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Abstract

We present a framework for tracking rigid objects
based on an adaptive Bayesian recognition technique
that incorporates dependencies between object features.
At each frame we find a maximum a posteriori (MAP)
estimate of the object parameters that include position-
ing and configuration of non-occluded features. This
estimate may be rejected based on its quality. Our
careful selection of data points in each frame allows
temporal fusion via Kalman filtering. Despite ”uni-
modality” of our tracking scheme, we demonstrate
fairly robust results in highly cluttered aerial scenes.
Our technique forms a natural feedback loop between
the recognition method and the filter that helps to ex-
plain such robustness. We study this loop and derive
a number of interesting properties. First, the effective
threshold for recognition in each frame is adaptive. It
depends on the current level of noise in the system.
This allows the system to identify partially occluded
or distorted objects as long as the predicted locations
are accurate. But requires a very good match if there
is uncertainty as to the object location. Second, the
search area for the recognition method is automatically
pruned based on the current system uncertainty, yield-
ing an efficient overall method.

1 Introduction
Kalman filtering has been used in a number of ap-

proaches to visual tracking (e.g.,[3, 10, 4, 1, 7]). As
discussed in [6, 7], the general limitation of such meth-
ods comes from their “unimodality”. Kalman filter is
based on the assumption that all distributions remain
gaussian. In practice, for many linear or linearizable
systems this assumption is often reasonable as far as
the noise in the system dynamics is concerned. The
main problem is the data likelihood function which
can easily be non-gaussian and multimodal in clut-
tered scenes. In fact, the problem heavily depends on
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what one means by “data”. The main original appli-
cation for Kalman filter was tracking ballistic objects
where the source of data were direct measurements
from a radar. Unfortunately, images do not contain
direct measurements of objects. The process of select-
ing data, or observations, becomes critical for visual
tracking based on Kalman filter.

For example, in the section on tracking contours via
Kalman filter in [7] the data is extracted from a single
“feature curve” (rf ). This “feature curve” is obtained
from the image in a more or less ad-hoc manner. Thus,
it is not surprising that a unimodal tracker can easily
lock on to some clutter in the image once a wrong “fea-
ture curve” is selected. One way to avoid this problem
is the condensation algorithm [6, 7] that can handle
arbitrary multimodal distributions via quite elegant
sampling scheme. In this case, many curves are sam-
pled in the image. All persistent matches are tracked
and all occasional matches dissipate. However, the
method becomes not very practical for objects de-
scribed by state vectors of high dimensions. In this
case it will have to draw too many samples in order to
converge. Moreover, this algorithm can use only a lim-
ited set of matching techniques. Since image is tested
at a large number of sampled curves, one can hardly
afford anything more than independent matching of
features, nodes, and etc.

Unimodal Kalman filtering still offers the advantage
of a closed form temporal fusion and we address its
limitations by choosing “data” more carefully. A max-
imum a posteriori (MAP) recognition method is used
to find the best location of the object in each frame.
This method incorporates dependencies between the
object features and, as shown in [2], offers better ro-
bustness to clutter and partial occlusion than other
matching techniques. The recognition scheme reports
the best location as an observation (or “data”) if the
quality of match there is sufficiently good. Otherwise
the object is declared missing in this frame. Kalman
filtering is then used to estimate the current state (or
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trajectory) of the object from a sequence of observed
“data” points. Our approach couples Kalman filter-
ing with a Bayesian recognition technique in such a
manner that the recognition parameters are naturally
estimated based on the object state estimates and the
level of noise in the filter. The resulting adaptively
conservative recognition scheme is reluctant to report
false matches that may come from image clutter, dis-
torted object, or a combination of both. Thus, our
choice of “data” might be suitable for a unimodal fil-
ter. Our experimental results support this claim.

Note that a number of earlier papers on Kalman
based tracking (e.g. [9, 1]) also acknowledged the
problem of false matches and developed various cri-
teria for rejecting an observation, such as there be-
ing too large a deviation from the predicted location.
In contrast, in our approach the recognition method
makes a decision at each time frame as to whether or
not the object was observed in the image. This deci-
sion is based on the quality of the MAP estimate of
location, not some ad hoc criterion.

An important practical consequence of our ap-
proach is that the tracker is able to continue observ-
ing an object even when it becomes partly occluded
or distorted, as long as the object continues moving as
predicted by the Kalman filter. This results from the
calculation of an effective matching threshold for the
recognition method which is proportional to the sys-
tem error of the Kalman filter. This error, or uncer-
tainty, is low when the observed locations fit the pre-
dictions. If there is substantial uncertainty in the pre-
dicted location, however, then the effective matching
threshold automatically becomes larger, thus avoiding
potential false matches. Note that this is not sim-
ply the use of Kalman filtering to predict a location,
but rather is the coupling of the Kalman filter predic-
tions into the matching process in order to adaptively
set the matching parameters and enable more effective
matching. Examples of this capability are presented
below.

Finally, in our approach the search space for the
recognition method is automatically computed in each
frame. This is determined by extrapolating the cur-
rent estimate of the object’s state and the correspond-
ing error of the Kalman filter into the new frame.
If the current estimate is accurate enough then the
search in the new frame is restricted to a very small
area. If the recognition method detects that the object
is absent in a given frame then the noise in the system
dynamics makes the extrapolated state estimate less
certain in the next frame. In this case the search space
in that next frame is automatically enlarged. Note

that in such cases, the tracker also automatically be-
comes more conservative at recognizing the object as
noted above.

These properties are a consequence of our princi-
pled approach to model-based tracking and do not re-
quire any additional constructions. We present the
results as follows. In Section 2 we describe a general
formulation of our Bayesian tracking framework. The
properties of our algorithm are analytically derived in
Section 2.3. An implementation of a special case of
the algorithm is described in Section 3 on experimen-
tal results. This implementation is fast enough for real
time tracking.

2 The Tracking Framework

Our main goal is to develop a useful and princi-
pled approach to tracking a moving object in an im-
age sequence {It}, given a prior model of that ob-
ject. We consider the problem of tracking in dis-
crete time t ∈ {0, 1, 2, ..., tend} where t can be in-
terpreted as a frame number. The object is repre-
sented by a set of features, indexed by integers in the
set M = {1, 2, . . . , |M |}. Each feature corresponds to
some vector Mi in a feature space of the model. Com-
monly the vectors Mi will simply specify a feature lo-
cation (x, y) in a fixed coordinate system of the model,
although more complex feature spaces fit within the
framework. We assume that the object representation
M is fixed and does not change from frame to frame.
In Section 3.1 we also discuss some possibilities for
adaptive object representations.

We would like to estimate an n × 1 vector xt de-
scribing the state of the object at time t. This vec-
tor may include location, velocity, acceleration, ori-
entation, angular velocity, scale, or other information
about the state of the model in a given coordinate sys-
tem. Normally this coordinate system is tied to the
image frame at time t. As is commonly done in state-
based tracking systems, we assume that the dynamics
of xt is given by a linear stochastic equation

xt+1 = Ft · xt + wt (1)

where the n×n matrix Ft is the state transition matrix
from t to t+1 and the n×1 vector wt represents noise.
We also assume that wt is Gaussian with zero mean
and a covariance matrix Qt (n × n). Equation (1)
provides a dynamic model of the object motion in the
image sequence. Only the state transition matrix Ft

and the covariance matrix Qt are known at time t.
The state xt is not directly observable. At each frame
t we wish to obtain an estimate x̂t of the state xt based
on currently available observations.
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Let yt denote an m× 1 vector of object parameters
directly observable at frame t. Intuitively speaking,
this means that yt can be computed based on infor-
mation available in a single image It. For example,
yt may include location, orientation, and scale of the
object but it can not include any second order param-
eters like velocity and acceleration whose estimation
requires information from several frames. We also re-
quire that yt provides sufficient information about the
object’s positioning in frame t. In addition, we assume

yt = Dt · xt

where Dt is a known m × n measurement matrix.
In Section 2.1 we describe a Bayesian object recog-

nition framework that uses the object’s model M to
find a MAP estimate of yt for a given frame t. Such
an estimate ŷt will be referred to as an observation
(“data”) at time t. Due to estimation errors we have

ŷt = Dt · xt + vt (2)

where vt is an m × 1 measurement noise vector. We
assume that vt is Gaussian with the zero mean and
a known covariance matrix Rt (m × m). Note that
the object may disappear from the scene at certain
frames due to occlusions or distortions. The recogni-
tion framework of Section 2.1 specifically accounts for
this possibility and provides an optimal decision test
for object occlusion. Thus, new observations ŷt do not
necessarily come with each new frame t.

Equations (1) and (2) form a linear system of equa-
tions for the object dynamics and observations. A
Kalman filter can compute the state estimate x̂t based
on available observations ŷt. In Section 2.2 we review
some details of Kalman filtering necessary for under-
standing our tracking algorithm.

A Kalman filter may use the known system dynam-
ics to provide some information about yt before frame
t becomes available. The Bayesian recognition tech-
nique of Section 2.1 benefits from this prior informa-
tion by knowing where to look for the object in frame
t. This allows efficient computation of the estimate ŷt

which is then in turn fed back into the Kalman filter
for calculating x̂t. Thus, the recognition technique and
Kalman filter iteratively exchange information yield-
ing an effective tracking algorithm whose properties
are discussed in Section 2.3.

2.1 Bayesian Recognition of Objects

In this section we describe the basic elements of the
object recognition technique based on MAP estima-
tion. This method was originally developed in [2] for
static images. Here we review it in the context of our

tracking problem. We use this recognition technique
to extract an observation ŷt of the object M from a
given image It.

The vector yt contains information about the posi-
tioning of the object in frame t. Thus, we can define an
operation ⊕ mapping a model feature Mi and a given
positioning yt to an image feature Mi ⊕ yt. The exact
definition of the operation ⊕ varies for the particular
tracking task. For example, in case of translation ⊕
represents vector summation. Then, a match of the
model M to the image It can be described by a pair
{S, yt} where S = {S1, S2, . . . , S|M|} is a collection of
boolean variables. If Si = 1 then the ith feature of the
model has a matching feature in It and if Si = 0 then
it does not. In this case we say it is mismatched. For
example, the event

{S1 = . . . Sk = 1, Sk+1 = . . . S|M| = 0, yt = y}

implies that for 1 ≤ i ≤ k, feature i of M matches
some feature in It located near Mi ⊕ yt, and that the
last (|M | − k) features are mismatched.

The quality of a matching configuration S for a
given positioning yt is described by the log-likelihood
function

Ht(S | yt) =
∑

i∈M

(ln gi(It|Si, yt) − αi · (1 − Si))

−
∑

{i,j}⊂M

βij · δ(Si 6= Sj). (3)

It is derived in [2] from a point of view of Bayesian
statistics. Larger values of Ht(S | yt) correspond
to a better quality. Coefficient αi ≥ 0 in the first
summation in (3) specifies the penalty for not match-
ing model’s feature i and gi(It|Si, yt) is the likelihood
function corresponding to this feature. In section 3.2
we consider a special case of this framework where one
particular choice of the likelihood gi is specified.

Summation over all distinct pairs of features in (3)
describes the “smoothness” of configurations S. Coef-
ficients βij ≥ 0 specify the level of interaction between
features i and j of the model M . For example, we can
choose large βij for pairs of features {i, j} ⊂ M which
are closely located in the feature space of the model,
and small βij otherwise. In this case, we would en-
courage configurations S where neighboring features
tend to agree in matching or nonmatching.

Let ft be a prior distribution of positioning yt as-
suming that the object is not occluded at frame t. Ac-
cording to [2], the MAP estimate of the match {Ŝ, ŷt}
should maximize over all S and yt the posterior energy

Et(S, yt) = Ht(S | yt) + ln ft(yt) (4)
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and satisfy the model presence test at frame t

Ht(Ŝ | ŷt) + ln f(ŷt) ≥ K (5)

where K is a fixed threshold. The test (5) takes into
account a possibility for object’s occlusion. If Ŝ = 0̄
or (5) is false then the optimal decision is to report
that the model is missing. In this case there is no
observation available at frame t.

The main difficulty for implementing this object
recognition technique is maximization of the posterior
energy function in (4) over all S and yt. In the most
general case this problem can be solved exactly and
efficiently using a combination of hierarchical prun-
ing and graph cut techniques in [5]. In several special
cases (see [2]) the energy maximization can be done
analytically which further accelerates the running time
of the algorithm. For example, if the level of interac-
tion between “neighboring” features is a positive con-
stant and if non-neighboring features do not interact
directly then [2] derive Spatially Coherent Matching
(SCM) technique. In section 3 we discuss implementa-
tional details and experimental results corresponding
to the special case of our tracking algorithm where the
recognition part is done using SCM.

2.2 Review of Kalman Filtering

A Kalman filter is a system of simple recurrence
equations allowing convenient iterative computation
of the optimal (minimum variance) estimate x̂t of xt

given available observations. It also computes the co-
variance matrix of the current estimate errors. In this
section we specify the Kalman filter equations pertain-
ing to our tracking technique. A detailed description
of Kalman filtering can be found for example in [8].

We assume that the system and measurement noise
terms {w0, v0, w1, v1, w2, v2, . . .} from Section 2 are all
independent of each other. This assumption is not
entirely unreasonable for tracking. Besides, noise in-
dependence can be relaxed in several ways (see [8])
which we do not discuss here mainly to save space.

Let x̂t−1 be a known estimate of state at time t− 1
and let Pt−1 be the corresponding n × n error covari-
ance matrix. Then with the system dynamics and
measurements as in (1) and (2) a Kalman filter has
the following recurrence equations for computing x̂t

and Pt in the next frame. There are two steps.
The first step extrapolates the estimate x̂t−1 and

the error covariance Pt−1 into frame t by computing

x̂t,t−1 = Ft−1 · x̂t−1 (6)

Pt,t−1 = Ft−1 · Pt−1 · F
>
t−1 + Qt−1. (7)

Note that we can use these extrapolations to compute
the prior distribution ft of vector yt = Dt ·xt assuming

that the object is not occluded in frame t. This prior
summarizes all information available just before frame
t is observed. It can be shown that

ft = N ( ȳt | Yt) (8)

is a Gaussian distribution where ȳt = Dt · x̂t,t−1 is
mean and Yt = Dt ·Pt,t−1 ·D

>
t is a covariance matrix.

The recognition technique of Section 2.1 uses the prior
ft(yt) for efficient computation of the observation ŷt,
if the object is not occluded.

The second step depends on whether the new frame
t produces a new observation ŷt or not. If there is no
observation at t then

x̂t = x̂t,t−1 and Pt = Pt,t−1 (9)

so that the new estimate and the new error covariance
are simply extrapolations from the previous frame.
However, if the new observation ŷt is available then

x̂t = x̂t,t−1 + Kt · [ŷt − ȳt] (10)

Pt = Pt,t−1 − Kt · Dt · Pt,t−1 (11)

where

Kt = Pt,t−1 · D
>
t · [Yt + Rt]

−1

is a gain matrix (n×m) of Kalman filter. In this case
x̂t and Pt are different from the extrapolations x̂t,t−1

and Pt,t−1. The correction in (10) is proportional to
the deviation of observation ŷt form prediction ȳt.

Note that equation (9) can be seen as a special case
of (10) and (11). In fact, absence of observation may
be interpreted as an observation with infinitely large
covariance Rt corresponding to a zero gain Kt = 0.

2.3 Properties of our Framework

Here we derive some interesting properties of our
tracking framework. Many of the properties are deter-
mined by the way the prior ft appears in the posterior
energy (4) and in the test (5). Note that the search
space for observation ŷt in each frame t can be signif-
icantly restricted as follows. According to (5), we can
observe an object only at a positioning y such that

ln f(y) ≥ K − H(S | y).

As can be shown from (3),

H(S | y) ≤
∑

i∈M

ln gi(It|Si, yt) ≤
∑

i∈M

ln γi

where γi is the largest possible value of the likelihood
function gi. In practice, γi is usually obvious from the
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Figure 1: Occlusion example. The lock on to the object is temporarily lost (the left and central frames). The
search area and the effective threshold start to grow. Erroneous matches (black crosses) are below the increased
effective recognition threshold. Only a really strong match returns the lock (white cross) on to the bus when it
finally becomes visible from behind the house. Note that the values of the bad matches in the left two frames are
above the reduced effective threshold in the right frame where the lock on to the object is already re-established.

definition of gi. Then, we can restrict the search for
the observation ŷ to positioning y in the set

{

y

∣

∣

∣

∣

f(y) ≥
eK

∏

i∈M γi

}

. (12)

Note that (8) implies that this search region is an el-
lipsoid. There are several factors that affect the size
of this ellipsoid. From the implementational point of
view, γi and K are the main parameters. For fixed
values of γi and threshold K the size of the search
space depends primarily on the prior distribution f .
The Kalman filter computes ft for each new frame t.
If the predicted estimate of state xt,t−1 is accurate
enough then the Gaussian prior ft is sharply concen-
trated around its center ȳt. In this case the search
space for ŷt is very small. However, if the estimate
is less certain then the distribution ft is spread out
and the search space increases. Consider an example
in Figure 1. In this case the tracked object (a bus)
becomes occluded for a number of frames by a house.
Until the object shows up again the search space grows
from frame to frame. This happens because observa-
tions are not coming and the uncertainty of the esti-
mate increases due to the modeled system noise (see
(7), (9)). As soon as the observations of the bus be-
come available, the search space significantly reduces
reflecting a decrease in uncertainty of the estimate (see
(11)). In Section 3 we provide details of the particular
implementation used to generate the data in Figure 1.

The same example can be used to illustrate another
interesting property of our tracking technique. Note
that using (8) we can rewrite the test for non-occlusion

in the MAP recognition technique, in (5), as

H(Ŝ | ŷ) −
∆ŷ> · Y −1

t · ∆ŷ

2
≥ K∗

t (13)

where ∆ŷ = (ŷ − ȳt) is a deviation of positioning ŷ

from the expected value ȳt and

K∗
t = K +

ln (detYt · (2π)m)

2

is an effective decision threshold. The quadratic form
in (13) penalizes large deviations ∆ŷ. If ŷ = ȳt then
there is no penalty and if ŷ 6= ȳt then the penalty de-
pends on an appropriately weighted distance between
ŷ and ȳt. Note that the penalty for deviation ∆ŷ be-
comes less important when the state estimate is inac-
curate and the error covariance Yt is “large”.

This effective decision threshold K∗
t is adaptively

computed for each frame. Thus the tracker becomes
more conservative at recognizing the object (the effec-
tive threshold K∗

t increases) if the current estimate of
state is more uncertain and less conservative when the
estimate is more accurate. This follows from a simple
fact that the determinant of Yt works as an indicator
of uncertainty.

For example, in Figure 1 the value of K∗
t increases

in the frames where the object is missing. In this case
only a really good match may be reported as an ob-
servation. This is a very reasonable strategy minimiz-
ing the probability of a wrong match given that the
search space is getting large. After the bus shows up
from behind the house, we get a match that is strong
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enough and the tracking algorithm returns to its nor-
mal course. The estimate error reduces and the recog-
nition process is less conservative (K∗

t decreases). This
is reasonable because the state estimate becomes suf-
ficiently accurate, the search area gets very small, and
the penalty for deviation ∆ŷ significantly increases.

Note that if the object is missing for a significantly
large number of frames then at a certain point the
estimate of state becomes too uncertain. If the de-
terminant of Yt is so large that the effective threshold
K∗

T is greater than the upper bound
∑

i∈M ln γi of the
quality function H(S | y) then the presence test (13)
will necessarily fail. Thus, the recognition becomes no
longer possible. In this case the algorithm stops and
the object may be reported as lost. From the point
of view of the recognition procedure, this means that
any match between the object’s model and an image
is riskier than a decision that the object is occluded.

Our tracking framework offers additional stability
in cases of high clutter in the image and partial occlu-
sion of the object. The recognition technique of Sec-
tion 2.1 explicitly models dependencies between the
model features. This provides a better probabilistic
model of partial occlusions of the object and, as was
shown in [2], gives a significant improvement in the
performance of the recognition method than compared
to a number of previous techniques.

3 Experimental results
In this section we present the tracking results gen-

erated by our algorithm for a moving bus in a sequence
of urban images. The sequence is obtained from a non-
stationary aerial camera offering a very wide view of
the scene. The quality of the film is quite challenging
and the object of interest appears as a very small part
of the image. The scene is highly cluttered by other
vehicles, houses, and trees. We track the first of the
two buses that follow each other on the road. In Fig-
ures 1 and 2 we show the results for tracking based
on edge features. The model of the bus is a set of its
edges extracted from the first image frame, as shown
below.

This section is organized as follows. The details of
a particular choice of state dynamics and system mea-
surements are discussed in subsection 3.1. In subsec-
tion 3.2 we discuss a particular implementation of the
recognition part of our algorithm based on Spatially
Coherent Matching (SCM). The data is discussed in
subsection 3.3.

3.1 System Dynamics and Measurements

For the experiments presented here we assumed
that the object’s state at each frame t is described
by a 4 × 1 vector xt whose components are two coor-
dinates of a reference point of the bus, absolute value
of velocity and angular orientation of the bus in the
coordinate system of the image It. We added angular
orientation to the object state vector mainly because
we wish to estimate it. The orientation estimate helps
to compensate for changes in the model appearance
when the bus is turning.

In fact, this example shows that our initial assump-
tion about stationarity of the object representation M

is not as restrictive as it may seem. The point is that
a pair Mt = {x̂t, M} can be used as a form of adaptive
object representation. We can add to the state vector
xt certain parameters of the object that may change
in time assuming that these parameters can be filtered
from what is observed, t.e. ŷt. In some cases features
of the object that change in time may be added to xt

and features that do not change in time constitute the
stationary part of the model, M . Note, however, that
the big assumption here is that x̂t is estimated by a
Kalman filter. Thus, this approach would not work in
cases where the system dynamics of the non-stationary
part of the model, xt, can not be reasonably linearized
as in (1).

In fact, the system dynamics in our bus example is
also non-linear. We assume that the vector of velocity
is parallel to the body the bus. Then, the direction of
velocity is uniquely determined by the angular orien-
tation of the bus. This brings non-linear trigonomet-
ric functions into the system dynamics. In our simple
case the system can be easily linearized. For the lack
of space we do not give any specific details here. Gen-
eral information about linearizing state dynamics for
the Kalman filter can be found, for example, in [8].

Note that to compensate for sporadic camera move-
ments we also estimate affine background motion. We
use a reliable robust technique based on corner fea-
tures of the background. The background motion is
then added to the system dynamics.

The measurement vector yt includes coordinates of
the reference point and the angular orientation of the
bus in the image It. These are observable parame-
ters which can be estimated at each frame using the
recognition technique of section 2.1.

3.2 Spatially Coherent Matching

In this section we provide details of a particular
implementation of the recognition part of our track-
ing algorithm. We consider a special case where maxi-
mization of the energy (4) can be done via simple SCM
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Figure 2: Shade example (top row) and curve example (lower row).

technique [2] that is explained below in the context of
the bus tracking example. Despite its simplicity, SCM
based tracker is able to demonstrate the main proper-
ties of our general method.

The SCM technique gives an optimal MAP match
for the recognition framework of section 2.1 for the
special case when only “neighboring” model features
interact directly (see [2]). SCM also relies on the like-
lihood function

gi(I | Si, y) =











C0 if Si = 0

C1 if Si = 1, dI(Mi ⊕ y) ≤ r

0 if Si = 1, dI(Mi ⊕ y) > r

where C1 > C0 > 0 and r are some fixed constants,
and dI(·) is a distance transform of the edge features
in the image I. That is, the value of dI(p) is the
distance from p to the nearest edge in I. Note that
r is the largest allowed distance between Mi ⊕ y (the
bus model edge Mi positioned at y in the image) and
a matching edge observed in I. For notational clarity,
we dropped subindex t from “I” and “y”. The frame
number should be implicit.

Let My = {i ∈ M : dI(Mi ⊕ y) ≤ r} denote
the subset of object features that lie within distance
r of image features I, when the model is positioned

at y. We think of My as a set of matchable fea-
tures for a given positioning y when the observed
image is fixed. In addition, we define the comple-
mentary subset of unmatchable features of the object
Uy = {i ∈ M | dI(Mi ⊕ y) > r} = M − My, also
corresponding to a given positioning y. The set Uy

consists of features of the object that are greater than
distance r from any image features.

The main idea of the SCM scheme is to require that
matching features should form large connected groups.
There should be no isolated matches. Let By denote
the subset of features in My that are “near” features
of Uy. That is, By = {i ∈ My | ∃ j ∈ Uy, dij ≤ R},
where dij is a distance between edges Mi and Mj, and
R is a fixed integer parameter. The set By is referred
to as a boundary of the set of matchable features My.
The SCM technique reports an observation of the bus

ŷ = argmax
y

λ · (|My| − |By|) + ln f(y) (14)

if it satisfies

λ · (|Mŷ| − |Bŷ|) + ln f(ŷ) ≥ K. (15)

Constant λ > 0 is a fixed parameter ([2] derives it from
C0, C1, r, and R) and f(y) is a prior distribution of
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y that we get from (8). Note that ŷ in (14) is a MAP
estimate of yt maximizing the posterior energy (4) for
a given image I = It. The test in (15) is a special
case of (5). Thus, if the optimal value of y in (14)
does not satisfy (15) then the optimal decision is to
report absence of the bus in the current image. Note
that ŷ can be found efficiently using hierarchical search
space pruning similar to what is used for Hausdorff
matching.

3.3 Discussion of Results

The algorithm is initialized by an estimate of the
object’s state x̂0 and an error covariance P0 for the
first image I0 from which the edges of the bus model
M were extracted. For t > 0, the estimate x̂t and the
matrix Pt are computed by the algorithm. We use a
constant measurement noise covariance Rt. In general,
it can be based on the quality of the MAP estimate ŷ.
Some tracking results are shown in Figures 1 and 2.

The search region (12) in our case is a 3D ellipsoid.
The particular formula for the ellipsoid

{

y
∣

∣

∣
f(y) ≥ eK−λ|M|

}

can be obtained directly from (15) using a simple fact
that |My|− |By | ≤ |M | where |M | is the total number
of model features. A projection of this 3D ellipsoid
into 2D image plane is shown in pictures as a white
contour. The enclosed area gives the region where the
bus reference point is searched for in each frame. The
missing dimension corresponds to angular orientation
of the bus. Note that the search for ŷt in (14) is re-
stricted to a very small region when the level of noise
in its state estimate is low. If the bus is in “focus”
then the tracker searches through an ellipsoid of size
≈ [10 × 5 × 3] (main axis in X, Y, α dimensions).

The white cross shows the current observation ŷt.
Position of a black cross shows the location of a would-
be-observation (14) which fails the presence test (15).

Figure 1 was discussed in Section 2.3. In the up-
per row of Figure 2 we show that the algorithm can
track a bus through a cluttered area where the model
becomes significantly occluded by a shade. In this
episode the estimate of object’s state is quite accurate
and the tracker correctly recognizes the bus even when
the level of partial occlusion and clutter is high. The
lower row of Figure 2 shows that the algorithm suc-
cessfully tracks the bus on the curved part of the road
where the object appearance significantly changes.
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