
In IEEE conference on Computer Vision and Pattern Recognition (CVPR), New York, June 2006, vol. I, p.1023

Active Graph Cuts

Olivier Juan
CERTIS, Ecole Nationale des Ponts et Chaussees

Champs-sur-Marne, France
juan@certis.enpc.fr

Yuri Boykov
Computer Science Dpt., University of Western Ontario

London, ON, Canada
yuri@csd.uwo.ca

Abstract

This paper adds a number of novel concepts into global
s/t cut methods improving their efficiency and making them
relevant for a wider class of applications in vision where
algorithms should ideally run in real-time. Our new Active
Cuts (AC) method can effectively use a good approximate
solution (initial cut) that is often available in dynamic, hi-
erarchical, and multi-label optimization problems in vision.
In many problems AC works faster than the state-of-the-art
max-flow methods [2] even if initial cut is far from the opti-
mal one. Moreover, empirical speed improves several folds
when initial cut is spatially close to the optima. Before con-
verging to a global minima, Active Cuts outputs a multitude
of intermediate solutions (intermediate cuts) that, for ex-
ample, can be used be accelerate iterative learning-based
methods or to improve visual perception of graph cuts real-
time performance when large volumetric data is segmented.
Finally, it can also be combined with many previous meth-
ods for accelerating graph cuts.

1. Introduction and Related Work

Our Active Cutsmethod has three major properties
which, to the best of our knowledge, are fairly unique for
s/t cuts algorithms.

• Initial Cut: Normally, min-cut/max-flow algorithms
compute global optima solutions which do not depend
on any initialization. This explains why standard com-
binatorial techniques do not really use a concept of
initial cut. However, applications in vision often give
some reasonable initial guess. Active Cuts is a new ap-
proach to solving max-flow/min-cut problems that can
start from any initial cut. Its running time directly cor-

(a) Active cuts (b) Cost of intermediate cuts

Figure 1. Active cuts in image segmentation (a). Initial cutis
shown in red color. Intermediate cuts (displayed in different col-
ors) gradually “carve” out the global minima solution that accu-
rately follows object boundary. The cost of intermediate cuts and
their Hausdorff Distance to the global optima decrease in time (b).

(a) Initial cuts (b) Run time

Figure 2. Active cuts can start from any initial cut (green circles)
in (a). Plots (b) show that the running time until convergence to
a global minima strongly correlates with a Hausdorff distance be-
tween initial cut and the actual minimum cut. The horizontalaxis
in (b) shows the radius of initial solution.

relates with a Hausdorff distance between initial cut
and a globally optimal cut it computes (Fig.2).

• Intermediate Cuts: Standard combinatorial optimiza-
tion algorithms generate only one good solution
(global optima cut) computed at termination. In con-
trast, our method outputs a sequence of cuts of decreas-



In IEEE conference on Computer Vision and Pattern Recognition (CVPR), New York, June 2006, vol. I, p.1024

ing cost (Fig.1) as it converges to a global minima. In
computer vision, it is often beneficial to have a multi-
tude of good solutions which could be used for learn-
ing and robustness analysis. Intermediate cuts can be
efficiently used in dynamic applications. They can also
improve interactivity and visual perception of the real-
time performance of graph cuts on large data sets.

• Symmetry: Active Cuts approach adds symmetry into
standard combinatorial optimization algorithms for
s/t cuts [6, 7]. We usepseudoflows[7] allowing nodes
with positive flowexcessesand negativedeficits. How-
ever, our algorithm takes a symmetric approach com-
plementary to [7]. Both excesses and deficits are ac-
tively pushed/pulled in the opposite directions away
from a given initial cut towards the terminalss andt.

Recently, significant research efforts were devoted to ef-
ficiency of max-flow/min-cut methods in image segmenta-
tion [2, 9, 10]. We tested AC method in some basic applica-
tions of graph cuts to object/background extraction [1]. De-
spite polynomial complexity of graph cuts, computing glob-
ally optimal solutions for large images or volumes in real-
time is still a challenge. Narrow bands can be used to im-
prove efficiency [10, 13] by sacrificing global optimality. In
contrast, we demonstrate a number of different ways where
unique properties of Active Cuts allow to achieve much bet-
ter practical efficiency without loosing globally optimality.

Even in tests with poor initialization Active Cuts gave
either comparable or better speed than the max-flow tech-
nique in [2] which is widely used in vision. If a good initial
solution is provided then Active Cuts compute globally op-
timal cut 2-10 times faster than [2], while initial solutionis
of no help to previouss/t cut algorithms. Theoretical worst
case complexity of Active Cuts is similar to [2].

We also demonstrate applications of Active Cuts to other
problems where initial solution is naturally available: dy-
namic video segmentation, object tracking, and hierarchical
segmentation of large images/volumes.

Earlier methods for accelerating graph cuts in video were
reusing flows from previous frames [9]. They use [2] as
a basic algorithm but “recycle” flow and other data struc-
tures from frame-to-frame. Instead of recycling flows, our
AC algorithm can recycle cuts from previous frames. We
show that AC running time is proportional to the amount
of motion between two consecutive frames. In our prelimi-
nary tests AC gave comparable or even better speed-up ra-
tio with respect to [2] than the ratios reported in [9]. More
importantly, however, in addition to recycling cuts AC al-
gorithm can also recycle flows and other internal data struc-
tures which will likely give even stronger speed-up. In other
words, it is possible to combine flow and cut recycling.

We also tested Active Cuts for hierarchical image seg-
mentation which is important for large data sets. Initial cut

for Active Cuts at a fine scale can be obtained from an op-
timal solution at a coarse scale. In contrast to earlier multi-
level graph cut methods [10], we preserve global optimality.

The paper is organized as follows. We first present an
overview of standard max-flow/min-cut algorithms (Sec-
tion 2). Our Active Cuts method was inspired by a num-
ber of recent ideas and Section 3 explains how we combine
them in a novel way based on our motivation to efficiently
solve problems in computer vision. Sections 4 presents re-
sults of our experimental evaluation of Active Cuts on a
number of generic problems in static, dynamic, and hier-
archical image segmentation.

2. Standard Algorithms for s/t Graph Cuts

Combinatorial optimization community has a long his-
tory of research on algorithms for min-cut/max-flow prob-
lems on directed weighted graphsG = 〈E ,V〉. In the early
60’s Ford and Fulkerson [5] showed duality between these
two problems. In particular, they showed that a maximum
flow from a given sources ∈ V to a given sinkt ∈ V “sat-
urates” a minimum costs/t cut onG. This result gave a
first polynomial method for computing globally minimum
s/t cuts via theshortest augmenting pathsmax-flow algo-
rithm [5]. Later, Dinic [4] established solid grounds for bet-
ter polynomial complexity max-flow algorithms by reduc-
ing the maximum network flow problem into a sequence of
blocking flowproblems. Until the late 80’s, the majority
of efficient min-cut/max-flow techniques were based on the
fundamental work of Dinic [4]. Later generations of practi-
cally much more efficient algorithms for max-flow/min-cut
problem were based on ideas generalizing the basic con-
cept of a graphflow [8]. Our Active Cuts algorithm is using
pseudoflows, which is one of such generalizations recently
introduced by Hochbaum [7].

2.1. From Feasible Flowto Preflowand Pseudoflow

Earlier graph cut algorithms [5, 4] worked with feasible
flows. Feasibility of a network flow normally implies that
a flow at each specific edge should not exceed its capacity
and that the total amount of inflowinp that enters each node
p should be equal to the amount of outflowoutp from that
node. Relaxing flow conservation constraint was suggested
by Karzanov [8] who usedpreflowswhere any graph node
p can have a positive flow excess∆p = inp − outp ≥ 0.
In fact, many min-cut/max-flow algorithms that are cur-
rently considered the state-of-the-art in the combinatorial
optimization community are based on generalized network
flows relaxing conservation constraint.

For example, preflow is an important component of a
very widely usedpush-relabelalgorithm of Goldberg [6].
Typically, the algorithm starts with an initial preflow where
all edges from sources are saturated generating positive



In IEEE conference on Computer Vision and Pattern Recognition (CVPR), New York, June 2006, vol. I, p.1025

excessesat nodes adjacent tos. These excesses are then
pushedtowards sinkt based on node labels approximating
distances to the sink. Pushing excessε > 0 from nodep to q
changes residual capacities of the edge(p, q) and its reverse
edge(q, p) as follows

w(p,q) = w(p,q) − ε
w(q,p) = w(q,p) + ε

(1)

The excess values at nodesp andq are updated as well

∆p = ∆p − ε
∆q = ∆q + ε

(2)

Note that edge capacities have to remain non-negative
and no edge can transmit an excess exceeding its current
residual capacity. As edges become saturated (zero residual
capacity), eventually the remaining excesses cannot find a
path to the sink. Such excesses have to return back to the
source. The algorithm terminates when all excesses disap-
pear; they either reach the sink or return back to the source.
At this point flow conservation is restored and algorithm’s
preflow turns into a feasible flow. This flow is also guaran-
teed to be a maximum flow.

The concept of preflow on a graph was recently further
generalized by Hochbaum [7]. She usespseudoflowallow-
ing nodes with either positiveexcesses, ∆p ≥ 0, or negative
deficits, ∆p ≤ 0. Similarly to push-relabel, Hochbaum’s al-
gorithm starts by saturating all edges from the source and
creating positive excesses at nodes adjacent to it. More-
over, all edges to the sink are saturated too and negative
deficits are created at nodes adjacent to the sink. Then, the
algorithm pushes excesses towards the deficits along non-
saturated edges using paths efficiently computed using an
elegant system of dynamic trees. The algorithm outputs a
minimum cost cut when excesses become completely dis-
connected from deficits by saturated edges. Unlike push-
relabel algorithm, Hochbaum’s method may terminate with-
out a feasible maximum flow which, however, could be de-
termined at additional computational cost.

2.2. Strategies for Pushing Flow

Intuitively, all standard max-flow/min-cut algorithms are
different techniques for pushing flow/excesses from the
source to the sink. Most methods agree that flow or ex-
cesses should be pushed along short non-saturateds → t
paths (see Sec. 2.3 on techniques for finding such paths).
There is much more variation in approaching other basic
issues: how much flow/excess to push and how far.

For example, max-flow algorithms based on augmenting
paths [5, 4] find a non-saturated path from the source to the
sink, determine its bottleneck capacity, and push the corre-
sponding amount of flow (excess) all the way froms to t.
This is a “conservative” pushing strategy; no flow is ever
pushed unless it is known that it can reach the sink.

In contrast, preflow and pseudoflow algorithms [6, 7] use
“optimistic” strategies where flow/excess is pushed towards
the sink in a sequence of local node-to-node steps. If some
excess gets stuck at some node due to a weak local edge,
there is a chance it may find an alternative path towards the
sink (see Sec. 2.3). This is not guaranteed, however, and
eventually some excesses get stuck.

2.3. Finding Paths via Dynamic Trees

A technique for finding non-saturated paths between the
source and the sink is an important component of all stan-
dard max-flow/min-cut algorithms. The main problem is
that pushing flow/excesses along a path changes residual
edge capacities and a set of non-saturated paths constantly
changes. Efficient dynamic data structure for maintaining
a system of non-saturateds → t paths is a must. Besides,
such a system should maintain the shortest possible paths.

For example, the original augmenting paths algorithm of
Ford and Fulkerson [5] recomputes the shortest augmenting
s → t path after each iteration via Dijkstra’s algorithm.
However, pushing flow along a path may saturate only one
edge and scanning the whole graph in order to recompute a
new shortest path may not be the best approach.

More efficient methods usedynamic treedata structures
for path maintenance. Such trees are often initialized by Di-
jkstra’s algorithm which may compute a tree of the shortest
paths from the sink to other nodes. As an edge in that tree
is saturated, the tree splits into two. Dynamic tree should
efficiently add another non-saturated edge to restore con-
nectedness while preserving short distances to the root, if
possible. [12] proposed such dynamic trees in the context
of augmenting path max-flow algorithms. [2] describe an-
other dynamic tree structure that proved to be practical for
large sparse grids common in computer vision.

Note that preflow and pseudoflow algorithms also use
some explicit or implicit dynamic trees to determine what
is a “good” path. For example, push-relabel algorithm [6]
implicitly represents some tree (or a forest) via node labels.
Rules for node relabeling implicitly update this tree/forest
when some edges become saturated. Label-based approach
to path-trees has one issue; when a node is relabelled its de-
scendants are not automatically updated which is typical for
explicit trees. Thus, paths in push-relabel may quickly be-
come sub-optimal and, in practice, excesses motion pattern
often resembles Brownian motion. This is why it is com-
mon to useglobal relabelingheuristic in push-relabel that
once in a while runs Dijkstra’s algorithm to restore a good
labeling (tree).

Hochbaum’s pseudoflow-based algorithm [7] explicitly
uses a forest of dynamic trees rooted at excess/deficit nodes.
Each tree grows until some excess tree touches a deficit tree
giving a non-saturated path from this excess to the corre-
sponding deficit.



In IEEE conference on Computer Vision and Pattern Recognition (CVPR), New York, June 2006, vol. I, p.1026

(a) Initialization from any given cut

(b) Some excess or deficit gets trapped

(c) Switching to a lower cost cut

Figure 3. The main steps ofActive Cutsapproach to solving min-
imum costs/t cut problems on general directed graphs. We show
a simple 2D grid example.

3. Active Cuts Method

Our approach to solving max-flow/min-cut problems is
motivated by applications of graph cuts in computer vision
and by new insights about existing methods in Section 2.
Our method combines ideas of [6, 7, 2, 12] in a novel way.
As discussed in Section 1, our approach has three fairly
unique new aspects: arbitrary initial cuts, converging in-
termediate cuts, and symmetry.

3.1. Algorithm’s outline

We are interested in a min-cut algorithm that can start
at any given cutC = {S, T } where cutC is defined by a
binary partitioning of graph nodes into two subsetsS andT
such thats ∈ S andt ∈ T . We will refer to subsetsS and
T as a source and a sink components of cutC.

One natural choice of initialization is a pseudoflow
shown in Figure 3 (a). We can start from any initial cutC by
saturating all edges on the boundary between its source and
sink components(S, T ) = {(p, q) ∈ E : p ∈ S, q ∈ T }.
This local edge saturation operation creates positive flow
excesses∆q = w(p,q) at boundary nodesq ∈ T on the sink

(a) (b)

Figure 4. A deficit (a) is equivalent to a t-link to the sink (b). In-
deed, pushing flowd along the t-link in (b) would saturate this
t-link and create a deficitd as in (a). Similarly, any excess is equiv-
alent to a t-link from the source. These ideas are described in [7].

side of the cut and negative flow deficits∆p = −w(p,q) at
the boundary nodesp ∈ S on the source side.

In order to solve max-flow problem our method converts
a pseudoflow into a feasible flow while maintaining some
saturated cut. The general structure of Active Cuts method
is summarized by the following one-line pseudocode:

ACTIVE CUTS:

while (push pull()==STUCK) recut();

Current cut C effectively separates the excesses and
deficits into two sub-graphsS andT (Fig.3). Operation
push pull() should independently “push” excesses (+)
towards the sink and “pull” deficits (-) towards the source
keeping them separated withinT andS, correspondingly.
On each sub-graph we can use any of the flow pushing
strategies discusses in Section 2.3. Our only requirement is
that functionpush pull() should return in polynomial
time with two possible outcomes:

• STUCK: some excesses or deficits are separated from
the corresponding terminal by saturated edges, Fig.3b

• DONE: all excesses and deficits reached the terminals

In particular,push pull can be implemented by directly
applying push-relabel style operations [6] independentlyin
each sub-graph. Section 3.2 describes practically more ef-
ficient implementation of operationpush pull using two
independent dynamic trees similar to [2]. These trees have
roots at the source and at the sink (see Fig.3) and span nodes
using non-saturated edges.

As easy to show, ifpush pull returnsSTUCK then
we found a lower cost cut, Fig.3(b). In fact, the new cut
is cheaper than the previous one by the total amount of
trapped excess (or deficit). Therecut operation should
simply eliminates all trapped excesses or deficits by con-
verting them into t-links as shown in Figure 4. After re-
cutting, Fig.3(c), we can continue topush pull excesses
and deficits towards the terminals. The algorithm stops with
a globally optimal cut whenpush pull returnsDONE.



In IEEE conference on Computer Vision and Pattern Recognition (CVPR), New York, June 2006, vol. I, p.1027

⇓ ⇓

(a) Pullingdeficitto source (b) Pushingexcessto sink

Figure 5. Excesses and deficits move towards the terminals ona
directed graph using two dynamic trees with source and sink roots.

3.2. Implementing PUSH PULL via dynamic trees

As illustrated in Figure 3, we use two dynamic trees; a
source tree(red) directs deficits to the source and asink tree
(blue) directs excesses to the sink. Figure 5 zooms in some
details in each tree. Note that the source tree (a) connects
nodes to the source via edges (red) that are non-saturated
in the direction from the terminal towards the leaf nodes.
The sink tree (b) connects nodes to the sink via edges (blue)
that are non-saturated in the direction from leafs towards
the terminal. Due to saturated edges on the current cutC,
the source and the sink trees can never overlap. As excesses
and deficits move along the edges on the trees, we main-
tain short paths on both trees dynamically mainly based on
ideas described in [2]. Both trees maintain the following
properties:

• A tree is rooted at a terminal

• A tree spans all nodes “reachable” from a root

• All edges included in a tree are non-saturated

Note symmetric differences between the push and the
pull operations illustrated in Figure 5. We use a push op-
eration as in [6, 7]. A flow excess can be pushed fromp to
q only along non-saturated edge(p, q). The amount of sent
excess should not exceed capacityw(p,q). Sending excess
0 < ε ≤ ∆p from p to q requires updates of edge capacities
(1) and node excess values (2).

Unlike [6] and [7], we also actively move deficits using
a symmetrically defined “pull” operation. A flow deficit
can be pulled from nodep to q only if reverse edge(q, p) is
non-saturated. The amount of deficit sent should not exceed
capacityw(q,p). In fact, sending deficit0 > ε ≥ ∆p from p
to q corresponds to the same updates (1) and (2) except that
nowε is negative.

There a number of options in implementing the ac-
tual pushing/pulling. We chose to push the farthest ex-
cesses/deficits. We returnSTUCK as soon as some nodes
can not be reached by a tree. This strategy generates a larger
number of gradely moving intermediate cuts. These and
some other tunings may affect practical performance. We
chose the same tuning in all our experiments.

4. Applications and Evaluation

We tested AC method in applications of graph cuts to
object segmentation [1]. Figure 2 clearly shows that the
Hausdorff distance between initial and optimal segmenta-
tion is strongly correlated to the running time of the algo-
rithm. We therefore expect that a “closer” initial cut will
yield greater performance. Our experiments show that an
initial cut based on a Voronoı̈ partition still gives good re-
sults. However, the closer the initial cut to the optimal cut,
the faster the convergence. Besides static object segmenta-
tion, we test this idiom in dynamic applications byrecycling
cuts from previous frames and in hierarchical tests where
initial cut is obtained from courser scales.

4.1. Static Segmentation

For image segmentation, one should provide an initial
cut for our algorithm. This could be a Voronoı̈ partitioning
(Fig. 6), a circular area provided by the user (Fig. 1 and 7)
or some other prior (shape, color, texture...). However, this
initialization should be carefully chosen as the speed of our
algorithm is correlated with the Hausdorff distance between
initial and optimal segmentation as shown in Figure 2.

We remarked that successive cuts often appear tocarve
the initial segmentation towards the global minima. A se-
quence of better cuts approaching a global optima can be
viewed as a sequence of good local solutions andmaybe
used in third party algorithms for estimating confidence of
the segmentation results. These cuts may also prove use-
ful for updating statistical properties of regions on the flyin
applications such as GrabCuts [11].

Our algorithm is typically twice faster than [2]. How-
ever on some “difficult” examples, the two algorithms are
comparable. Note, that pushing and pulling on two sidesS
andT of the current cut can be easily run in parallel on dual
processors which may further improve our method.

4.2. Dynamic Segmentation

Given that our algorithm can take advantage of a close
initial cut, one natural application is segmentation of dy-
namic video images. Spatio-temporal consistency between
consequtive video frames allows to use an optimal cut from
the previous frame as a good initial cut for the current frame
(cut recycling). Note that spatio-temporal consistency of



In IEEE conference on Computer Vision and Pattern Recognition (CVPR), New York, June 2006, vol. I, p.1028

Figure 6. Lung lobe segmentation is difficult due significantimage
clutter (a) and a large number of strong local minima. Initial cut is
shown in purple color (b). The final (global minima) cut accurately
follows a faint fissure boundary between two lobes (in yellow).
The cost of cuts (blue plot) and their Hausdorff distance (red plot)
from the global optima decrease in time. Starting from a remote
initial solution Active Cuts converges to a global minima twice as
fast (33ms) as the state of the art max-flow algorithm in [2] (69ms).

(a) Active cuts (b) Cost of intermediate cuts

Figure 7. Clown fish segmentation over structured background (a).
Initial cut is a red circle given by the user. The final (globalmin-
ima) cut accurately follows the fish external contours without be-
coming stuck on local minima in the clown disguise. The cost
of cuts (blue plot) and their Hausdorff distance from the global
optima (red plot) decrease in time (b). Active cuts convergeto a
globally minimal cut almost twice as fast (4.4ms) as the state of
the art max-flow/min-cut algorithm in [2] (7.7ms).

video data was recently used by Kohli and Torr [9] to accel-
erate graph cuts viaflow recycling.

Figure 8 shows an example of video segmentation for
hand tracking. On average, our algorithm is 5 times faster
than the maxflow algorithm in [2]. Similar to conclusions
from Figure 2, the time of convergence depends on the
amount of change between two consecutive frames.

Note that theflow recyclingtechnique [9] is fundamen-
tally different from ourcut recyclingmethod. We believe
that the two can be combined for a multiplied effect.

4.3. Hierarchical Segmentation

For static segmentation, ideally one should use prior
knowledge to estimate the segmentation (shape, color, tex-
ture...). However, if no prior is available, a hierarchicalap-
proach provides an elegant way to initialize our algorithm
by using segmentation of sub-sampled data. Such “coarse

Algorithm Time
MaxFlow (BK) 18.15ms

ActiveCut 18.52ms

Hierarchical
ActiveCut

Level 2 : 0.70ms
Level 1 : 0.61ms
Level 0 : 8.59ms

Total : 9.90ms

Figure 9. Hierarchical segmentation using 16-Neighborhood. For
each level, initial cut is set to an optimal cut/segmentation from
the previous level, the deepest level is initialized using some im-
age partition (like Voronoı̈ partition). Speed of our algorithm is
achieved when good initializations are provided. Hierarchical seg-
mentation is an elegant way to estimate a minimum s/t-cut. Table
gives timing comparison for maxflow/mincut algorithm in [2]and
our method using standard initialization (Voronoı̈ partition) and hi-
erarchical initialization with only 2 levels of decimation. One can
see a speed improvement of approximately a factor of 2.

Algorithm Time
MaxFlow (BK) 26.47ms

ActiveCut 19.98ms

Hierarchical
ActiveCut

Level 2 : 0.45ms
Level 1 : 2.14ms
Level 0 : 16.95ms

Total : 19.54ms

Figure 10. Hierarchical segmentation using 4-Neighborhood and
directed edges (dark object prior). Optimal segmentation from
coarse scale is used to initialize fine scale. Speed of the hierar-
chical approach is better but deceiving in this case. However, the
internal structure on the lung lobe makes it difficult to segment
and the timing table confirms that (”Level 0”) remains the most
time-consuming computation.

cuts” have recently been used to accelerate graph cuts, but
the narrow band technique of [10] sacrifices global optimal-
ity by limiting the scope of the solution. In contrast, we
simply use the coarse cut as our initial cut on the full graph,
thereby retaining global optimality. Figure 9 shows an ex-
ample of hierarchical initialization on large neighborhood
using only 2 levels of decimation. In this example, speed
is improved by an order of 2 even though our hierarchical
implementation itself is not optimized.

Our hierarchical algorithm does, on occasion, provide no
significant speed up. Figure 10 shows a case were a Voronoı̈
initial cut gives convergence as quickly as an initial cut gen-
erated by our hierarchical approach. By looking at the table,
one can see that most time is spent in the ”Level 0” step. The
cluttered patterns inside the lung lobe makes segmentation
more difficult because there are many strong local minima
in the problem and the algorithm must explore all of them
to find the global optima.



In IEEE conference on Computer Vision and Pattern Recognition (CVPR), New York, June 2006, vol. I, p.1029

Figure 8. Dynamic segmentation of a video sequence. Active cuts algorithm (yellow) runs 2-6 times faster than the state-of-the-art max-
flow algorithm in [2] (red). In each new frame initial cut is set from an optimal cut in the previous frame. Our algorithm’s speed is almost
linearly proportional to the magnitude of motion (Hausdorff distance between the segments in consecutive frames, in blue). Note that
active cuts can be further accelerated in dynamic applications by “recycling” flow computed in the previous frame [9].

5. Conclusions and Future Work

Our new Active Cuts (AC) approach to max-flow/min-
cut problems significantly improves practical efficiency (2-
6 times) and applicability of graph cuts to many problems
in image analysis. The method effectively uses initial cuts
that are often available in dynamic and hierarchical appli-
cations. Such initial solutions are also available in itera-
tive multilabel optimization techniques likeα-expansions
[3]. AC outputs a sequence of improving intermediate so-
lutions that, for example, can be used be accelerate itera-
tive learning-based methods, e.g. [11]. We are working on
combining active cuts withflow recycling[9]. Narrow-band
techniques [10, 13] can also benefit from our AC approach.

Acknowledgements

This work was supported by the NSERC (Canada) Dis-
covery Grant R3584A02. We thank Vladimir Kolmogorov
(University College London, UK) for pointing out impor-
tant references. Our research has greatly benefited from the
graph cuts visualization library of Andrew Delong (Univer-
sity of Western Ontario, Canada). We would also like to
express our gratitude to Renaud Kerivien (Ecole Nationale
des Ponts et Chaussees, France) and to Nikos Pargios (Ecole
Centrale de Paris, France) for their strong support in orga-
nizing a collaboration between UWO and ENPC that lead
to this research.

References
[1] Y. Boykov and G. Funka-Lea. Graph cuts and efficient N-D image segmenta-

tion. International Journal of Computer Vision (IJCV), 70(2):109–131, 2006.
Earlier in Y. Boykov and M.-P Jolly.Interactive graph cutsfor optimal boundary & region segmentation of

objects in N-D images. InInternational Conference on Computer Vision, vol. I, pp. 105-112, July 2001.

[2] Y. Boykov and V. Kolmogorov. An experimental comparisonof min-cut/max-
flow algorithms for energy minimization in vision.IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 26(9):1124–1137, September 2004.

[3] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization via
graph cuts.IEEE Transactions on Pattern Analysis and Machine Intelligence,
23(11):1222–1239, November 2001.

[4] E. A. Dinic. Algorithm for solution of a problem of maximum flow in networks
with power estimation.Soviet Math. Dokl., 11:1277–1280, 1970.

[5] L. Ford and D. Fulkerson.Flows in Networks. Princeton University Press,
1962.

[6] A. V. Goldberg and R. E. Tarjan. A new approach to the maximum-flow prob-
lem. Journal of the Association for Computing Machinery, 35(4):921–940,
October 1988.

[7] D. S. Hochbaum. The pseudoflow algorithm for the maximum flow problem.
Manuscript, UC Berkeley, revised 2003.Extended abstract in: The pseudoflow algorithm and

the pseudoflow-based simplex for the maximum flow problem. Proceedings of IPCO98, June 1998.Lecture

Notes in Computer Science, Bixby, Boyd and Rios-Mercado (Eds.) 1412, Springer, 325-337.

[8] A. V. Karzanov. Determinimg the maximum flow in a network by the method
of preflows.Soviet Math. Dokl., 15:434–437, 1974.

[9] P. Kohli and P. H. Torr. Efficiently solving dynamic markov random fields using
graph cuts. InInternational Conference on Computer Vision, October 2005.

[10] H. Lombaert, Y. Sun, L. Grady, and C. Xu. A multilevel banded graph cuts
method for fast image segmentation. InInternational Conference on Computer
Vision, October 2005.

[11] C. Rother, V. Kolmogorov, and A. Blake. Grabcut - interactive foreground
extraction using iterated graph cuts. InACM Transactions on Graphics (SIG-
GRAPH), August 2004.

[12] D. D. Sleator and R. E. Tarjan. A data structure for dynamic trees.Journal of
Computer and System Sciences, 26(3):362–391, 1983.

[13] N. Xu, R. Bansal, and N. Ahuja. Object segmentation using graph cuts based
active contours. InIEEE Conference on Computer Vision and Pattern Recog-
nition, volume II, pages 46–53, 2003.


