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Previous TRICS! 

 



And now for something 

completely different…. 
 



Types in Programming Languages  

 Built from some basic types, e.g.  

◦ int, double, char, … 

 

 Composed with some built-in constructors, e.g 

◦ records, unions, functions, enumerations, objects, … 

 

 Different type systems have different properties, e.g. 

◦ Dynamic vs static, opaque vs explicit, … 

 



The Basic Building Blocks 

 Usually the built in constructors are based on 

simple ideas from mathematics. 

 

 Mapping types: 

 A → B 

 

 Cartesian product types: 

 A ×B 

 

 … and combinations:    A1×A2×A3 → R1×R2 



Properties 

 Using these basic mathematical ideas allows one 

to reason about types.   

For example the projections on Cartesian 

products model record selection. 

 

first:  A ×B  →  A 
second:  A ×B  →  B 

 



Types and execution time values 

 A type system may allow type expressions to 

have symbols bound at execution time, e.g. 

arrays of size n. 

 In this situation, we may want a type to depend 

on a run time value, such as an argument to a 

function, e.g. 
 

 (n: int) →  SquareMatrix(n, double) 
 (n: int) ×  SquareMatrix(n, double) 

 

 

 

 



Types and execution time values 

 (n: int) →  SquareMatrix(n, double) 
 (n: int) ×  SquareMatrix(n, double) 

 These are dependent types, which can be very 

powerful and useful. 

 We have given up some useful properties of 

cartesian products though.   

 

 Things get really interesting when the variables 

can themselves be types….. 

 

 

 

 



What would a language based on 

these ideas look like… 
 



Aldor 

 What is Aldor? 

 Aspects of the Aldor language. 

 Some lessons learned. 



What is Aldor? 
IBM Research  

 Initially, extension language for Scratchpad II ( Axiom). 

 First experiments 1984-1990. 

 New implementation 1990-1995. 

 Various early names, first described as A♯  (ISSAC 1994). 

 Several new features back-ported to Scratchpad II/Axiom. 

Numerical Algorithms Group 

 Distributed by NAG with Axiom 2 1995-2000 

 Used in FRISCO 1996-1999. 

Aldor.org 

 Available open source 2002-date 

 



What is Aldor? 

 Want a programming language  

for library development. 

 Programming in the small  

vs programming in the large.  

 Want abstraction, flexibility, safety and efficiency. 

 Want to model rich relations  

among mathematical objects. 



What is Aldor? 

 A higher order language for natural expression 

of mathematical programs. 

 Functional, Object-Oriented, Aspect-Oriented 

characteristics. 

 Types and functions first class values. 

 Efficiency/flexibility tradeoff achieved through 

categories and dependent typing. 

 Optimizing compiler generates intermediate 

code, then LISP or C. 



Why Math in Prog Lang Research? 

 Rich relationships among sophisticated 

abstractions. 

 Well-defined domain. 

 Many programming language ideas originated here:  

algebraic expressions, arrays, big integers, garbage 

collection, pattern matching, parametric 

polymorphism, … 



Aldor Example I 

#include "aldor" 

double(n: Integer): Integer == n + n 



Aldor Example II 

#include "aldor"  
#include "aldorio" 

 

factorial(n: Integer): Integer == { 

 p := 1; 

 for i in 1..n repeat p := p * i; 

 p 

} 

 

import from Integer; 

 

print << "factorial 10 = " << factorial 10 << newline 



Aldor Example III 

#include "aldor" 

MiniList(S: BasicType): LinearAggregate(S) == add { 

 Rep == Union(nil: Pointer,  
                    rec: Record(first: S, rest: Rep)); 

 import from Rep, SingleInteger; 

 local cons (s:S,l:%):% == per(union [s, l]); 

 local first(l: %): S == rep(l).rec.first; 

 local rest (l: %): % == rep(l).rec.rest; 

 empty (): % == per(union nil); 

 empty?(l: %):Boolean == rep(l) case nil; 

 sample: % == empty(); 

 [t: Tuple S]: % == { 

  l := empty(); 

  for i in length t..1 by -1 repeat 

   l := cons(element(t, i), l); 

  l 

 } 
 



       [g: Generator S]: % == { 

            r := empty(); for s in g repeat r := cons(s, r); 

            l := empty(); for s in r repeat l := cons(s, l); 

            l 

       } 

       generator(l: %): Generator S == generate { 

            while not empty? l repeat { 

                  yield first l; l := rest l 

            } 

       } 

       (l1: %) = (l2: %): Boolean == { 

            while not empty? l1 and not empty? l2 repeat { 

                 if first l1 ~= first l2 then return false; 

                 (l1, l2) := (rest l1, rest l2) 

            } 

            empty? l1 and empty? l2 

       } 

       ... 

} 



Aldor and Its Type System 

 Types and functions are values 

◦ May be created dynamically 

◦ Provide representations of mathematical sets and functions 

 The type system has two levels 

◦ Each value belongs to a unique type, its domain, known statically.  

◦ This is an abstract data type that gives the representation. 

◦ The domains are values with domain Domain. 
 

◦ Each value may belong to any number of subtypes of its domain. 

◦ Subtypes of Domain are called categories. 

 Categories 

◦ specify what exports (operations, constants) a domain provides. 

◦ fill the role of OO interfaces or abstract base classes. 



Why Two Levels? 

 OO inheritance pb with multi-argument fns: 

 

 class SG { “*”: (SG, SG) -> SG; } 
DoubleFloat extends SG ... 
Permutation extends SG ... 
 
x, y ∈ DoubleFloat ⊂ SG 
p, q ∈ Permutation ⊂ SG 

 

 x * y  ✓ 
p * q  ✓ 

 p * y  ✓ !!!  



Why Two Levels? 

 OO inheritance pb with multi-argument fns: 

 

 SG == ... { “*”: (%, %) -> %; } 
DoubleFloat: SG ... 
Permutation: SG ... 
 
x, y ∈ DoubleFloat ∈ SG 
p, q ∈ Permutation ∈ SG 

 

 x * y  ✓ 
p * q  ✓ 

 p * y  ✗ 



Parametric Polymorphism 

 PP is via category- and domain-producing functions. 
 

-- A function returning an integer. 

factorial(n: Integer): Integer == {  
    if n = 0 then 1 else n*factorial(n-1)  
} 
 

-- Functions returning a category and a domain. 

define Module(R: Ring): Category == Ring with { *: (R, %) -> % } 
 

Complex(R: Ring): Module(R) with { 

    complex: (%,%)->R;  real: %->R; imag: %->R; conj: % -> %; ... 

} == add { 

    Rep  == Record(real: R, imag: R);  
    0: % == … 
    1: % == … 
    (x: %) + (y: %): % == ... 

} 



Dependent Types 

 Give dynamic typing, e.g. 

 
f: (n: Integer, R: Ring, m: IntegerMod(n)) -> SqMatrix(n, R) 

 

 Recover OO through dependent products: 
 
prodl: List Record(S: Semigroup, s: S) == [ 
 [DoubleFloat, x], 
 [Permutation, p], 
 [DoubleFloat, y] 
] 

 

 With categories, guarantee required operations available: 
  

f(R: Ring)(a: R, b: R): R == a*b + b*a 

 

   



Multi-sorted Algebras 

 Category signature as a dependent product type. 

 

 ArithmeticModel: Category == with { 

  Nat: IntegralDomain; 

  Rat: Field; 

  /:   (Nat, Nat) -> Rat; 
} 



Aldor and Its Type System 

 Type producing expressions may be conditional 
 
UnivariatePolynomial(R: Ring): Module(R) with { 

     coeff: (%, Integer) -> R; 

     monomial: (R, Integer) -> %; 

     if R has Field then EuclideanDomain; 

          ... 

     } == add { 

          ... 

     } 

 

 Post facto extensions allow domains to belong to new 

categories after they have been initially defined. 



Post Facto Extension for 

Structuring Libraries 
 
DirectProduct(n: Integer, S: Set): Set with { 

      component: (Integer, %) -> S; 

      new: Tuple S -> %; 

      if S has Semigroup then Semigroup; 

      if S has Monoid then Monoid; 

      if S has Group then Group; 

      ... 

      if S has Ring then Join(Ring, Module(S)); 

      if S has Field then Join(Ring, VectorField(S)); 

      ... 

      if S has DifferentialRing then DifferentialRing; 

      if S has Ordered then Ordered; 

      ... 

} == add { ... } 



Post Facto Extension for 

Structuring Libraries 
 

DirectProduct(n: Integer, S: Set): Set with { 

    component: (Integer, %) -> S; 

    new: Tuple S -> %; 

} == add { ... } 
 
extend DirectProduct(n: Integer, S: Semigroup): Semigroup == ... 
extend DirectProduct(n: Integer, S: Monoid): Monoid == ... 
extend DirectProduct(n: Integer, S: Group): Group == ... 
... 
extend DirectProduct(n: Integer, S: Ring): Join(Ring, Module(S)) == ... 
extend DirectProduct(n: Integer, S: Field): Join(Ring, VectorField(S)) == ... 
... 
extend DirectProduct(n: Integer, S: Field): Join(Ring, VectorField(S)) == ... 
extend DirectProduct(n: Integer, S: DifferentialRing): DifferentialRing == ... 
extend DirectProduct(n: Integer, S: Ordered): Ordered == ... 
... 

 Normally these extensions would all be in separate files. 



Higher Order Operations 

 E.g. Reorganizing constructions 

 Polynomial(x) Matrix(n) Complex R ≈ 

Complex Matrix(n) Polynomial(x) R 

 

 Slightly simpler example 

 List Array String R ≈ String Array List R 



Higher Order Operations 

Ag ==> (S: BasicType) -> LinearAggregate S; 

 

swap(X:Ag, Y:Ag)(S:BasicType)(x:X Y S):Y X S ==  
[[s for s in y] for y in x]; 

 

al: Array List Integer :=  
array(list(i+j-1 for i in 1..3) for j in 1..3); 

 

la: List Array Integer :=  
swap(Array, List)(Integer)(al); 

 



Phew! 

 



Using Genericity 

LinearOrdinaryDifferentialOperator( 

     A: DifferentialRing,  

     M: LeftModule(A) with differentiate: % -> % 

) : MonogenicLinearOperator(A) with { 

     D: %; 

     apply: (%, M) -> M; 

     ... 

     if A has Field then { 

         leftDivide: (%, %) -> (quotient: %, remainder: %);        

         rightDivide:(%, %) -> (quotient: %, remainder: %); 

   … // rgcd, lgcd 

        } 

} == ...     

 



Using Genericity 

LinearOrdinaryDifferentialOperator( 

     A: DifferentialRing,  

     M: LeftModule(A) with differentiate: % -> % 

) : ... 

== SUP(A) add { 

        ... 

        if A has Field then { 

            Op    == OppositeOperator(%, A); 

            DOdiv == NonCommutativeOperatorDivision(%, A); 

            OPdiv == NonCommutativeOperatorDivision(Op,A); 

            leftDivide (a,b) == leftDivide(a, b)$DOdiv; 

            rightDivide(a,b) == leftDivide(a, b)$OPdiv; 

        } 

        ... 

} 

 



Design Principles I 

 No compromises on flexibility 

 No compromises on efficiency 

 Use optimization to bridge the gap. 
 

 Compilation.  Separate compilation. 

 Generated intermediate code is platform independent, 

even though word-sizes, etc, vary. 

 Libraries can be distributed, if desired, as binary only. 
 

 Be a good citizen in a multi-language framework. 

◦ Call and be called by C/C++/Fortran/Lisp/Maple 

◦ Functional arguments 

◦ Cooperating memory management 



Design Principles II 

 Language-defined types should have no privilege 

whatsoever over application-defined types. 

◦ Syntax, semantics (e.g. in type exprs),  

optimization (e.g. constant folding) 

 Language semantics should be independent of type. 

◦ E.g. named constants overloaded, not functions 

 Combining libraries should be easy, O(n), not O(n2). 

◦ Should be able to extend existing things with new concepts 

without touching old files or recompiling. 

 Safety through optimization removing run-time checks, 

not by leaving off the checks in the first place. 



The Compiler as an Artefact 

 Written primarily in C (C++ too immature in 1990) 

 1550 files, 295 K loc C + 65 K loc Aldor 

 Intermediate code (FOAM): 

◦ Primitive types: booleans, bytes, chars, numeric, arrays, closures 

◦ Primitive operations: data access, control, data operations 

 Runtime system: 

◦ Memory management 

◦ Big integers 

◦ Stack unwinding 

◦ Export lookup from domains 

◦ Dynamic linking 

◦ Written in C and Aldor 



Example of Optimization 

From the domain Segment(E: OrderedAbelianMonoid) 
generator(seg:Segment E):Generator E == generate { 

    (a, b) := (low seg, hi seg); 

    while a <= b repeat { yield a; a := a + 1 } 

} 

From the domain List(S: Set) 

generator(l: List S): Generator S == generate { 

    while not null? l repeat { yield first l; l := rest l } 

} 

Client code 

client() == { 

    ar := array(...);  li := list(...); 

    s := 0; 

    for i in 1..#ar for e in l repeat { s := s + ar.i + e } 

    stdout << s 

} 



How Generators Work 
generator(seg:Segment Int):Generator Int 
== generate { 

   a := lo seg; 

   b := hi seg; 

   while a <= b repeat {  
    yield a; a := a + 1  
} 

} 

 

client() == { 

    ar := array(...); 

    s  := 0; 

    for i in 1..#ar repeat  
      s := s + a.i; 

    stdout << s 

} 



Example of Optimization (again) 

From the domain Segment(E: OrderedAbelianMonoid) 
generator(seg:Segment E):Generator E == generate { 

    (a, b) := (low seg, hi seg); 

    while a <= b repeat { yield a; a := a + 1 } 

} 

From the domain List(S: Set) 

generator(l: List S): Generator S == generate { 

    while not null? l repeat { yield first l; l := rest l } 

} 

Client code 

client() == { 

    ar := array(...);  li := list(...); 

    s := 0;   -- NOTE PARALLEL TRAVERSAL. 

    for i in 1..#ar for e in l repeat { s := s + ar.i + e } 

    stdout << s 

} 



Inlined 
B0:  ar := array(...); 

     l := list(...); 

     segment := 1..#ar; 

     lab1 := B2; 
     l2 := l; 

     lab2 := B9; 
     s := 0; 

     goto B1; 

B1:  goto @lab1; 
B2:  a := segment.lo; 

     b := segment.hi; 

     goto B3; 

B3:  if a > b then goto B6; else goto B4; 

B4:  lab1 := B5; 
     val1 := a; 

     goto B7; 

B5:  a := a + 1 

     goto B3; 

B6:  lab1 := B7; 
     goto B7; 

B7:  if lab1 == B7 then goto B16; else goto B8 
B8:  i := val1; 

     goto @lab2; 

B9:  goto B10 

B10: if null? l2 then goto B13; else goto B11 

B11: lab2 := B12 
     val2 := first l2; 

     goto B14; 

B12: l2 := rest l2 

     goto B10 

B13: lab2 := B14 
     goto B14 

B14: if lab2 == B14 then goto B16; else goto B15 
B15: e := val2; 

     s := s + ar.i + e 

     goto B1; 

B16: stdout << s 



Clone Blocks for 1st Iterator 



Dataflow 

[lab1 == B2, lab1 == B5, lab1 == B7] 



Resolution of 1st Iterator 



Clone Blocks for 2nd Iterator 



Resolution of 2nd Iterator 

client() == { 

      ar := array(...); 

      l  := list(...); 

      l2 := l; 

      s  := 0; 

      a  := 1; 

      b  := #ar; 

      if a > b then goto L2 

L1:  if null? l2 then goto L2 

      e := first l2; 

      s := s + ar.a + e 

      a := a + 1 

      if a > b then goto L2 

      l2 := rest l2 

      goto L1 

L2:  stdout << s 

} 



Aldor vs C (non-floating pt) 



Aldor vs C (floating point) 



Lessons Learned 

 It is possible to be elegant, abstract and high-level 

without sacrificing significant efficiency.   

 Well-known optimization techniques can be effectively 

adapted to the symbolic setting. 

 Optimization of generated C code is not enough. 

 

 Procedural integration, dataflow analysis, subexpression 

elimination and constant folding are the primary wins. 

 Compile-time memory optimization, including data 

structure elimination, is important. 

◦ Removes boxing/unboxing, closure creation, dynamic allocation 

of local objects, etc.   Can move hot fields into registers. 



Conclusions 

 Language design 20+ years old. 

◦ In the mean time, many of the ideas now mainstream. 

◦ Many still are not. 
 

 Mathematics is a valuable canary  

in the coal mine of general purpose software. 

◦ The general world lags in recognizing needs. 
 

 It has to be free. 

◦ Free1 is the standard price.    

◦ Free2  is required for engagement. 

 



Prospectives 

 New prospects for optimization: 

◦ Allowing opaque types to assert identities – use in  

optimization.  Proof-carrying code should be within.  

◦ Rely more on JIT to optimize composed functors. 
 

 Enhance semantics to support systematic 

parameterization. 

◦ Default views to limit exponential param explosion. 

◦ More operations on multi-sorted algebras. 
 



Prospectives 
 

 Mathematical Interface Definition Language 

◦ To make better sound use of external libraries. 

◦ E.g. BLAS, FLINT, etc with consistent semantics. 
 

 More use of relevant modern standards. 

◦ MathML3, Unicode, HTTP, C1X, Modelica, … 
 

 Support for collaboration. 

◦ Shared spaces, roll backs, etc. 

 

 What kind of free? 




