the front have smoothly varying dis-
parity, the closer one changes disparity from 22 on the
bottom to 26 on top, and the one to the left of it changes
disparity from 20 to 21. If we enforced our “boundary”
condition on the whole boundary, and not just on the left
and the right boundary as we do now, we would not be
able to get these results, due to the lack of sufficient hor-
izontal texture on these trees.3available at http://www.middlebury.edu/stereo/

name � 1 errors % total errors % matched running time in seconds
Sawtooth 1.62 16.36 76 6

Venus 1.83 13.25 68 5
Bull 0.09 11.76 73 5

Poster 1.05 7.85 77 7
Barn1 0.62 7.83 83 6
Barn2 0.25 7.11 73 5

Figure 11. Performance of our algorithm on other data with gr ound truth.

(a) left image (b) ground truth (c) our algorithm

Figure 12. Slanted planes stereo pair

(a) left image (b) right image (c) our algorithm

Figure 13. Birch Sequence from SRI

(a) left image (b) our algorithm

Figure 14. Shoe sequence from CMU

5.6 Shoe Stereo Pair

Figure 14(a) shows the left image of another chal-
lenging stereo pair from CMU. The size is 512 by 480,
and the maximum disparity is 14. The running time was
7 seconds, and 95% of pixels are matched by our al-
gorithm. This stereo pair is difficult because of the re-
peated texture floor. Our algorithm was able to place
almost all of the floor at the disparity 9. A manual in-
spection of the left and right images suggests that two
plausible disparities of the floor are 9 and 3. However
the disparity of the shoe varies from 13 to 11, so dis-
parity 3 would place the floor too far, the shoe would
have to float over it. So the disparity of 9 our algorithm
produces is most likely right.

6 Discussion

We proposed a new approach to stereo correspon-
dence. The basic idea that motivates our approach is to
find regions in stereo pairs which are easy to match ac-
curately, and we call such regions dense features. Based
on the experiments we have conducted, we think that the
dense feature approach is a useful direction for future re-
search.

Our results on the real stereo data, including the data
with ground truth, show that our algorithm produces
accurate results, can handle brightness differences be-
tween images, nonlinear errors, repeated texture, homo-
geneous image regions. It is robust with respect to pa-
rameters, they do not need to be tuned separately for

each stereo pair. It is also very fast and efficient with
memory.

The current implementation is quite simple, and there
are many directions for future improvements. The
biggest current limitation is that we cannot handle ho-
mogeneous sloped surfaces with slant other than hori-
zontal. We plan to address this in our future work by
allowing dense features to form across different dispar-
ities. When we do that, we will need to check our
“boundary” condition across the whole border, not just
the left and right boundary as we do currently. With this
extension we also plan to apply our algorithm to motion
sequences.

The second biggest limitation is the way we extract
the dense features from the match surface. Instead of
processing each scanline independently as we do now,
it would be better to use a boundary extraction algo-
rithm which is less local, for example apply the methods
in [11, 29].

Another direction for future research is a comprehen-
sive study of different phenomena which effect the error
between the corresponding pixels, and the insights such
study might bear on the selection of parameters� and�.

Acknowledgments

We would like to thank Prof. Y. Ohta from the Uni-
versity of Tsukuba, Prof. D. Scharstein from Middle-
bury College, and Dr. R. Szeliski from Microsoft re-
search for providing the images with ground truth.

References

[1] S.T. Barnard. Stochastic stereo matching over
scale.IJCV, 3(1. May 1989):17–32, May 1989.

[2] Stan Birchfield and Carlo Tomasi. A pixel dissim-
ilarity measure that is insensitive to image sam-
pling. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 20(4):401–406, April 1998.

[3] Y. Boykov, O. Veksler, and R. Zabih. A vari-
able window approach to early vision.PAMI,
20(12):1283–1295, December 1998.

[4] Y. Boykov, O. Veksler, and R. Zabih. Fast approx-
imate energy minimization via graph cuts. InIn-
ternational Conference on Computer Vision, pages
377–384, 1999.

[5] L.D. Cohen, L. Vinet, P.T. Sander, and A. Gaga-
lowicz. Hierarchical region based stereo matching.
In CVPR89, pages 416–421, 1989.

[6] A. Fusiello and V. Roberto. Efficient stereo with
multiple windowing. InIEEE Conference on Com-
puter Vision and Pattern Recognition, pages 858–
863, 1997.

[7] D. Geiger, B. Ladendorf, and A. Yuille. Occlu-
sions and binocular stereo.International Journal
of Computer Vision, 14:211–226, 1995.

[8] D.B. Gennery. Modelling the environment of an
exploring vehicle by means of stereo vision. InPh.
D., 1980.

[9] W.E.L. Grimson. A computer implementation of a
theory of human stereo vision.Royal, B-292:217–
253, 1981.

[10] H. Ishikawa and D. Geiger. Occlusions, disconti-
nuities, and epipolar lines in stereo. InECCV98,
pages I:232–248, 1998.

[11] I. Jermyn and H. Ishikawa. Globally optimal re-
gions and boundaries. InICCV99, pages 904–910,
1999.

[12] T. Kanade and M. Okutomi. A stereo matching al-
gorithm with an adaptive window: Theory and ex-
periment.PAMI, 16(9):920–932, September 1994.

[13] J. Ma and N. Ahuja. Region correspondence by
global configuration matching and progressive de-
launay triangulation. InCVPR00, pages II:637–
642, 2000.

[14] R. Maas, B.M. ter Haar Romeny, and M.A.
Viergever. Area-based computation of stereo dis-
parity with model-based window size selection. In
CVPR99, pages I:106–112, 1999.

[15] D. Marr and T.A. Poggio. Cooperative computa-
tion of stereo disparity.Science, 194(4262):283–
287, October 15, 1976, October 1976.

[16] D. Marr and T.A. Poggio. A computational theory
of human stereo vision.RoyalP, B-204:301–328,
1979.

[17] G.G. Medioni and R. Nevatia. Segment-based
stereo matching.CVGIP, 31(1):2–18, July 1985.

[18] K. Mori, M. Kidode, and H. Asada. An iter-
ative prediction and correction method for auto-
matic stereocomparison.CGIP, 2:393–401, 1973.

[19] N.Ayache and B. Faverjon. Efficient registration
of stereo images by matching graph descriptions of
edge segments.International Journal of Computer
Vision, 1, 1987.

[20] M. Okutomi. A simple stereo algorithm to recover
precise object boundaries and smooth surfaces. In
CVPR01, pages xx–yy, 2001.

[21] D.J. Panton. A flexible approach to digital stereo
mapping. PhEngRS, 44(12):1499–1512, Decem-
ber 1978.

[22] L. Robert and O. Faugeras. Curve-based stereo:
Figural continuity and curvature. InIEEE Confer-
ence on Computer Vision and Pattern Recognition,
pages 57–62, 1991.

[23] S. Roy. Stereo without epipolar lines: A
maximum-flow formulation.IJCV, 34(2/3):1–15,
August 1999.

[24] D. Scharstein, R. Szeliski, and R. Zabih. A tax-
onomy and evaluation of dense two-frame stereo
methods. InSMBV01, pages xx–yy, 2001.

[25] Rick Szeliski and Ramin Zabih. An experimental
comparison of stereo algorithms. InIEEE Work-
shop on Vision Algorithms, September 1999.

[26] H. Tao and H.S. Sawhney. Global matching cri-
terion and color segmentation based stereo. In
WACV00, pages 246–253, 2000.

[27] H. Tao, H.S. Sawhney, and R. Kumar. A global
matching framework for stereo computation. In
ICCV01, pages I: 532–539, 2001.

[28] O. Veksler. Stereo matching by compact windows
via minimum ratio cycle. InICCV01, pages I: 540–
547, 2001.

[29] S. Wang and J.M. Siskind. Image segmentation
with minimum mean cut. InICCV01, pages I: 517–
524, 2001.

[30] C.L. Zitnick and T. Kanade. A cooperative algo-
rithm for stereo matching and occlusion detection.
PAMI, 22(7):675–684, July 2000.

