
Stereo Correspondene with Compat Windows viaMinimum Ratio CyleOlga VekslerNEC Researh Institute, 4 Independene Way Prineton, NJ 08540olga�researh.nj.ne.omAbstratOne of the earliest and still widely used methods for dense stereo orrespondeneis based on mathing windows of pixels. The main diÆulty of this method is hoosinga window of appropriate size and shape. Small windows may lak suÆient intensityvariation for reliable mathing, while large windows smooth out disparity disontinu-ities. We propose an algorithm to hoose a window size and shape by optimizing over alarge lass of \ompat" windows. The word ompat is used informally to reet thefat that the ratio of perimeter to area of our windows is small. We believe that this isthe �rst area based method whih eÆiently onstruts non retangular windows. Fastoptimization over ompat windows is ahieved via the minimum ratio yle algorithmfor graphs. The algorithm has only a few parameters whih are easy to �x.Index Terms | Stereo orrespondene, adaptive windows, ompat windows,minimum ratio yle, graph algorithms.1 IntrodutionArea based mathing is one of the oldest and still widely used approahes to dense stereoorrespondene [11, 12, 13, 7, 6℄. This approah makes a reasonable assumption that a pixelis surrounded by a path of pixels whih have approximately the same disparity. Thus toestimate how likely disparity d is for pixel p, a window of pixels entered at p in the left imageis overlapped with the same window shifted by d1 in the right image. Then the ost betweenthe two windows is omputed using, for example, sum of squared di�erenes, normalized1Here we assume that the stereo pair is reti�ed, so that d has dimension 1.1



orrelation, et. See [16℄ for omparisons between di�erent window osts. In the end, pixelp gets assigned the disparity d whih gives the best window ost.While the assumption that eah pixel is surrounded by a path at approximately thesame disparity is usually valid, the shape and size of that path is unknown beforehand, ofourse. Ignoring this, most methods use a retangular window of �xed size. In this ase theimplementation is very eÆient: the running time is linear in the number of pixels times thenumber of disparities, i.e. it is independent of the window size [3℄.The popularity of window based orrespondene is due in part to its eÆieny and easeof implementation. However there is a well known problem with this method, whih wasrealized by researhers as early as [11℄. For a reliable estimate a window must be largeenough to inlude enough intensity variation, but at the same time small enough not toross a disparity disontinuity,2 so that the assumption that the window ontains only pixelsat approximately the same disparity remains valid. This means that di�erent pixels in thesame image usually require windows of di�erent sizes: for a small window the results areunreliable in low texture areas; as the window size is inreased, the results in low textureareas beome more reliable while disparity boundaries get inreasingly blurred. In addition,no �xed window shape works well for all pixels. Pixels that are near a disparity disontinuityfrequently require windows of di�erent shapes to avoid rossing that disontinuity.There are relatively few algorithms whih vary window size or shape. Their ommonweakness is that they use naive optimization methods for the best window shape searh.Previous methods an be roughly divided into two groups, aording to the optimizationmethod used. First there are methods suh as [12, 9, 15℄ whih use greedy loal searh.These algorithms improve an initial window estimate by expanding a window in a ertaindiretion until a loal maximum is reahed. This is not only suboptimal but also quite slow.In the seond group are the diret searh methods [5, 4, 2℄. They use diret searh overseveral window shapes. For eah pixel a small number of di�erent window shapes are tried,and the one with best ost is retained. To be eÆient, the number of windows is severelylimited and annot over the whole range of di�erent sizes and shapes needed.The distinguishing property of our algorithm from the previous work is that we employa powerful optimization tehnique to �nd the window with the best ost out of a hugelass of windows. For eah pixel we �nd an optimal window size and shape by optimizingan appropriate window ost over a large lass of \ompat" windows. We use the word\ompat" loosely to reet that our windows have small perimeter to area ratio. While ourompat window lass is not ompletely general, it is still rather large, its size is exponential2Informally, a disparity disontinuity ours between pixels with signi�antly di�erent disparities.2



in the height of the largest allowed window. Furthermore, our ompat window lass ontainsall possible retangles, but the majority of shapes are not retangles. As far as we know,this is the �rst area based method whih an eÆiently onstrut non retangular windows.EÆient optimization over ompat windows is ahieved via minimum ratio yle (MRC)algorithm for graphs. If the largest allowed window is n by n, for our graphs optimizationtakes O(npn) time in theory, but is linear in pratie. MRC algorithm restrits the windowost, but it is still quite general. We an inlude normalization by the window size whih isruial sine we ompare windows of di�erent sizes. Stated briey, our window ost is theaverage measurement error over window pixels with slight bias towards larger windows.The straightforward algorithm omputes the optimal window for eah pixel-disparitypair. Even though we perform this step eÆiently, it still depends on the window size, whihis too slow for many appliations. We devised simple heuristis whih signi�antly reduethe number of optimal window omputations while giving pratially the same results.We show results on real imagery inluding the ground truth database ompiled by D.Sharstein and R. Szeliski. They also performed an extensive evaluation of di�erent stereoorrespondene algorithms. For the results, as well as taxonomy of di�erent stereo algo-rithms, see [14℄. Our method performs better than all other loal methods that they evalu-ated. It is inferior only to some of the global methods, but global methods are less eÆient.Besides the speed, the advantages of our algorithm is that it has few parameters whih areeasy to hoose and the same parameters work well for di�erent imagery.2 The Compat Window ClassIn this Setion we de�ne a ompat window lass. It is de�ned with respet to eah pixel-disparity pair (p; d), sine we use this lass to estimate the likelihood of disparity d for pixelp. We denote the ompat window lass for pixel-disparity pair (p; d) by Cpd. A natural wayto de�ne Cpd is through a ertain direted graph, whih we denote by Gpd. This graph isembedded into the image path around pixel p. An example of Gpd and its embedding is inFig. 1(a). The squares orrespond to image pixels, and the entral thik square is the pixelp. The blak dots in the orner of eah pixel square are the graph nodes, and the diretedarrows are the graph edges. Edges onnet only the losest nodes, but not all suh edgesare in Gpd. The edges that are inluded have a speial struture, whih is easiest to see inFig. 1(b). The entral gray region has no edges inside, and eah of the four quadrants hasonly the edges in the diretions shown. Notie that the edges trae out lokwise yles,where in eah quadrant a yle follows a path in the general diretion shown in Fig. 1(b).We de�ne windows in Cpd through the yles of the graph Gpd. Every direted yle in3



(a) Graph Gpd (b) Edge diretions in eah quadrantFigure 1: Graph strutureGpd enloses a onneted area, and this onneted area is a window in Cpd. An example ofa ompat window is shown in gray in Fig. 1(a), with the orresponding yle in dashedarrows. There is one to one orrespondene between yles in Gpd and ompat windows,thus we frequently say \yle orresponding to the window"and vie versa.First we state a few obvious fats about Cpd. By onstrution, eah window of Cpd ontainspixel p. This is of ourse ruial beause we use Cpd to estimate how likely disparity d isfor pixel p. The largest window in Cpd is limited by the graph size. It is useful to limit thelargest size beause we may wish to prevent windows to be as large as the whole image. Thesmallest window in Cpd is the entral gray region with no ars in Fig. 1(b). A limit on thesmallest window is helpful beause mathing with a single pixel window is too unreliable. Inpratie we set the largest and the smallest windows to be 31 by 31 and 3 by 3, respetively.Now we state the less obvious properties of Cpd. If the largest window in Cpd is n by n,then there are O(2n) windows in Cpd3, so diret searh is ruled out. All retangles whihontain the smallest one are in our lass. However our lass is muh more general than theretangles, the retangles form only a small O(n4) part. Notie that our windows shapes areompat4, that is they have low perimeter to area ratio.Although window shapes in Cpd are not ompletely general, they are adequate for ourpurposes. Assume that there is a path of pixels around pixel p with approximately the samedisparity as p. We do not need to extrat all the pixels in that path, as long as we onstruta suÆiently large window of pixels from that path. In ontrast our windows do not workfor appliations like image segmentation sine the goal there is to extrat all pixels in aregion. The ompatness of our windows may be an advantage over general shape. The best3Count the number of paths in our graph; at eah step, there are 2 possible diretions for a path.4However they do not ontain all shapes that one might all ompat4



general shape window may have thin subparts whih do not belong to the disparity of mostpixels in the window, but do math well at that disparity due to the image struture. Thusthe results may be plagued by these artifats. Fig. 3(a) shows examples of our windows.3 Window CostIn this setion we desribe the general window ost that we an handle, and the one that weatually use. Let err(q; d) be the measurement error if pixel p has disparity d. Approximatelyerr(q; d) is the absolute di�erene in intensities between pixel q in the left image and q shiftedby d in the right image. For the exat desription of err(q; d) see Setion 6.Let (p; d) be a pixel-disparity pair for whih we want to �nd the optimal window. Reallthat Cpd denotes the set of all ompat windows for the (p; d)-pair. For onveniene, a windowontains only pixels of the left image. For window W 2 Cpd let CW be the orrespondingyle, and e be an edge of CW . Then the most general window ost that we an handle isE(W ) = Pq2W err(q; d) +Pe2CW b(e; d)Pq2W n(q; d) :Funtions err(q; d) and b(e; d) an be arbitrary. For n(q; d) there is a restrition that it hasto be positive. Notie that b(e; d) and n(q; d) may depend on the partiular edge e, pixel qand disparity d, however we urrently we do not make use of it. Our atual window ost is:E(W ) = Pq2W err(q; d)Pq2W 1 + Pe2CW bPq2W 1 (1)The �rst term in the sum of equation (1) is the average window error. That is it au-mulates err(q; d) over all pixels q in a window and normalizes by the window size. This �rstterm is a good riterion to exlude outliers5, sine inlusion of outliers in a window inreasesaverage error. Exlusion of outliers means that the disparity disontinuities are not smoothedout. We need more than that however. In low texture areas two windows may have di�erentsizes but approximately equal average error. We want to favor the larger one sine largerwindows are more reliable. Thus the seond term in the sum of equation (1) implements abias towards larger windows. It is the ratio of window perimeter to window area multipliedby a parameter b. The seond term is smaller for larger ompat windows sine area salesapproximately quadratially while perimeter sales approximately linearly. Constant b haslow positive value, sine we want the bias term to di�erentiate only between window with5Outliers are pixels whose error di�ers signi�antly from that of the other window pixels. Robust statistideals with outliers by dereasing their weight in a window. In ontrast we aim to avoid outliers altogether.5



approximately equal average error. Thus our window ost is the average measurement errorwith bias towards larger windows. We found that this window ost disourages windowsfrom rossing a disparity disontinuity while enouraging large windows in textureless areas.4 Minimization via Minimum Ratio CyleThe minimum ratio yle algorithm (MRC) was �rst introdued into vision ommunity byJermyn and Ishikawa in their interesting image segmentation work [8℄. In this Setion wesketh the MRC problem and its omplexity, and also desribe how we use it to minimizethe ost funtion in equation 1. For a thorough desription of MRC algorithms see [1℄.4.1 Minimum Ratio CyleSuppose G = (V;E) is a direted graph with integer valued funtions w : E ! Z andt : E ! Z on its edges. Funtion w an be arbitrary while t has the following restrition:Pe2C t(e) > 0 for every yle C. The problem then is to �nd a direted yle C whihminimizes the ratio: �(C) = Pe2C w(e)Pe2C t(e) .The MRC an be redued to a repeated detetion of a negative yle. This algorithmwas �rst desribed by Lawler [10℄. Suppose �� is the optimal value of �(C), and �̂ is a guessat ��. Set the new edge weights l(e) = w(e) � �̂ � t(e). It is easy to see that if there is anegative yle with the new weights, then �̂ > ��. Similarly if there is a zero weight ylethen �̂ = ��, and if there is no negative yle then �̂ < ��.Sine w and t are integral, �� must lie in the interval [�W;W ℄, where W = maxfjw(e)j :e 2 Eg. We use linear searh to �nd ��. We start with �̂ = W , and ompute the new edgeweights l(e) = w(e)� �̂ � t(e). Then we run a negative yle detetion. If there is a negativeyle C, we set �̂ = �(C) as the next guess and ontinue the searh. If there is a zero weightyle, then �� = �̂ and we terminate the searh. There is always a negative or zero weightyle, sine �̂ is an upper bound. This searh must terminate after O(WT 2) yles, see [8℄.A generi negative yle detetion takes O(n2) time for a graph with O(n) edges, see [1℄.However for our graphs, the worst ase omplexity is O(npn), see [17℄. Combining thenegative yle and the linear searh omplexity, the MRC has pseudopolynomial omplexity.That is if we assume that the weights t and w are independent of the graph size (whih theyare for our problem), then the running time is polynomial, O(npn) in our ase. In pratiewe found that the average number of iteration to omplete the linear searh is around 3, andthe average number of passes over the graph for the negative yle detetion is around 5.Thus the MRC algorithm needs about 15 passes over the graph to omplete.6



(a) (b)Figure 2: (a) edge e lies above pixel pe; (b) yle in dashed arrows, window in gray.4.2 Conversion to Minimum Ratio CyleTo �nd the optimum window in a Cpd , we have to searh for a minimum ratio yle in thegraph Gpd, with properly de�ned edge weights w and t. First we need more notation. Reallthe embedding of the graph Gpd in the image, shown in Fig. 1. We treat horizontal andvertial graph edges di�erently. A horizontal edge e lies above some pixel of the image, andwe use notation pe to denote this pixel. For example in Fig. 2(a) the thik edge e lies abovepixel pe. We use notation pe # i to denote the pixel diretly below pe by i spots, and h(pe)to denote the total number of pixels diretly below pixel pe. There is a speial ase whene lies on the very bottom edge of the image so that there is no pixel below it. In this asewe set h(pe) = �1, and we set the value of the empty sum to 0. We break up w into twofuntions w = w1 + w2. If edge e is vertial, then w1(e) = 0. For horizontal e:w1(e) = ( Ph(pe)i=0 err(pe # i; d) if e points right�Ph(pe)i=0 err(pe # i; d) if e points leftThat is an edge that points to the right aumulates the positive error in the olumn belowit, and an edge pointing to the left aumulates the negative error in the olumn below.Now onsider a windowW and its orresponding yle CW . Eah olumn ofW is boundedby yle edges e on top and e on the bottom, as illustrated in Fig. 2(b). Edge e points tothe right and e points to the left. The weight w1(e) aumulates the positive error in theolumn starting at pixel pe and all the way down. All pixels that ontribute to w1(e) aremarked with \+" sign in Fig. 2(b). The edge weight w1(e) aumulates the negative error inthe olumn starting at pixel pe and all the way down. All pixels that ontribute to w1(e) aremarked with \-" sign in Fig. 2(b). Thus the sum of w1(e) and w1(e) gives exatly the total7



error in the window olumn between edges e and e. Now it easily follows that the sum overall the edge weights w1 in the yle CW gives the total measurement error in the window W .Similarly we an de�ne t so that the sum of weights t over a yle ounts the total numberof pixels in the orresponding window. For vertial e, t(e) = 0. For horizontal e:t(e) = ( h(pe) + 1 if e points right�(h(pe) + 1) if e points leftNow we only have to add a bias towards larger windows, whih we do by de�ning w2(e) =b for all edges e: It is easy to hek that with w(e) = w1(e) + w2(e) and t as de�ned,�(CW ) = E(W ) for window W and orresponding yle CW . Thus the yle with minimumratio � orresponds to the window with the optimal ost E.Observe that t satis�es the restrition of the MRC algorithm, that is its sum over any yleis positive sine it is just the orresponding window size. This holds beause by onstrutionour yles are always lokwise. For any ounterlokwise yle, t would aumulate thenegative window size, and we would not be able to use the MRC algorithm. If the MRCalgorithm plaed no restritions on t, then we ould �nd the best window of general shape.5 Approximation and PruningThe straightforward ompat window algorithm omputes the optimal window for eah pixel-disparity pair (p; d). Even though we devised a very eÆient method to ompute the optimalwindow, it still depends on the largest window size in Cpd, whih is too slow for manyappliations. To speed things up, we develop an approximation and a pruning heuristis.The approximation heuristi is based on the following observation. Fig. 3(a) shows thesene in Fig. 5(a) with several omputed windows, and the true disparities are in Fig. 3(b).The blak areas are the optimal windows, and the white dots are the pixels for whih theywere omputed. The disparity of the windows is the orret disparity for the white pixels.Notie an optimal window tends to inlude only pixels at the same disparity as the pixel forwhih the window was omputed. This is beause our window ost disourages rossing adisparity disontinuity. Thus we an use the optimal window ost omputed for pixel p toapproximate the optimal window ost for pixels q whih belong to the optimal window of p.That is we do the following. Let W opd be the optimal window and W spd be the smallestwindow in Cpd. We start omputing optimal windows for (p; d)-pairs in the order of inreasingE(W spd). For a omputed W opd we set E(W oqd) = E(W opd) for all q 2 W opd and do not omputeW oqd. If we get several estimates on E(W oqd), we retain the lowest one. This approximationheuristi lets us to signi�antly redue the number of optimal window omputations.8



(a) (b)Figure 3: (a) sample optimal windows; (b) true disparitiesThe seond heuristi is simple pruning. We do not ompute the optimal window for pixel-disparity pairs (p; d) if err(p; d) is too large. Before omputingW opd, we hek if p already hasa good math at disparity d0 with omputed or estimated E(W opd0). If E(W spd)= > E(W opd0),we exlude (p; d) from optimal window omputation. We set  = 1:5 in our experiments. Thispruning improves eÆieny by exluding unlikely pixel-disparity pairs from omputation. Asin a typial area based mathing, after all E(W opd)'s are omputed or approximated, pixel pgets assigned disparity d whih gives the lowest E(W opd).6 Measurement ErrorBefore presenting our experimental results, we desribe our model for the measurementerror err(p; d). For low noise image pairs our algorithm performs quite well with err(p; d)set to squared intensity di�erene. However frequently there is brightness di�erene betweenorresponding image pathes or even nonlinear errors, espeially in �ne textured areas. Forsuh image pairs it is bene�ial to use err(p; d) whih models the above noise types.We use the smallest window W spd to estimate the average brightness in the left and rightimage pathes around p. Let IL and IR be the average intensity in W spd in the left image andaverage intensity in W spd shifted by d in the right image. Let IL(q) is the intensity of q inthe left image, and IR(q� d) is the intensity of q shifted by d in the right image. We orretfor brightness di�erenes between the left and right image pathes:err1(q; d) = j(IL(q)� IL))� (IR(q � p)� IR)j:This estimate would be more reliable if all pixels in W opd were used to ompute IL and IR.9



However W opd is not known in advane. In our experiments jW spdj = 9 , and it seems suÆient.Besides brightness di�erenes, there are frequently nonlinear errors between the orre-sponding pathes. We develop another funtion err2(q; d) whih works well in suh ases.This funtion exploits loal di�erenes in intensities, retaining only their signs and notthe magnitude. Let us de�ne funtions sgnl(q), sgnr(q), sgna(q), and sgnb(q) as follows:sgni(q) = sign(IL(q)� IL(q ! i)). Here q ! i stands for the pixel to the left, right, above,or below of q if i = l; r; a; b orrespondingly. The sign(x) funtion just retains the sign of theargument, i.e. sign(x) = 1 if x > 0, sign(x) = �1 if x < 0, and �nally sign(x) = 0 if x = 0.Funtions sgnl(q� d), sgnr(q� d), sgna(q� d), and sgnb(q� d) are de�ned similarly on theright image. Now de�ne err2(q; d) = f(Pi2fl;r;a;bg jsgni(q)� sgni(q� d)j); where f(x) = x ifx � 4 and f(x) =1 otherwise.Thus err2(q; d) measures how well signs of loal variations math around q in the leftimage and q�d in the right image. This is robust to all monotoni nonlinear hanges. Notiethat if the argument to funtion f is larger than 4, less than two of sgni funtions math,so the use of err2 is unreliable and it is set to in�nity. Our �nal measurement error is aombination: err(q; d) = min (err1(q; d); err2(q; d)) :7 Experimental Results on Stereo DataOur algorithm works well with the same parameters for all image pairs we tried. For allthe experiments, we set the minimum window to 3 by 3, the maximum window to 31 by 31(both entered at p); the pruning parameter  = 1:5, and the bias parameter b = 1.First we evaluate our algorithm on the Middlebury database with dense ground truth dueto D.Sharstein and R.Szeliski. They omputed ground truth for several stereo pairs and alsotook one stereo pair with ground truth from the Tsukuba University. They have implementedseveral major approahes to stereo orrespondene themselves and invited researhers tosubmit their results. They evaluated 20 algorithms, inluding graph uts, dynami program-ming, and area based methods. Summary of the evaluation is in Fig. 4, for their full reportsee [14℄, and the results an be found on http://www.middlebury.edu/stereo/results.html.The �rst olumn in Fig. 4 gives names of eah of the 20 stereo algorithms. The algorithmsare arranged roughly in the order of performane, with the better ones on top. The next 4olumns give perentage errors eah algorithm makes on the 4 senes from the database. Aomputed disparity is ounted as an error if it is more than 1 away from the true disparity.Eah of these 4 olumns is broken into 3 subolumns: the all olumn gives the total errorperentage, the untex olumn gives error perentage in the untextured areas of the image(where intensity gradient is smaller than some threshold), and the dis olumn gives the10



Tsukuba Sawtooth Venus MapAlgorithm all untex dis all untex dis all untex dis all disLayered 1.58 1.06 8.8 0.34 0.00 3.35 1.52 2.96 2.6 0.37 5.2GraphCut 1.94 1.09 9.5 1.30 0.06 6.34 1.79 2.61 6.9 0.31 3.9BeliefProp 1.15 0.42 6.3 0.98 0.30 4.83 1.00 0.76 9.1 0.84 5.3GC+ol 1.27 0.43 6.9 0.36 0.00 3.65 2.79 5.39 2.5 1.79 10.1GraphCut 1.86 1.00 9.4 0.42 0.14 3.76 1.69 2.30 5.4 2.39 9.4MultiCut 8.08 6.53 25.3 0.61 0.46 4.60 0.53 0.31 8.0 0.26 3.3CompWin 3.36 3.54 12.9 1.61 0.45 7.87 1.67 2.18 13.2 0.33 4.0Realtime 4.25 4.47 15.0 1.32 0.35 9.21 1.53 1.80 12.3 0.81 11.4Bay. di�. 6.49 11.62 12.3 1.45 0.72 9.29 4.00 7.21 18.4 0.20 2.5Cooperative 3.49 3.65 14.8 2.03 2.29 13.41 2.57 3.52 26.4 0.22 2.4SSD+MF 5.23 3.80 24.7 2.21 0.72 13.97 3.74 6.82 13.0 0.66 9.4Stoh. di�. 3.95 4.08 15.5 2.45 0.90 10.58 2.45 2.41 21.8 1.31 7.8Geneti 2.96 2.66 15.0 2.21 2.76 13.96 2.49 2.89 23.0 1.04 10.9Pix-to-Pix 5.12 7.06 14.6 2.31 1.79 14.93 6.30 11.37 14.6 0.50 6.8Max Flow 2.98 2.00 15.1 3.47 3.00 14.19 2.16 2.24 21.7 3.13 16.0Sanl. opt. 5.08 6.78 11.9 4.06 2.64 11.90 9.44 14.59 18.2 1.84 10.2Dyn. Prog. 4.12 4.63 12.3 4.84 3.71 13.26 10.10 15.01 17.1 3.33 14.0Shao 9.67 7.04 35.6 4.25 3.19 30.14 6.01 6.70 43.9 2.36 33.0MMHM 9.76 13.85 24.4 4.76 1.87 22.49 6.48 10.36 31.3 8.42 12.7Max. Surf. 11.10 10.70 42.0 5.51 5.56 27.39 4.36 4.78 41.1 4.17 27.9Figure 4: Middlebury stereo evaluation resultserror perentage near disontinuities (at a small distane from some disparity disontinuity).For the Map sene there is not untex olumn beause it is well textured everywhere.The performane of our algorithm with approximation heuristis (CompWin) is high-lighted by 2 horizontal lines. It performs better than all the loal methods and some of theglobal ones6. In the table, above our algorithm are only to the graph uts based methods andbelief propagation. However our algorithm is faster than the global methods. The runningtime for the Tsukuba, Sawtooth, Venus, and Map senes are 17, 29, 33, and 12 seonds,respetively. For the graph uts the running times are approximately 3 times longer (whenperformed on the same mahine). For the better textured seneMap, our algorithm performsbetter or just slightly worse than all the global methods whih are ranked higher.The Middlebury evaluation did not inlude a �xed window results beause a shiftablewindow works muh better. A shiftable window uses diret searh over several windowshapes, and its results are under the name SSD+MF. Our algorithm is signi�antly better6Stereo algorithms an be roughly divided in 2 groups. Loal methods make deision at a pixel by lookingat just the loal path around that pixel. For global methods a pixel an inuene a very distant pixel.11



(a) Left image (b) CompWind, 3.30%
() CW with approx., 3.36% (d) left-right onsisteny, 1.95%Figure 5: Tsukuba head and lamp senethan SSD+MF, espeially in the dis olumn, that is espeially around disontinuities.Now we evaluate if our error model in Setion 6 helps on the Middlebury database.If instead of that model we use just the absolute di�erene in intensities, then the errorperentages for Tsukuba, Sawtooth, Venus, and Map senes are 3.72%, 1.92%, 2.27%, and2.28% respetively. These perentages are slightly worse for the �rst three senes, andsigni�antly worse for the Map sene. The reason is that there is brightness di�erenesbetween the left and right images of the Map sene, so modeling them helps.The running time of our algorithm is inuened by image ontent. It is faster for thebetter textured images beause the pruning heuristi is more e�etive then. For example forthe better textured sene Map the algorithm proesses 153,360 pixels per seond. For thelowest textured sene Tsukuba, the algorithm proesses only 97,581 pixels per seond. Thusthe running time is not ompletely preditable beforehand, but an be estimated dependingon the type of imagery expeted (for example textured outdoors versus low textured indoors).In Fig. 5(a) is the left image of the Tsukuba stereo pair. In Figs. 5(b,) are the results ofour ompat window without and with approximation heuristis, respetively. The groundtruth for this sene is in Fig. 3(b). Under eah image we show the perent of errors, 3.30%and 3.36% respetively. The running time without approximations is 22 minutes, and with12



(a) Left image (b) True disparities () Compat windowFigure 6: Tsukuba plant seneapproximations it is 18 seonds. The number of pixels di�erent between the two versions is10%. However most of these di�erenes are �1 disparity and are due to lose window ostsin low textured areas. Thus perentage error ounts are almost equal for these algorithms.Currently our algorithm does not deal with olusion, i.e. with pixels whih are visible inonly one of the images. A standard way to detet oluded pixels is to run the algorithm withthe left and right images reversed, and then remove pixels whih get inonsistent disparityassignments between the two answers. The results of suh proedure are shown in Fig. 5(d).Exluding pixels found inonsistent, the error ount drops to 1.95%.In Figs. 6(a,b) is another stereo pair with ground truth from the Tsukuba University,whih is not inluded in the Middlebury database. In Fig. 6() is the result of our algorithm.Here our algorithm gives 16% error ount, whih is slightly better than graph uts algorithmwhose error ount is 18% for this sene. We omit the results of the graph uts algorithm, butthey look quite similar to ours. In this experiment for the graph uts algorithm we manuallypiked the best parameters, while for our algorithm parameters are �xed. The running timefor our algorithm was 24 seonds, while for the graph uts algorithm it was 72 seonds.Fig. 7 shows our results on another ommon stereo sequene from SRI. Two results areshown, one for narrow and one for wide baselines. For the wide baseline this sequene hassigni�ant nonlinear errors in the grass region. Our algorithm performs well, the �ne branhdetail is preserved and the slopes of the ground plane are aptured. The running times are4 seonds for the small and 22 seonds for the large baselines.The algorithm is quite robust to noise and brightness di�erenes between the images, inour experiene. The senes in this setion have di�erent degrees of noise. The Map sene hassigni�ant brightness distortions, the wide baseline SRI trees have severe noise espeially inthe grass region. However the algorithm performs quite well with the same parameters forall the imagery. 13



(a) Tree sequene (b) Small baseline () Large baselineFigure 7: Results on SRI trees8 ConlusionsWe presented an algorithm whih gives an eÆient way to optimize a window ost over a hugelass of ompat windows. This lass ontains all retangular shapes, but the majority ofshapes are not retangular. We believe that our algorithm is a �rst one to eÆiently onstrutnon retangular windows. Experimental results on the Middlebury database show that ouralgorithm performs better than all the other loal methods tested there. It is inferior onlyto some of the global methods, but global methods are less eÆient. The ompat windowalgorithm an be used for other appliations where window mathing approah is used, aslong as the window ost is the one that we an handle.AknowledgmentsWe thank Dr. Y. Ohta and Dr. Y. Nakamura for providing ground truth imagery; and Dr.Sharstein and Dr. Szeliski for providing ground truth imagery and stereo evaluation results.Referenes[1℄ K. Ahuja, Thomas L. Magnati, and James B. Orlin. Network Flows: Theory, Algo-rithms, and Appliations. Prentie Hall, 1993.[2℄ A.F. Bobik and S.S. Intille. Large olusion stereo. In Vismod, 1999.[3℄ O. Faugeras, B. Hotz, H. Mathieu, T. Vi�eville, Z. Zhang, P. Fua, E. Th�eron, L. Moll,G. Berry, J. Vuillemin, P. Bertin, and C. Proy. Real time orrelation-based stereo:algorithm, implementatinos and appliations. Tehnial Report 2013, INRIA, 1993.14
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