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This paper adds a number of novel concepts into global 120000
s/t cut methods improving their efficiency and making them
relevant for a wider class of applications in vision where
algorithms should ideally run in real-time. Our new Active
Cuts (AC) method can effectively use a good approximate :

solution (initial cut) that is often available in dynamid: h (a) Active cuts (b) Cost of intermediate cuts

erarchical, and multi-label optimization problems in si
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In many problems AC works faster than the state-of-the-art Figure 1. Active cuts in image segmentation (a). Initial tut
shown in red color. Intermediate cuts (displayed in différeol-

max-flow methods [2] even if initial CL_Jt is far from the opti- ors) gradually “carve” out the global minima solution thata-
mal one. Moreover, empirical speed improves several folds ey follows object boundary. The cost of intermediates@nd
when initial cut is spatially close to the optima. Before €on  their Hausdorff Distance to the global optima decreasenie {{b).

verging to a global minima, Active Cuts outputs a multitude
of intermediate solutions (intermediate cuts) that, for ex
—s—Hausdorf distance

ample, can be used be accelerate iterative learning-based
methods or to improve visual perception of graph cuts real-
time performance when large volumetric data is segmented.
Finally, it can also be combined with many previous meth-
ods for accelerating graph cuts.
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(a) Initial cuts (b) Run time

1. Introduction and Related Work Figure 2. Active cuts can start from any initial cut (greercigis)

. . . in (a). Plots (b) show that the running time until convergeta
Our Active Cutsmethod has three major properties a global minima strongly correlates with a Hausdorff diseabe-

which, to the best of our knowledge, are fairly unique for yyeen initial cut and the actual minimum cut. The horizoabek

s/t cuts algorithms. in (b) shows the radius of initial solution.
e Initial Cut: Normally, min-cut/max-flow algorithms
compute global optima solutions which do not depend relates with a Hausdorff distance between initial cut
on any initialization. This explains why standard com- and a globally optimal cut it computes (Fig.2).

binatorial techniques do not really use a concept of

initial cut. However, applications in vision often give ¢ Intermediate Cuts Standard combinatorial optimiza-
some reasonable initial guess. Active Cuts is a new ap- tion algorithms generate only one good solution
proach to solving max-flow/min-cut problems that can (global optima cut) computed at termination. In con-
start from any initial cut. Its running time directly cor- trast, our method outputs a sequence of cuts of decreas-
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ing cost (Fig.1) as it converges to a global minima. In for Active Cuts at a fine scale can be obtained from an op-
computer vision, it is often beneficial to have a multi- timal solution at a coarse scale. In contrast to earlierimult
tude of good solutions which could be used for learn- level graph cut methods [10], we preserve global optimality
ing and robustness analysis. Intermediate cuts can be The paper is organized as follows. We first present an
efficiently used in dynamic applications. They can also overview of standard max-flow/min-cut algorithms (Sec-
improve interactivity and visual perception of the real- tion 2). Our Active Cuts method was inspired by a num-
time performance of graph cuts on large data sets. ber of recent ideas and Section 3 explains how we combine
them in a novel way based on our motivation to efficiently
- > attl d ! solve problems in computer vision. Sections 4 presents re-
standard combinatorial optimization algorithms for gts of our experimental evaluation of Active Cuts on a

s/t cuts [6, 7]. We uspseudoflow§7] allowing nodes  ,ymber of generic problems in static, dynamic, and hier-
with positive flowexcesseand negativeleficits How- archical image segmentation.

ever, our algorithm takes a symmetric approach com-

plementary to [7]. Both excesses and deficits are ac- .
tively pushed/pulled in the opposite directions away 2. Standard Algorithms for S/t Graph Cuts

from a given initial cut towards the terminalsindt. Combinatorial optimization community has a long his-
tory of research on algorithms for min-cut/max-flow prob-
lems on directed weighted grapéis= (£, V). In the early
60’s Ford and Fulkerson [5] showed duality between these
two problems. In particular, they showed that a maximum
flow from a given source € V to a given sink € V “sat-
urates” a minimum cost/t cut onG. This result gave a
first polynomial method for computing globally minimum

e Symmetry Active Cuts approach adds symmetry into

Recently, significant research efforts were devoted to ef-
ficiency of max-flow/min-cut methods in image segmenta-
tion [2, 9, 10]. We tested AC method in some basic applica-
tions of graph cuts to object/background extraction [1]- De
spite polynomial complexity of graph cuts, computing glob-
ally optimal solutions for large images or volumes in real-
time is still a challenge. Narrow bands can be used to im- s/t cuts via theshortest augmenting patimsax-flow algo-
prove efficiency [10, 13] by sacrificing glqbal optimality. | rithm [5]. Later, Dinic [4] established solid grounds forthe
contrast, we demonstrate a number of different ways Whereter polynomial complexity max-flow algorithms by reduc-
unigue properties of Active Cuts allow to achieve much bet-

ter practical efficiency without loosing globally optimtsli ing the maximum network flow problem into a sequence of
P . ey utloosing g 1y op iy blocking flowproblems. Until the late 80's, the majority
Even in tests with poor initialization Active Cuts gave

ither comparable or better d than the max-flow t hof efficient min-cut/max-flow techniques were based on the
ether comparable or better speed than the max-llow 1€, 42 mental work of Dinic [4]. Later generations of practi-
nique in [2] which is widely used in vision. If a good initial

lution i ided then Active Cut te aloball cally much more efficient algorithms for max-flow/min-cut
solution 1S provided then Active &-uts compute giobarly op- problem were based on ideas generalizing the basic con-
timal cut 2-10 times faster than [2], while initial solutigs

£ no helo t _ + cut algorith Th ical ¢ cept of a graplilow[8]. Our Active Cuts algorithm is using
ornohelp to prewous/_ cut algoriinms. Theoreticalwors pseudoflowswhich is one of such generalizations recently
case complexity of Active Cuts is similar to [2].

We also demonstrate applications of Active Cuts to other introduced by Hochbaum [7].
prob]ems where initial ;oluuo_n IS ”a‘“'fa"y avallgble:-dy 2.1. From Feasible Flowto Preflowand Pseudoflow
namic video segmentation, object tracking, and hieraethic
segmentation of large images/volumes. Earlier graph cut algorithms [5, 4] worked with feasible
Earlier methods for accelerating graph cuts in video were flows. Feasibility of a network flow normally implies that
reusing flows from previous frames [9]. They use [2] as a flow at each specific edge should not exceed its capacity
a basic algorithm but “recycle” flow and other data struc- and that the total amount of infloix,, that enters each node
tures from frame-to-frame. Instead of recycling flows, our p should be equal to the amount of outflewt, from that
AC algorithm can recycle cuts from previous frames. We node. Relaxing flow conservation constraint was suggested
show that AC running time is proportional to the amount by Karzanov [8] who useg@reflowswhere any graph node
of motion between two consecutive frames. In our prelimi- p can have a positive flow excess, = in, — out, > 0.
nary tests AC gave comparable or even better speed-up rain fact, many min-cut/max-flow algorithms that are cur-
tio with respect to [2] than the ratios reported in [9]. More rently considered the state-of-the-art in the combinatori
importantly, however, in addition to recycling cuts AC al- optimization community are based on generalized network
gorithm can also recycle flows and other internal data struc-flows relaxing conservation constraint.
tures which will likely give even stronger speed-up. In athe For example, preflow is an important component of a
words, it is possible to combine flow and cut recycling. very widely usedpush-relabellgorithm of Goldberg [6].
We also tested Active Cuts for hierarchical image seg- Typically, the algorithm starts with an initial preflow wieer
mentation which is important for large data sets. Initial cu all edges from source are saturated generating positive
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excessesit nodes adjacent ta. These excesses are then In contrast, preflow and pseudoflow algorithms [6, 7] use
pushedowards sinkt based on node labels approximating “optimistic” strategies where flow/excess is pushed toward
distances to the sink. Pushing excess 0 from nodep to ¢ the sink in a sequence of local node-to-node steps. If some
changes residual capacities of the eflge) and itsreverse  excess gets stuck at some node due to a weak local edge,

edge(q, p) as follows there is a chance it may find an alternative path towards the
B sink (see Sec. 2.3). This is not guaranteed, however, and
Wp,g) = Wipg) ~ € 1) eventually some excesses get stuck.
Wigp) = Wgp) T€
The excess values at nogeandg are updated as well 2.3. Finding Pathsvia Dynamic Trees
A, = Ap—e A technique for finding non-saturated paths between the
A, = Aj+e (2) source and the sink is an important component of all stan-

dard max-flow/min-cut algorithms. The main problem is
Note that edge capacities have to remain non-negativethat pushing flow/excesses along a path changes residual
and no edge can transmit an excess exceeding its currendqge capacities and a set of non-saturated paths constantly
residual capacity. As edges become saturated (zero résidughanges. Efficient dynamic data structure for maintaining
capacity), eventually the remaining excesses cannot find a3 system of non-saturated— ¢ paths is a must. Besides,
path to the sink. Such excesses have to return back to thgych a system should maintain the shortest possible paths.
source. The algorithm terminates when all excesses disap- Eqr example, the original augmenting paths algorithm of
pear; they either reach the sink or return back to the sourcegord and Fulkerson [5] recomputes the shortest augmenting
At this point flow conservation is restored and algorithm's ¢ _, ; path after each iteration via Dijkstra’s algorithm.
preflow turns into a feasible flow. This flow is also guaran- pHowever, pushing flow along a path may saturate only one

teed to be a maximum flow. edge and scanning the whole graph in order to recompute a
The concept of preflow on a graph was recently further ew shortest path may not be the best approach.
generalized by Hochbaum [7]. She ugseudoflovallow- More efficient methods usgynamic treedata structures

ing nodes with either positivexcesses\, > 0, ornegative  for path maintenance. Such trees are often initialized by Di
deficits A, < 0. Similarly to push-relabel, Hochbaum's al-  jystra’s algorithm which may compute a tree of the shortest
gorithm starts by saturating all edges from the source andjpaths from the sink to other nodes. As an edge in that tree
creating positive excesses at nodes adjacent to it. Moresg saturated, the tree splits into two. Dynamic tree should
over, all edges to the sink are saturated too and negativestficiently add another non-saturated edge to restore con-
deficits are created at nodes adjacent to the sink. Then, thg,ectedness while preserving short distances to the root, if
algorithm pushes excesses towards the deficits along NONpossible. [12] proposed such dynamic trees in the context
saturated edges using pqths efficiently computed using ary¢ augmenting path max-flow algorithms. [2] describe an-
elegant system of dynamic trees. The algorithm outputs agther dynamic tree structure that proved to be practical for
minimum cost cut when excesses become completely dis-|arge sparse grids common in computer vision.
connected fr_om deficits by saturated edges. Uplike pl_Jsh- Note that preflow and pseudoflow algorithms also use
relabel algorithm, Hochbaum's method may terminate with- some explicit or implicit dynamic trees to determine what
out a feasible maximum flow WhICh, however, could be de- 5 5 “good” path. For example, push-relabel algorithm [6]
termined at additional computational cost. implicitly represents some tree (or a forest) via node kabel
Rules for node relabeling implicitly update this tree/f&tre
when some edges become saturated. Label-based approach
Intuitively, all standard max-flow/min-cut algorithms are to path-trees has one issue; when a node is relabelled its de-
different techniques for pushing flow/excesses from the scendants are not automatically updated which is typical fo
source to the sink. Most methods agree that flow or ex- explicit trees. Thus, paths in push-relabel may quickly be-
cesses should be pushed along short non-satusatedt come sub-optimal and, in practice, excesses motion pattern
paths (see Sec. 2.3 on techniques for finding such paths)often resembles Brownian motion. This is why it is com-
There is much more variation in approaching other basic mon to useglobal relabelingheuristic in push-relabel that
issues: how much flow/excess to push and how far. once in a while runs Dijkstra’s algorithm to restore a good
For example, max-flow algorithms based on augmenting labeling (tree).
paths [5, 4] find a non-saturated path from the source to the Hochbaum’s pseudoflow-based algorithm [7] explicitly
sink, determine its bottleneck capacity, and push the eorre uses a forest of dynamic trees rooted at excess/deficit nodes
sponding amount of flow (excess) all the way fraro ¢. Each tree grows until some excess tree touches a deficit tree
This is a “conservative” pushing strategy; no flow is ever giving a non-saturated path from this excess to the corre-
pushed unless it is known that it can reach the sink. sponding deficit.

2.2. Strategies for Pushing Flow
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(@) (b)

Figure 4. A deficit (a) is equivalent to a t-link to the sink.(i)-
deed, pushing flowd along the t-link in (b) would saturate this
t-link and create a deficitas in (a). Similarly, any excess is equiv-
alent to a t-link from the source. These ideas are describgd.i

side of the cut and negative flow deficitg, = —w
the boundary nodegs e S on the source side.

In order to solve max-flow problem our method converts
a pseudoflow into a feasible flow while maintaining some
saturated cut. The general structure of Active Cuts method
is summarized by the following one-line pseudocode:

p.g) &

ACTIVE CUTS:
whil e (push_pull ()==STUCK) recut();

Current cut C effectively separates the excesses and
deficits into two sub-graph§ and7 (Fig.3). Operation

push_pul | () should independently “push” excesses (+)
Figure 3. The main steps éictive Cutsapproach to solving min- towards the sink and “pull” deficits (-) towards the source

imum costs /¢ cut problems on general directed graphs. We show k€eping them separated withif and S, correspondingly.
a simple 2D grid example. On each sub-graph we can use any of the flow pushing

strategies discusses in Section 2.3. Our only requirersent i
) that functionpush_pul | () should return in polynomial
3. Active Cuts M ethod time with two possible outcomes:

(c) Switching to a lower cost cut

Our approach to solving max-flow/min-cut problems is ¢ STUCK: some excesses or deficits are separated from
motivated by applications of graph cuts in computer vision the corresponding terminal by saturated edges, Fig.3b
and by new insights about existing methods in Section 2.

Our method combines ideas of [6, 7, 2, 12] in a novel way. e DONE: all excesses and deficits reached the terminals
As discussed in Section 1, our approach has three fairly ) ] )
unique new aspects: arbitrary initial cuts, converging in- N Particular,push_pul | can be implemented by directly

termediate cuts, and symmetry. applying push-relabel style operations [6] independeintly
each sub-graph. Section 3.2 describes practically more ef-

ficient implementation of operatiquush_pul | using two
independent dynamic trees similar to [2]. These trees have

We are interested in a min-cut algorithm that can start roots at the source and at the sink (see Fig.3) and span nodes
at any given cutC = {S,7 } where cutC is defined by a  using non-saturated edges.

3.1. Algorithm’s outline

binary partitioning of graph nodes into two subsgtand7 As easy to show, ipush_pul | returnsSTUCK then
such thats € S andt € 7. We will refer to subsets and we found a lower cost cut, Fig.3(b). In fact, the new cut
T as a source and a sink components of@ut is cheaper than the previous one by the total amount of

One natural choice of initialization is a pseudoflow trapped excess (or deficit). Theecut operation should
shown in Figure 3 (a). We can start from any initial €uby simply eliminates all trapped excesses or deficits by con-
saturating all edges on the boundary between its source anderting them into t-links as shown in Figure 4. After re-
sink component$S,7) = {(p,q) € £ : p € S,q € T}. cutting, Fig.3(c), we can continue push_pul | excesses
This local edge saturation operation creates positive flow and deficits towards the terminals. The algorithm stops with
excessed, = w, ) atboundary nodeg< 7 on the sink a globally optimal cut whepush_pul | returnsDONE.
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to leaves toroot 7 There a number of options in implementing the ac-
tual pushing/pulling. We chose to push the farthest ex-
cesses/deficits. We retuBTUCK as soon as some nodes
can not be reached by a tree. This strategy generates a larger
from leaves from leaves number of gradely moving intermediate cuts. These and
o} some other tunings may affect practical performance. We
toroot T chose the same tuning in all our experiments.

SOABI[ 0
from leaves

4. Applications and Evaluation

SOAEBI] 0]
from leaves

from root 5 from leaves from leaves We tested AC method in applications of graph cuts to
) - _ ) object segmentation [1]. Figure 2 clearly shows that the
(a) Pullingdeficitto source  (b) Pushingxcesso sink Hausdorff distance between initial and optimal segmenta-

tion is strongly correlated to the running time of the algo-
rithm. We therefore expect that a “closer” initial cut will
yield greater performance. Our experiments show that an
initial cut based on a Voronoi partition still gives good re
3.2. Implementing PusHPULL via dynamic trees sults. However, the closer the initial cut to the optimal, cut
the faster the convergence. Besides static object segmenta
As illustrated in Figure 3, we use two dynamic trees; a tjon, we test this idiom in dynamic applicationstegycling
source tregred) directs deficits to the source ansiak tree  cutsfrom previous frames and in hierarchical tests where
(blue) directs excesses to the sink. Figure 5 zooms in somenitial cut is obtained from courser scales.
details in each tree. Note that the source tree (a) connects
podes tq thg source via edge§ (red) that are non-saturated 1 gtatic Segmentation
in the direction from the terminal towards the leaf nodes.
The sink tree (b) connects nodes to the sink via edges (blue) For image segmentation, one should provide an initial
that are non-saturated in the direction from leafs towards cut for our algorithm. This could be a Voronoi partitioning
the terminal. Due to saturated edges on the curren€cut  (Fig. 6), a circular area provided by the user (Fig. 1 and 7)
the source and the sink trees can never overlap. As excesse¥ some other prior (shape, color, texture...). Howeves, th
and deficits move along the edges on the trees, we maininitialization should be carefully chosen as the speed of ou
tain short paths on both trees dynamically mainly based onalgorithm is correlated with the Hausdorff distance betwee
ideas described in [2]. Both trees maintain the following initial and optimal segmentation as shown in Figure 2.

Figure 5. Excesses and deficits move towards the terminaés on
directed graph using two dynamic trees with source and siotsr

properties: We remarked that successive cuts often appeeartee
the initial segmentation towards the global minima. A se-
e Atree is rooted at a terminal guence of better cuts approaching a global optima can be
viewed as a sequence of good local solutions @&y be
e Atree spans all nodes “reachable” from a root used in third party algorithms for estimating confidence of
the segmentation results. These cuts may also prove use-
e All edges included in a tree are non-saturated ful for updating statistical properties of regions on theitily

o applications such as GrabCuts [11].

Note symmetric dlﬁerence§ between the push and the * o, algorithm is typically twice faster than [2]. How-
pull operations illustrated in Figure 5. We use a push 0p- ger on some “difficult” examples, the two algorithms are
eration as in [6, 7]. A flow excess can be pushed fiofo .\ yarapie. Note, that pushing and pulling on two sifles
g only along non-saturated edge ¢). The amountof sent 4,47 of the current cut can be easily run in parallel on dual

excess should not exceed capadity, ). Sending excess  ,,asq0rs which may further improve our method.
0 < e <A, fromp to g requires updates of edge capacities

(1) and node excess values (2).

Unlike [6] and [7], we also actively move deficits using
a symmetrically defined “pull” operation. A flow deficit Given that our algorithm can take advantage of a close
can be pulled from nodeto ¢ only if reverse edgéy, p) is initial cut, one natural application is segmentation of dy-
non-saturated. The amount of deficit sent should not exceechamic video images. Spatio-temporal consistency between
capacityw, ). In fact, sending deficit > ¢ > A, fromp consequtive video frames allows to use an optimal cut from
to ¢ corresponds to the same updates (1) and (2) except thathe previous frame as a good initial cut for the current frame
now e is negative. (cut recycling. Note that spatio-temporal consistency of

4.2. Dynamic Segmentation
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Algorithm Time
MaxFlow (BK) 18.15ms
ActiveCut 18.52ms

Level 2: 0.70ms
Hierarchical Level 1:0.61ms
ActiveCut Level 0 : 8.59ms
Total : 9.90ms

Figure 9. Hierarchical segmentation using 16-Neighbodhdeor
each level, initial cut is set to an optimal cut/segmentafifom
the previous level, the deepest level is initialized usioms im-
age partition (like Voronoi partition). Speed of our aligom is
achieved when good initializations are provided. Hieraaktseg-
mentation is an elegant way to estimate a minimum s/t-cutleTa
gives timing comparison for maxflow/mincut algorithm in gid
our method using standard initialization (Moronoi paoti) and hi-
erarchical initialization with only 2 levels of decimatio®ne can
see a speed improvement of approximately a factor of 2.

Figure 6. Lung lobe segmentation is difficult due significamige
clutter (a) and a large number of strong local minima. Ihtia is
shown in purple color (b). The final (global minima) cut actety
follows a faint fissure boundary between two lobes (in ye)low
The cost of cuts (blue plot) and their Hausdorff distancd fiet)
from the global optima decrease in time. Starting from a temo
initial solution Active Cuts converges to a global minimadevas
fast (33ms) as the state of the art max-flow algorithm in [2)(6).

N

100000 8000
80000 Q = 6000 Algorithm Time
MaxFlow (BK) 26.47ms
ActiveCut 19.98ms

Level 2: 0.45ms
Hierarchical Level 1: 2.14ms
ActiveCut Level 0 : 16.95ms
Total : 19.54ms

60000 A\
\-.-H...._H_% - 4000
40000
—Cost {4 2000
20000

R Ol 0
(a) Active cuts (b) Cost of intermediate cuts
Figure 10. Hierarchical segmentation using 4-Neighbodhaod
Figure 7. Clown fish segmentation over structured backgrdah directed edges (dark object prior). Optimal segmentatiomf
Initial cut is a red circle given by the user. The final (globd@h- coarse scale is used to initialize fine scale. Speed of tharhie
ima) cut accurately follows the fish external contours witthioe- chical approach is better but deceiving in this case. Howyéke

coming stuck on local minima in the clown disguise. The cost internal structure on the lung lobe makes it difficult to segtn
of cuts (blue plot) and their Hausdorff distance from thebglo and the timing table confirms thatL@vel 0) remains the most
optima (red plot) decrease in time (b). Active cuts convema time-consuming computation.

globally minimal cut almost twice as fast (4.4ms) as theestdt

the art max-flow/min-cut algorithm in [2] (7.7ms).

cuts” have recently been used to accelerate graph cuts, but

video data was recently used by Kohli and Torr [9] to accel- the narrow band technique of [10] sacrifices global optimal-
erate graph cuts vilow recycling. ity by limiting the scope of the solution. In contrast, we

Figure 8 shows an example of video segmentation for simply use the coarse cut as our initial cut on the full graph,
hand tracking. On average, our algorithm is 5 times fasterthereby retaining global optimality. Figure 9 shows an ex-
than the maxflow algorithm in [2]. Similar to conclusions ample of hierarchical initialization on large neighbordoo
from Figure 2, the time of convergence depends on theusing only 2 levels of decimation. In this example, speed
amount of change between two consecutive frames. is improved by an order of 2 even though our hierarchical

Note that theflow recyclingtechnique [9] is fundamen-  implementation itself is not optimized.
tally different from ourcut recyclingmethod. We believe

that the two can be combined for a multiplied effect. Our hierarchical algorithm does, on occasion, provide no

significant speed up. Figure 10 shows a case were a \Voronoi
initial cut gives convergence as quickly as an initial cut-ge
erated by our hierarchical approach. By looking at the table

For static segmentation, ideally one should use prior one can see that most time is spent in thevel 0 step. The
knowledge to estimate the segmentation (shape, color, tex<luttered patterns inside the lung lobe makes segmentation
ture...). However, if no prior is available, a hierarchiapt more difficult because there are many strong local minima
proach provides an elegant way to initialize our algorithm in the problem and the algorithm must explore all of them
by using segmentation of sub-sampled data. Such “coarseo find the global optima.

4.3. Hierarchical Segmentation
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Figure 8. Dynamic segmentation of a video sequence. Actit @gorithm (yellow) runs 2-6 times faster than the stdtthe-art max-
flow algorithm in [2] (red). In each new frame initial cut iss$®m an optimal cut in the previous frame. Our algorithnpeed is almost
linearly proportional to the magnitude of motion (Hauséladlittance between the segments in consecutive framesu@).bNote that
active cuts can be further accelerated in dynamic applicatby “recycling” flow computed in the previous frame [9].

5. Conclusions and Future Work

Our new Active Cuts (AC) approach to max-flow/min- g

cut problems significantly improves practical efficiency (2
6 times) and applicability of graph cuts to many problems
in image analysis. The method effectively uses initial cuts
that are often available in dynamic and hierarchical appli-
cations. Such initial solutions are also available in itera
tive multilabel optimization techniques like-expansions
[3]. AC outputs a sequence of improving intermediate so- [4]
lutions that, for example, can be used be accelerate itera- 5
tive learning-based methods, e.g. [11]. We are working on
combining active cuts witlow recycling9]. Narrow-band
techniques [10, 13] can also benefit from our AC approach.
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