
Dependent Types

and Categorical Programming

or What can we learn from Aldor?

Stephen M. Watt

University of Western Ontario

TRICS, University of Western Onatrio, 18 January 2012

based on a talk given at École Polytechnique, Palaiseau, 23 September 2011

Previous TRICS!

And now for something

completely different….

Types in Programming Languages

 Built from some basic types, e.g.

◦ int, double, char, …

 Composed with some built-in constructors, e.g

◦ records, unions, functions, enumerations, objects, …

 Different type systems have different properties, e.g.

◦ Dynamic vs static, opaque vs explicit, …

The Basic Building Blocks

 Usually the built in constructors are based on

simple ideas from mathematics.

 Mapping types:

 A → B

 Cartesian product types:

 A ×B

 … and combinations: A1×A2×A3 → R1×R2

Properties

 Using these basic mathematical ideas allows one

to reason about types.

For example the projections on Cartesian

products model record selection.

first: A ×B → A
second: A ×B → B

Types and execution time values

 A type system may allow type expressions to

have symbols bound at execution time, e.g.

arrays of size n.

 In this situation, we may want a type to depend

on a run time value, such as an argument to a

function, e.g.

 (n: int) → SquareMatrix(n, double)
 (n: int) × SquareMatrix(n, double)

Types and execution time values

 (n: int) → SquareMatrix(n, double)
 (n: int) × SquareMatrix(n, double)

 These are dependent types, which can be very

powerful and useful.

 We have given up some useful properties of

cartesian products though.

 Things get really interesting when the variables

can themselves be types…..

What would a language based on

these ideas look like…

Aldor

 What is Aldor?

 Aspects of the Aldor language.

 Some lessons learned.

What is Aldor?
IBM Research

 Initially, extension language for Scratchpad II (Axiom).

 First experiments 1984-1990.

 New implementation 1990-1995.

 Various early names, first described as A♯ (ISSAC 1994).

 Several new features back-ported to Scratchpad II/Axiom.

Numerical Algorithms Group

 Distributed by NAG with Axiom 2 1995-2000

 Used in FRISCO 1996-1999.

Aldor.org

 Available open source 2002-date

What is Aldor?

 Want a programming language

for library development.

 Programming in the small

vs programming in the large.

 Want abstraction, flexibility, safety and efficiency.

 Want to model rich relations

among mathematical objects.

What is Aldor?

 A higher order language for natural expression

of mathematical programs.

 Functional, Object-Oriented, Aspect-Oriented

characteristics.

 Types and functions first class values.

 Efficiency/flexibility tradeoff achieved through

categories and dependent typing.

 Optimizing compiler generates intermediate

code, then LISP or C.

Why Math in Prog Lang Research?

 Rich relationships among sophisticated

abstractions.

 Well-defined domain.

 Many programming language ideas originated here:

algebraic expressions, arrays, big integers, garbage

collection, pattern matching, parametric

polymorphism, …

Aldor Example I

#include "aldor"

double(n: Integer): Integer == n + n

Aldor Example II

#include "aldor"
#include "aldorio"

factorial(n: Integer): Integer == {

 p := 1;

 for i in 1..n repeat p := p * i;

 p

}

import from Integer;

print << "factorial 10 = " << factorial 10 << newline

Aldor Example III

#include "aldor"

MiniList(S: BasicType): LinearAggregate(S) == add {

 Rep == Union(nil: Pointer,
 rec: Record(first: S, rest: Rep));

 import from Rep, SingleInteger;

 local cons (s:S,l:%):% == per(union [s, l]);

 local first(l: %): S == rep(l).rec.first;

 local rest (l: %): % == rep(l).rec.rest;

 empty (): % == per(union nil);

 empty?(l: %):Boolean == rep(l) case nil;

 sample: % == empty();

 [t: Tuple S]: % == {

 l := empty();

 for i in length t..1 by -1 repeat

 l := cons(element(t, i), l);

 l

 }

 [g: Generator S]: % == {

 r := empty(); for s in g repeat r := cons(s, r);

 l := empty(); for s in r repeat l := cons(s, l);

 l

 }

 generator(l: %): Generator S == generate {

 while not empty? l repeat {

 yield first l; l := rest l

 }

 }

 (l1: %) = (l2: %): Boolean == {

 while not empty? l1 and not empty? l2 repeat {

 if first l1 ~= first l2 then return false;

 (l1, l2) := (rest l1, rest l2)

 }

 empty? l1 and empty? l2

 }

 ...

}

Aldor and Its Type System

 Types and functions are values

◦ May be created dynamically

◦ Provide representations of mathematical sets and functions

 The type system has two levels

◦ Each value belongs to a unique type, its domain, known statically.

◦ This is an abstract data type that gives the representation.

◦ The domains are values with domain Domain.

◦ Each value may belong to any number of subtypes of its domain.

◦ Subtypes of Domain are called categories.

 Categories

◦ specify what exports (operations, constants) a domain provides.

◦ fill the role of OO interfaces or abstract base classes.

Why Two Levels?

 OO inheritance pb with multi-argument fns:

 class SG { “*”: (SG, SG) -> SG; }
DoubleFloat extends SG ...
Permutation extends SG ...

x, y ∈ DoubleFloat ⊂ SG
p, q ∈ Permutation ⊂ SG

 x * y ✓
p * q ✓

 p * y ✓ !!!

Why Two Levels?

 OO inheritance pb with multi-argument fns:

 SG == ... { “*”: (%, %) -> %; }
DoubleFloat: SG ...
Permutation: SG ...

x, y ∈ DoubleFloat ∈ SG
p, q ∈ Permutation ∈ SG

 x * y ✓
p * q ✓

 p * y ✗

Parametric Polymorphism

 PP is via category- and domain-producing functions.

-- A function returning an integer.

factorial(n: Integer): Integer == {
 if n = 0 then 1 else n*factorial(n-1)
}

-- Functions returning a category and a domain.

define Module(R: Ring): Category == Ring with { *: (R, %) -> % }

Complex(R: Ring): Module(R) with {

 complex: (%,%)->R; real: %->R; imag: %->R; conj: % -> %; ...

} == add {

 Rep == Record(real: R, imag: R);
 0: % == …
 1: % == …
 (x: %) + (y: %): % == ...

}

Dependent Types

 Give dynamic typing, e.g.

f: (n: Integer, R: Ring, m: IntegerMod(n)) -> SqMatrix(n, R)

 Recover OO through dependent products:

prodl: List Record(S: Semigroup, s: S) == [
 [DoubleFloat, x],
 [Permutation, p],
 [DoubleFloat, y]
]

 With categories, guarantee required operations available:

f(R: Ring)(a: R, b: R): R == a*b + b*a

Multi-sorted Algebras

 Category signature as a dependent product type.

 ArithmeticModel: Category == with {

 Nat: IntegralDomain;

 Rat: Field;

 /: (Nat, Nat) -> Rat;
}

Aldor and Its Type System

 Type producing expressions may be conditional

UnivariatePolynomial(R: Ring): Module(R) with {

 coeff: (%, Integer) -> R;

 monomial: (R, Integer) -> %;

 if R has Field then EuclideanDomain;

 ...

 } == add {

 ...

 }

 Post facto extensions allow domains to belong to new

categories after they have been initially defined.

Post Facto Extension for

Structuring Libraries

DirectProduct(n: Integer, S: Set): Set with {

 component: (Integer, %) -> S;

 new: Tuple S -> %;

 if S has Semigroup then Semigroup;

 if S has Monoid then Monoid;

 if S has Group then Group;

 ...

 if S has Ring then Join(Ring, Module(S));

 if S has Field then Join(Ring, VectorField(S));

 ...

 if S has DifferentialRing then DifferentialRing;

 if S has Ordered then Ordered;

 ...

} == add { ... }

Post Facto Extension for

Structuring Libraries

DirectProduct(n: Integer, S: Set): Set with {

 component: (Integer, %) -> S;

 new: Tuple S -> %;

} == add { ... }

extend DirectProduct(n: Integer, S: Semigroup): Semigroup == ...
extend DirectProduct(n: Integer, S: Monoid): Monoid == ...
extend DirectProduct(n: Integer, S: Group): Group == ...
...
extend DirectProduct(n: Integer, S: Ring): Join(Ring, Module(S)) == ...
extend DirectProduct(n: Integer, S: Field): Join(Ring, VectorField(S)) == ...
...
extend DirectProduct(n: Integer, S: Field): Join(Ring, VectorField(S)) == ...
extend DirectProduct(n: Integer, S: DifferentialRing): DifferentialRing == ...
extend DirectProduct(n: Integer, S: Ordered): Ordered == ...
...

 Normally these extensions would all be in separate files.

Higher Order Operations

 E.g. Reorganizing constructions

 Polynomial(x) Matrix(n) Complex R ≈

Complex Matrix(n) Polynomial(x) R

 Slightly simpler example

 List Array String R ≈ String Array List R

Higher Order Operations

Ag ==> (S: BasicType) -> LinearAggregate S;

swap(X:Ag, Y:Ag)(S:BasicType)(x:X Y S):Y X S ==
[[s for s in y] for y in x];

al: Array List Integer :=
array(list(i+j-1 for i in 1..3) for j in 1..3);

la: List Array Integer :=
swap(Array, List)(Integer)(al);

Phew!

Using Genericity

LinearOrdinaryDifferentialOperator(

 A: DifferentialRing,

 M: LeftModule(A) with differentiate: % -> %

) : MonogenicLinearOperator(A) with {

 D: %;

 apply: (%, M) -> M;

 ...

 if A has Field then {

 leftDivide: (%, %) -> (quotient: %, remainder: %);

 rightDivide:(%, %) -> (quotient: %, remainder: %);

 … // rgcd, lgcd

 }

} == ...

Using Genericity

LinearOrdinaryDifferentialOperator(

 A: DifferentialRing,

 M: LeftModule(A) with differentiate: % -> %

) : ...

== SUP(A) add {

 ...

 if A has Field then {

 Op == OppositeOperator(%, A);

 DOdiv == NonCommutativeOperatorDivision(%, A);

 OPdiv == NonCommutativeOperatorDivision(Op,A);

 leftDivide (a,b) == leftDivide(a, b)$DOdiv;

 rightDivide(a,b) == leftDivide(a, b)$OPdiv;

 }

 ...

}

Design Principles I

 No compromises on flexibility

 No compromises on efficiency

 Use optimization to bridge the gap.

 Compilation. Separate compilation.

 Generated intermediate code is platform independent,

even though word-sizes, etc, vary.

 Libraries can be distributed, if desired, as binary only.

 Be a good citizen in a multi-language framework.

◦ Call and be called by C/C++/Fortran/Lisp/Maple

◦ Functional arguments

◦ Cooperating memory management

Design Principles II

 Language-defined types should have no privilege

whatsoever over application-defined types.

◦ Syntax, semantics (e.g. in type exprs),

optimization (e.g. constant folding)

 Language semantics should be independent of type.

◦ E.g. named constants overloaded, not functions

 Combining libraries should be easy, O(n), not O(n2).

◦ Should be able to extend existing things with new concepts

without touching old files or recompiling.

 Safety through optimization removing run-time checks,

not by leaving off the checks in the first place.

The Compiler as an Artefact

 Written primarily in C (C++ too immature in 1990)

 1550 files, 295 K loc C + 65 K loc Aldor

 Intermediate code (FOAM):

◦ Primitive types: booleans, bytes, chars, numeric, arrays, closures

◦ Primitive operations: data access, control, data operations

 Runtime system:

◦ Memory management

◦ Big integers

◦ Stack unwinding

◦ Export lookup from domains

◦ Dynamic linking

◦ Written in C and Aldor

Example of Optimization

From the domain Segment(E: OrderedAbelianMonoid)
generator(seg:Segment E):Generator E == generate {

 (a, b) := (low seg, hi seg);

 while a <= b repeat { yield a; a := a + 1 }

}

From the domain List(S: Set)

generator(l: List S): Generator S == generate {

 while not null? l repeat { yield first l; l := rest l }

}

Client code

client() == {

 ar := array(...); li := list(...);

 s := 0;

 for i in 1..#ar for e in l repeat { s := s + ar.i + e }

 stdout << s

}

How Generators Work
generator(seg:Segment Int):Generator Int
== generate {

 a := lo seg;

 b := hi seg;

 while a <= b repeat {
 yield a; a := a + 1
}

}

client() == {

 ar := array(...);

 s := 0;

 for i in 1..#ar repeat
 s := s + a.i;

 stdout << s

}

Example of Optimization (again)

From the domain Segment(E: OrderedAbelianMonoid)
generator(seg:Segment E):Generator E == generate {

 (a, b) := (low seg, hi seg);

 while a <= b repeat { yield a; a := a + 1 }

}

From the domain List(S: Set)

generator(l: List S): Generator S == generate {

 while not null? l repeat { yield first l; l := rest l }

}

Client code

client() == {

 ar := array(...); li := list(...);

 s := 0; -- NOTE PARALLEL TRAVERSAL.

 for i in 1..#ar for e in l repeat { s := s + ar.i + e }

 stdout << s

}

Inlined
B0: ar := array(...);

 l := list(...);

 segment := 1..#ar;

 lab1 := B2;
 l2 := l;

 lab2 := B9;
 s := 0;

 goto B1;

B1: goto @lab1;
B2: a := segment.lo;

 b := segment.hi;

 goto B3;

B3: if a > b then goto B6; else goto B4;

B4: lab1 := B5;
 val1 := a;

 goto B7;

B5: a := a + 1

 goto B3;

B6: lab1 := B7;
 goto B7;

B7: if lab1 == B7 then goto B16; else goto B8
B8: i := val1;

 goto @lab2;

B9: goto B10

B10: if null? l2 then goto B13; else goto B11

B11: lab2 := B12
 val2 := first l2;

 goto B14;

B12: l2 := rest l2

 goto B10

B13: lab2 := B14
 goto B14

B14: if lab2 == B14 then goto B16; else goto B15
B15: e := val2;

 s := s + ar.i + e

 goto B1;

B16: stdout << s

Clone Blocks for 1st Iterator

Dataflow

[lab1 == B2, lab1 == B5, lab1 == B7]

Resolution of 1st Iterator

Clone Blocks for 2nd Iterator

Resolution of 2nd Iterator

client() == {

 ar := array(...);

 l := list(...);

 l2 := l;

 s := 0;

 a := 1;

 b := #ar;

 if a > b then goto L2

L1: if null? l2 then goto L2

 e := first l2;

 s := s + ar.a + e

 a := a + 1

 if a > b then goto L2

 l2 := rest l2

 goto L1

L2: stdout << s

}

Aldor vs C (non-floating pt)

Aldor vs C (floating point)

Lessons Learned

 It is possible to be elegant, abstract and high-level

without sacrificing significant efficiency.

 Well-known optimization techniques can be effectively

adapted to the symbolic setting.

 Optimization of generated C code is not enough.

 Procedural integration, dataflow analysis, subexpression

elimination and constant folding are the primary wins.

 Compile-time memory optimization, including data

structure elimination, is important.

◦ Removes boxing/unboxing, closure creation, dynamic allocation

of local objects, etc. Can move hot fields into registers.

Conclusions

 Language design 20+ years old.

◦ In the mean time, many of the ideas now mainstream.

◦ Many still are not.

 Mathematics is a valuable canary

in the coal mine of general purpose software.

◦ The general world lags in recognizing needs.

 It has to be free.

◦ Free1 is the standard price.

◦ Free2 is required for engagement.

Prospectives

 New prospects for optimization:

◦ Allowing opaque types to assert identities – use in

optimization. Proof-carrying code should be within.

◦ Rely more on JIT to optimize composed functors.

 Enhance semantics to support systematic

parameterization.

◦ Default views to limit exponential param explosion.

◦ More operations on multi-sorted algebras.

Prospectives

 Mathematical Interface Definition Language

◦ To make better sound use of external libraries.

◦ E.g. BLAS, FLINT, etc with consistent semantics.

 More use of relevant modern standards.

◦ MathML3, Unicode, HTTP, C1X, Modelica, …

 Support for collaboration.

◦ Shared spaces, roll backs, etc.

 What kind of free?

