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Abstract

The α-expansion algorithm [4] has had a significant im-

pact in computer vision due to its generality, effectiveness,

and speed. Thus far it can only minimize energies that in-

volve unary, pairwise, and specialized higher-order terms.

Our main contribution is to extend α-expansion so that it

can simultaneously optimize “label costs” as well. An en-

ergy with label costs can penalize a solution based on the

set of labels that appear in it. The simplest special case is

to penalize the number of labels in the solution.

Our energy is quite general, and we prove optimality

bounds for our algorithm. A natural application of la-

bel costs is multi-model fitting, and we demonstrate several

such applications in vision: homography detection, motion

segmentation, and unsupervised image segmentation. Our

C++/MATLAB implementation is publicly available.

1. Some Useful Regularization Energies

In a labeling problem we are given a set of observa-

tions P (pixels, features, data points) and a set of labels L
(categories, geometric models, disparities). The goal is to

assign each observation p ∈ P a label fp ∈ L such that the

joint labeling f minimizes some objective function E(f).
Most labeling problems in computer vision are ill-posed

and in need of regularization, but the most useful regular-

izers often make the problem NP-hard. Our work is about

how to effectively optimize two such regularizers: a pref-

erence for fewer labels in the solution, and a preference for

spatial smoothness. Figure 1 suggests how these criteria co-

operate to give clean results. Surprisingly, there is no good

algorithm to optimize their combination. Our main contri-

bution is a way to simultaneously optimize both of these

criteria inside the powerful α-expansion algorithm [4].

Label costs. Start from a basic (unregularized) energy

E(f) =
∑

pDp(fp), where optimal fp can each be deter-

mined independently from the ‘data costs’. Suppose, how-

ever, that we wish to explain the observations using as few

unique labels as necessary. We can introduce label costs

into E(f) to penalize each unique label that appears in f :

E(f) =
∑

p∈P
Dp(fp) +

∑

l∈L
hl ·δl(f) (1)

(a)

(b) (c)

Figure 1. Motion segmentation on the 1RT2RCR sequence [26].

Energy (1) finds 3 dominant motions (a) but labels many points

incorrectly. Energy (2) gives coherent segmentations (b) but finds

redundant motions. Our energy combines the best of both (c).

where hl is the non-negative label cost of label l, and δl(·)
is the corresponding indicator function

δl(f) def
=

{
1 ∃p : fp = l
0 otherwise.

Energy (1) balances data costs against label costs in a

formulation equivalent to the well-studied uncapacitated

facility location (UFL) problem. Li [19] recently posed

multi-model fitting in terms of UFL. For multi-model fit-

ting, where each label corresponds to a candidate model,

label costs penalize overly-complex models, preferring to

explain the data with fewer, cheaper labels (see Figure 1a).

Smooth costs. Spatial smoothness is a standard regular-

izer in computer vision. The idea here is that groups of

observations are often known a priori to be positively cor-

related, and should thus be encouraged to have similar la-

bels. Neighbouring image pixels are a classic example of

this. Such pairwise priors can be expressed by the energy

E(f) =
∑

p∈P
Dp(fp) +

∑

pq∈N
Vpq(fp, fq) (2)

0*†The authors assert equal contribution and thus joint first authorship.
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(a)

(b) (c)

Figure 2. Planar homography detection on VGG (Oxford) Merton

College 1 image (right view). Energy (1) finds reasonable param-

eters for only the strongest 3 models shown in (a), and still assigns

a few incorret labels. Energy (2) finds reasonable clusters (b) but

fits 9 models, some of which are redundant (nearly co-planar). Our

energy (?) finds both good parameters and labels (c) for 7 models.

where each Vpq penalizes fp 6= fq in some manner. If each

Vpq defines a metric, then minimizing (2) is known as the

metric labeling problem [4] and can be optimized effec-

tively with the α-expansion algorithm.

This regularizer prefers coherent segmentations, but has

no incentive to combine non-adjacent segments and thus a

tendency to suggest redundant labels in multi-model fitting

(see Figure 1b). Still, spatial smoothness priors are impor-

tant for a wide array of vision applications.

Our combined energy. We propose a discrete energy that

essentially combines the UFL and metric labeling problems.

E(f) =

data cost
︷ ︸︸ ︷
∑

p∈P
Dp(fp) +

smooth cost
︷ ︸︸ ︷
∑

pq∈N
Vpq(fp, fq) +

label cost
︷ ︸︸ ︷
∑

L⊆L
hL·δL(f) (?)

where the indicator function δL(·) is now defined on label

subset L as

δL(f) def
=

{
1 ∃p : fp ∈ L
0 otherwise.

Our energy actually makes a slight generalization from label

costs to label subset costs hL, but one can imagine simple

per-label costs hl throughout for simplicity.

Energy (?) balances two demonstrably important reg-

ularizers, as suggested by Figure 1c. Figures 2 and 3

show other vision applications where our combined energy

simply makes sense. Section 2 presents our extension to

α-expansion and corresponding optimality bounds. Sec-

tions 3 and 4 explain how our energy can be effective as a

multi-model fitting framework. See Section 5 for discussion

and possible extensions, and see [8] for relation to standard

expectation maximization (EM) and K-means formulations.

(a)

(b) (c)

Figure 3. Unsupervised segmentation using histogram models.

Energy (1) clusters in colour space, so segments (a) are incoher-

ent. Energy (2) clusters over pixels and must either over-segment

or over-smooth (b), just as in [27]. Our energy (?) balances these

criteria (c) and corresponds to Zhu & Yuille [28] for segmentation.

2. Fast Algorithms to Minimize (?)

Our main technical contribution is to extend the well-

known α-expansion algorithm [4] to incorporate label costs

at each expansion (Section 2.1) and prove new optimality

guarantees (Section 2.2). Section 2.3 reviews known results

for the ‘easy’ case (1) with only data and per-label costs.

2.1. Expansion moves with label costs

Since minimizing energy (?) is NP-hard for |L| ≥ 3 , the

α-expansion algorithm [4] iteratively ‘moves’ from some

current labeling f ′ to a better one until convergence. Specif-

ically, at each step, some label α ∈ L is chosen and vari-

ables fp are simultaneously given a binary choice to either

stay as fp = f ′
p or switch to fp = α. This binary step is

called expansion because only the α label can grow and, if

each Vpq satisfies a simple condition, the best possible ex-

pansion is computed by a single graph cut.

Let f = {f1, . . . , fn} and let fα denote any feasible

α-expansion w.r.t. current labeling f ′. The possible label-

ings fα can be expressed one-to-one with binary indicator

variables x = {x1, . . . , xn} by defining

xp = 0 ⇐⇒ fα
p = f ′

p

xp = 1 ⇐⇒ fα
p = α.

(3)

Let Eα(x) be the energy corresponding to encoding (3) rel-

ative to f ′. The α-expansion algorithm computes an opti-

mum x
∗, and thereby fα, by a single graph cut.

For example, suppose energy E(f) is such that the opti-

mal expansion w.r.t labeling f ′ is fα:

f ′ = γ γ ββαβ → γ ββαα α = fα

1 1 1 0 0 0 = x
∗ (4)

where 1 means x2 is fixed to 1. Here only f1 and f3 changed

to label α while the rest preferred to keep their labels. The

α-expansion algorithm iterates the above binary step until

finally Eα(x′) = Eα(x∗) for all α ∈ L.
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Encoding label costs. The energy in example (4) was such

that f5 and f6 preferred to stay as label β rather than switch

to α. Suppose we want to introduce a cost hβ > 0 that

is added to E(f) if and only if there exists some fp = β.

This would encourage label α to absorb the entire region

that β occupies in f ′. If hβ is large enough, the optimal

α-expansion move would also change f5 and f6:

f ′ = γ γαβ γ γαβ
1

γ ββγ ββ
5 6

→ γαα α α α = fα

1 1 1 0 1 1 = x
∗ (5)

Our main algorithmic contribution is a way to encode such

label costs into the expansion step and thereby encourage

solutions that use fewer labels.

Energy Eα(x), when expressed as a multilinear polyno-

mial, is a sum of linear and quadratic terms over x. For the

specific example (5), we can encode cost hβ in Eα by sim-

ply adding hβ − hβx1x5x6 to the binary energy. Because

this specific term is cubic and hβ ≥ 0, it can be optimized

by a single graph cut using the construction in [16].

To encode general label costs for arbitray L ⊆ L and f ′,
we must optimize the modified expansion energy

Eα
h(x) = Eα(x) +

∑

L⊆L
L∩L′ 6=∅

(

hL−hL

∏

p∈PL

xp

)

+ Cα(x) (6)

where set L′ contains the unique labels in the current la-

beling f ′, and set PL = { p : f ′
p ∈ L}. Term Cα simply

corrects for the case when α /∈ L′ and is discussed later.

Each product term in (6) adds a higher-order clique PL

beyond the standard α-expansion energy Eα(x). Freedman

and Drineas [10] generalized the graph construction of [16]

to handle terms c
∏

pxp of arbitrary degree when c ≤ 0.

This means we can transform each product seen in (6) into

a sum of quadratic and linear terms that graph cuts can still

optimize globally. The transformation for a particular label

subset L ⊆ L with |PL| ≥ 3 is

−hL

∏

p∈PL

xp = min
y

L
∈{0,1}

hL

[

(|PL|−1)yL −
∑

p∈PL

xpyL

]

(7)

where yL is an auxiliary variable that, if hL > 0, must

be optimized alongside x. Since each xpyL term has non-

positive coefficient, it can be optimized by graph cuts.

To encode the potential (7) into an s-t min-cut graph con-

struction, we reparameterize the right-hand side such that

each quadratic monomial has exactly one complemented

variable (e.g. xȳ) and non-negative coefficient (arc weight).

One such reparameterization is

− hL + hLȳL +
∑

p∈PL

hLx̄pyL. (8)

where x̄p = 1 − xp. Figure 4 shows the subgraph corre-

sponding to (8) after cancelling the constant −hL.

Subgraphs of this type have been used in vision before,

most notably the Pn Potts potentials of Kohli et al. [14].

x x x1 2 kx x x

y
h

h

1 2 k

t

0
h
2h

h
*

h

Figure 4. LEFT: Graph construction that encodes h−hx1x2· · ·xk

when we define xp = 1 ⇔ p ∈ T where T is the sink side of the

cut. RIGHT: In a minimum s-t cut, the subgraph contributes cost

either 0 (all xp = 1) or h (otherwise). A cost greater than h (e.g. ∗)

cannot be minimal because setting y = 0 cuts only one arc.

Our indicator potentials δL(·) are different in that, at the

binary step (6), each clique PL is determined dynamically

from the current labeling f ′ and is not expressed as such in

the original energy (?). It is easy to represent a Pn Potts

potential by combination of label subset cost potentials, but

not the other way around. Our technical report [8] elabo-

rates on this point and Section 5 mentions an extension to

our work based on the Robust Pn Potts construction [15].

A final detail is how to handle the case when α was not

used in the current labeling f ′. The corrective term Cα

in (6) incorporates the label costs for α itself:

Cα(x) =
∑

L⊆L\L′

α∈L

(

hL − hL

∏

p∈P
x̄p

)

. (9)

If we find that x
∗ = 0 then label α was not used in f ′ and

it was also not worth expanding it in fα. The term (9) can

be encoded by a subgraph analogous to Figure 4, but the

following is more efficient: first compute optimal x∗ for (6)

without considering Cα, then explicitly add it to Eα
h(x∗)

if x
∗ 6= 0, and reject the expansion if the energy would

increase. In fact, a similar test-and-reject step allows la-

bel costs to be trivially incorporated into α-β-swap: before

accepting a swap move, test its energy against the energy

when all β variables become α and vice versa.

2.2. Optimality guarantees

In what follows we assume that energy (?) is configured1

so that Dp ≥ 0, Vpq is a metric [4], and thus E(f) ≥ 0.

Theorem 1 If f∗ is a global optimum of energy (?) and f̂
is a local optimum w.r.t. α-expansion then

E(f̂) ≤ 2cE(f∗) +
∑

L⊆L
hL|L| (10)

where c = max
pq∈N

(
maxα 6=β∈L Vpq(α,β)
minγ 6=ζ∈L Vpq(γ,ζ)

)

See Appendix A for the proof. The proof contains an alter-

nate bound (26) that does not assume Dp ≥ 0 and is tight

under much more general conditions; see [8] for a discus-

sion of tightness and local minima.

1Adding an arbitrary constant to Dp(·) or Vpq(·, ·) does not affect the

optimal labeling, so finite costs can always be made non-negative.
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The a priori bound (10) suggests that for large label costs

the worst-case approximation is poor. The fundamental

problem is that α-expansion can expand only one label at

a time. It may help empirically to order the expansions in a

greedy manner, but the next section describes a special case

for which the greedy algorithm still yields a similar addi-

tive bound (see Section 3.5.1 of [7]). We thus do not expect

much improvement unless different moves are considered.

2.3. Easy case: only perlabel costs

In the absence of any smooth costs (Vpq ≡ 0) and higher-

order label costs (hL = 0 for |L| > 1) our energy reduces

to a special case (1) known as the uncapacitated facility lo-

cation (UFL) problem. This well-studied problem was re-

cently applied for motion segmentation, first by Li [19] and

then by Lazic et al. [18]. The UFL problem assigns facil-

ities (labels) to each client (variable) such that the cost to

clients is balanced against the cost of ‘opening’ facilities

to serve them. Optimizing UFL is NP-hard by simple re-

duction from SET-COVER, so it is ‘easier’ than our full en-

ergy (?) only in a practical sense.

Li optimizes the integer program corresponding to UFL

by linear programming (LP) relaxation, then rounds frac-

tional ‘facility’ variables to 0 or 1 in a straight-forward man-

ner. Because of the heavy LP machinery, this approach is

slow and affords relatively few candidate models in prac-

tice. Li implements four application-specific heuristics to

aggressively prune candidate models “for LP’s sake.” Lazic

et al. optimize the same energy using max-product belief

propagation (BP), a message-passing algorithm.

Kuehn & Hamburger [17] proposed a natural greedy al-

gorithm for UFL in 1963. The algorithm starts from an

empty set of facilities (labels) and greedily introduces one

facility at a time until no facility would decrease the over-

all cost. The greedy algorithm runs in O(|L|2|P|) time for

labels L and observations P . Hochbaum [12] later showed

that greedy yields a O(log |P|)-approximation in general,

and better bounds exist for special cost functions (see [23]

for review). Other greedy moves have been proposed for

UFL besides “open one facility at a time” (see [6, 7]).

Our C++ library implements the greedy heuristic [17]

and, when smooth costs are all zero, it is 15–30 times faster

than α-expansion while yielding similar energies. Indeed,

“open facility α” is equivalent to expansion in this case.

Note that our higher-order label costs can also be optimized

greedily, but this is not standard and our bound (10) sug-

gests the approximation may become worse.

2.4. Energy (?) as an information criterion

Regularizers are useful energy terms because they can

help to avoid over-fitting. In statistical model selection,

various information criteria have been proposed to fulfil a

similar role. Information criteria penalize overly-complex

models, preferring to explain the data with fewer, simpler

models (Occam’s razor [21]).

For example, consider the well-known Akaike informa-

tion criterion (AIC) [1]:

min
Θ

−2 ln Pr(X |Θ) + 2|Θ| (11)

where Θ is a model, Pr(X | Θ) is a likelihood function

and |Θ| is the number of parameters in Θ that can vary. This

criterion was also discussed by Torr [25] and Li [19] in the

context of motion estimation.

Another well-known example is the Bayesian informa-

tion criterion (BIC) [5, 21]:

min
Θ

−2 ln Pr(X |Θ) + |Θ|·ln |P| (12)

where |P| is the number of observations. The BIC suggests

that label costs should be chosen in some proportion to the

number of observations (or, in our case, the expected num-

ber of observations per model). In contrast, AIC over-fits

as we add more observations from the true models. See [5]

for an intuitive discussion and derivation of BIC in general,

and see Torr’s work [25] for insights specific to vision.

3. Working With a Continuum of Labels

Our experimental Section 4 focuses on multi-model fit-

ting problems, which are the most natural applications of

energy (?). As was first argued in [13], energies like (?) are

powerful criteria for multi-model fitting in general. How-

ever, there is a technical hurdle with using combinatorial

algorithms for model fitting. In such applications each label

represents a specific model, including its parameter values,

and the set of all labels L is a continuum. In line fitting, for

example, L = R2. Practically speaking, however, the com-

binatorial algorithms from Section 2 require a finite set L
of labels (models). Below we review a technique to effec-

tively explore the continuum of model parameters by work-

ing with a finite subset of models at any given iteration t.

PEARL Algorithm [13]

1 propose initial models L0 by random samples (as in RANSAC)

2 run α-expansion to compute optimal labeling f w.r.t. Lt

3 re-estimate model parameters to get Lt+1; t := t+1; goto 2

PEARL was the first to use regularization energies and

EM-style optimization for geometric multi-model fitting.

Other geometric model fitting works have used separate el-

ements such as random sampling [25, 19] (as in RANSAC)

or EM-style iteration [2], but none have combined them in

a single optimization framework. The experiments in [13]

show that their energy-based formulation beats many state-

of-the-art algorithms in this area. In other settings (segmen-

tation, stereo) these elements have been combined in vari-

ous application-specific ways [28, 2, 22, 27].

Our paper introduces a more general energy (?) and a

better algorithm for the expansion step of PEARL (step 2).
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ground truth raw data proposals 1st iteration 5th iteration convergence
(50% outliers) (6 models) (6 models) (5 models)

Figure 5. Re-estimation helps to align models over time. Above shows 900 raw data points with 50% generated from 5 line intervals.

Random sampling proposes a list of candidate lines (we show 20 out of 100). The 1st segmentation and re-estimation corresponds to

Li [19], but only the yellow line and gray line were correctly aligned. The decreasing energies in Figure 8 correspond to better alignments

like the subsequent iterations above. If a model loses enough inliers during this process, it is dropped due to label cost (dark blue line).

Review of PEARL for (?). Step 1 of PEARL is to pro-

pose an initial set of models L0. Each proposal is gener-

ated by a randomly sampling the smallest subset of data

points needed to define a geometric model, exactly as in

RANSAC [9]. A larger set of proposals L0 is more likely to

contain models that approximate the true ones. Of course,

L0 will contain many incorrect models as well, but optimiz-

ing energy (?) over L0 (step 2) will automatically select a

small subset of labels from among the best models in L0.

The initial set of selected models can actually be further

improved as follows. From here on, we represent model as-

signments by two sets of variables: segmentation variables

{fp} that for each data point p specifies the index of a model

from the finite set L0, and parameter variables {θl} that

specify model parameters currently associated with each

model index. Then, energy (?) is equivalent to

E(f ; θ) =
∑

p∈P
Dp(fp, θfp

) +
∑

pq∈N
Vpq(fp, fq, θfp

, θfq
)

+
∑

L⊆L
hL(θL)·δL(f). (?′)

For simplicity, assume that the smoothness terms in (?′) are

Potts interaction potentials [4] and the third term represents

simple per-label costs as in (1). Then, specific model pa-

rameters θl assigned to a cluster of points Pl = {p|fp = l}
only affect the first term in (?′), which is a sum of unary

potentials. In most cases, it is easy to compute a pa-

rameter value θ̂l that locally or even globally minimizes
∑

p∈Pl
Dp(l, θl). The re-estimated parameters {θ̂l} cor-

respond to an improved set of labels L1 that reduces en-

ergy (?′) for fixed segmentation f (step 3).

Now one can re-compute segmentation f by applying

the algorithms in Section 2 to energy (?) over a new set

of labels L1 (step 2 again). PEARL’s re-segmentation and

re-estimation steps 2 and 3 reduce the energy. Iterating

these two steps generates a sequence of re-estimated mod-

els L0,L1,L2, ... converging to a better local minima of

energy (?). In our experiments, convergence is typically

achieved in 5–20 iterations. In most cases, iterating im-

proves the solution quality significantly beyond the initial

iteration (see Figure 8).

seed=100 seed=101 seed=102

Figure 6. We can also fit line intervals to the raw data in Figure 5.

The three results above were each computed from a different set L

of random initial proposals. See Section 4.1 for details.

Figure 7. For multi-model fitting, each label can represent a spe-

cific model from any family (Gaussians, lines, circles...). Above

shows circle-fitting by minimizing geometric error of points.

4. Applications and Experimental Setup

The experimental setup is essentially the same for each

application: generate proposals via random sampling, com-

pute initial data costs Dp, and run the iterative algorithm

from Section 3. The only components that change are the

application-specific Dp and regularization settings. Sec-

tion 4.1 outlines the setup for basic geometric models: lines,

circles, homographies, motion. Section 4.2 describes the

unsupervised image segmentation setup.

4.1. Geometric multimodel fitting

Each label l ∈ L represents an instance from a specific

class of geometric model (lines, homographies), and each

Dp(l) is computed by some class-specific measure of ge-

ometric error. The strength of per-label costs and smooth

costs were tuned for each application.

Outliers. All our experiments handle outliers in a standard

way: we introduce a special outlier label φ with hφ =0 and

Dp(φ) = const > 0 manually tuned. This corresponds to a

uniform distribution of outliers over the domain.
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Figure 8. Energy (?′) over time for a line-fitting example (1000

points, 40% outliers, 6 ground truth models). Only label cost regu-

larization was used. Re-estimation reduces energy faster and from

fewer samples. The first point (•) in each series is taken after ex-

actly one segmentation/re-estimation, and thus suggests the qual-

ity of Li [19] using a greedy algorithm instead of LP relaxation.

Line fitting. Our line fitting experiments are all synthetic

and mainly meant to be illustrative. Data points are sampled

i.i.d. from a ground-truth set of line segments (e.g. Fig-

ure 5), under reasonably similar noise; outliers are sampled

uniformly. Since the data is i.i.d. we set Vpq = 0 and use

the greedy algorithm from Section 2.3. Figure 5 is a typical

example of our line fitting result with outliers.

In 2D each line model l has parameters θl = {a, b, c, σ}
where ax+by+c = 0 defines the line and σ2 is the variance

of data; here a, b, c have been scaled such that a2 + b2 = 1.

Each proposal line is generated by selecting two random

points from P , fitting a, b, c accordingly, and selecting a

random initial σ based on a prior. The data cost for a 2D

point xp = (xx
p, x

y
p) is computed w.r.t. orthogonal distance

Dp( l ) = − ln
(

1√
2πσ

exp
(

−
(axx

p+bxy
p+c)2

2σ2

))

. (13)

Figure 8 shows the trend in running time as the num-

ber of random initial proposals is increased. For 1000 data

points and 700 samples, convergence took .7–1.2 seconds

with 50% of execution time going towards computing data

costs (13) and performing re-estimation.

Line interval and circle fitting. Figure 6 shows three in-

terval fitting results from different initial proposals. Fig-

ure 7 shows a simple circle fitting result. See [8] for details.

Homography estimation. Our setup comes directly

from [13] so we give only an outline. The input comprises

two (static) images related by a fundamental matrix. We

first detect SIFT features [20] and do matching as a prepro-

cessing step; these matches are our observations. Our set

of neighbours pq ∈ N is determined by a Delaunay trian-

gulation of feature positions in the first image. The mod-

els being estimated are homographies, and each proposal is

generated by sampling four potential feature matches. Data

costs measure the symmetric transfer error [11] of a match

w.r.t a homography. Figure 2 shows a representative result.

Multi-body motion segmentation. The setup starts the

same as for homography estimation, except here each model

is a fundamental matrix corresponding to a rigid body mo-

tion, as in [19], and each proposal is generated by sampling

eight matches. Data costs measure the squared Sampson’s

distance [11] of a match w.r.t. a fundamental matrix. Fig-

ure 1 shows a representative result. See [13] for details.

4.2. Image segmentation by MDL criterion

Here the models are either greyscale histograms or Gaus-

sian mixtures in RGB space. Initial proposals were gen-

erated by sampling small patches of the input image, just

like in [28, 27]. We used uniform Potts model for pairwise

terms. See [8] for further details. Figures 3 and 9 show

examples of our segmentations.

We formulate the problem as one of finding a mini-

mum description length (MDL) representation for the im-

age, meaning a we want to represent the image compactly,

in an information-theoretic sense (see [21] for review of

MDL). The MDL principle was first proposed for unsuper-

vised segmentation by Zhu & Yuille [28], along with their

region competition algorithm. When defined over a 2D grid

of image pixels, our energy (?′) can implement a discrete

version of Zhu & Yuille’s energy. Our algorithm is however

more powerful because α-expansion makes large moves,

while region competition relies on local contour evolution

and explicit merging of adjacent regions.

5. Discussion

Our C++ implementation and MATLAB wrapper are

available at http://vision.csd.uwo.ca/code/. The po-

tential applications of our algorithm are nearly as broad as

for α-expansion. Our algorithm can be applied when obser-

vations are known a priori to be correlated, whereas stan-

dard mixture model algorithms are designed for i.i.d. data.

We can generalize the concept of label costs by making

them spatially variant. The label cost term in energy (?)

could actually be expressed as
∑

P⊆P

∑

L⊆L
hP

L·δL(fP ) (14)

where the energies discussed in this paper are the special

case when hP
L = 0 for all clique sets P ( P . Note that the

test-and-reject approach (Section 2.1) to incorporate Cα(·)
may no longer be ideal for such ‘regional’ label costs.

Regional label costs may be useful when labels belong to

known categories with specific priors, such as “pay a fixed
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Figure 9. Unsupervised segmentation by clustering simultaneously over pixels and colour space using Gaussian mixtures (colour images)

and non-parametric histograms (greyscale images). Notice we find coarser clustering on baseball than Zabih & Kolmogorov [27] without

over-smoothing. For segmentation, our energy is closer to Zhu & Yuille [28] but our algorithm is more powerful than region-competition.

penalty if any label from {sky,cloud,sun} appears in the

bottom of an image.” Indeed, our higher-order label costs

themselves seem to be novel, both in vision and in terms of

the UFL problem, and can be thought of as a specific type

of co-occurrence cost.

Furthermore a binary construction based on Robust

Pn Potts [15], within our expansion step, allows us to

encode an arbitrary concave penalty on the number of

variables taking a specific label, thus generalizing δl(·) if

needed. We leave this as future work.

Our energy is quite general but this can be a disadvan-

tage in terms of speed. The α-expansion step runs in poly-

nomial time for fixed number of positive hL terms, but

higher-order label costs should be used sparingly. Even the

set of per-label costs {hl} slows down α-expansion by 40–

60%, though this is still relatively fast for such difficult en-

ergies [24]. This slowdown may be because the Boykov-

Kolmogorov maxflow algorithm [3] relies on heuristics that

do not work well for large cliques, i.e. subgraphs of the kind

in Figure 4. Even if faster algorithms can be developed, our

implementation can test the merit of various energies before

one invests time in specialized algorithms.
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A. Optimality proof

Proof of Theorem 1. The proof idea follows Theorem 6.1

of [4]. Let us fix some α ∈ L and let

Pα
def
=

{
p ∈ P : f∗

p = α
}

. (15)

We can produce a labeling fα within one α-expansion move

from f̂ as follows:

fα
p =

{

α if p ∈ Pα

f̂p otherwise.
(16)

Since f̂ is a local optimum w.r.t. expansion moves we have

E(f̂) ≤ E(fα). (17)

Let E(·)|S denote a restriction of the summands of en-

ergy (?) to only the following terms:

E(f)|S =
∑

p∈S
Dp(fp) +

∑

pq∈S
Vpq(fp, fq).

We separate the unary and pairwise terms of E(f) via inte-

rior, exterior, and boundary sets with respect to pixels Pα:

Iα = Pα ∪ { pq ∈ N : p ∈ Pα, q ∈ Pα }

Oα = P \ Pα ∪ { pq ∈ N : p 6∈ Pα, q 6∈ Pα }

Bα = { pq ∈ N : p ∈ Pα, q 6∈ Pα } .

The following facts now hold:

E(fα)|Iα = E(f∗)|Iα (18)

E(fα)|Oα = E( f̂ )|Oα (19)

E(fα)|Bα ≤ cE(f∗)|Bα . (20)

Equation (20) holds because for any pq ∈ Bα we have

Vpq(f
α
p , fα

q ) ≤ cVpq(f
∗
p , f∗

q ).
Let EH denote the label cost terms of energy E. Using

(18), (19) and (20) we can rewrite (17) as

E( f̂ )|Iα + E( f̂ )|Bα + EH( f̂ ) (21)

≤ E(fα)|Iα + E(fα)|Bα + EH(fα) (22)

≤ E(f∗)|Iα + cE(f∗)|Bα + EH(fα) (23)

Depending on f̂ we can bound EH(fα) by

EH(fα) ≤ EH(f̂) +







∑

L⊆L\L̂
α∈L

hL if α ∈ L∗

0 otherwise.

(24)
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where sets L∗ and L̂ contain the unique labels in f∗ and f̂
respectively.

To bound the total energy we sum expressions (21)

and (23) over all labels α ∈ L∗ to arrive at the following:

∑

α∈L∗

(

E( f̂ )|Iα + E( f̂ )|Bα

)

(25)

≤
∑

α∈L∗

(

E(f∗)|Iα +cE(f∗)|Bα

)

+
∑

L⊆L\L̂

hL|L∩L∗|.

Observe that, for every pq ∈ B =
⋃

α∈LB
α, the term

Vpq(f̂p, f̂q) appears twice on the left side of (25), once for

α = f∗
p and once for α = f∗

q . Similarly every V (f∗
p , f∗

q )
appears 2c times on the right side of (25). Therefore equa-

tion (25) can be rewritten as

E(f̂) ≤ E(f∗) + (2c − 1)E(f∗)|B − E(f̂)|B (26)

+ EH(f̂) −EH(f∗) +
∑

L⊆L\L̂

hL|L∩L∗|.

The above inequality is a tight a posteriori bound on E(f̂)

w.r.t. a specific local optimum f̂ and global optimum f∗;

see [8] for worst-case local minima. Observe that

EH(f̂) − EH(f∗) +
∑

L⊆L\L̂

hL|L∩L∗|

=
∑

L⊆L\L∗
L∩L̂6=∅

hL +
∑

L⊆L\L̂
L∩L∗6=∅

hL

(
|L∩L∗| − 1

)

≤
∑

L⊆L
hL|L|. (27)

Using (27) and the assumption Dp ≥ 0 we simplify (26) to

give a priori bound (10). �
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[15] P. Kohli, L. Ladický, and P. H. S. Torr. Robust Higher

Order Potentials for Enforcing Label Consistency. IJCV,

82(3):302–324, 2009. 3, 7

[16] V. Kolmogorov and R. Zabih. What Energy Functions Can

Be Optimized via Graph Cuts. IEEE TPAMI, 26(2):147–159,

2004. 3

[17] A. A. Kuehn and M. J. Hamburger. A Heuristic Program for

Locating Warehouses. Manag. Sci., 9(4):643–666, 1963. 4

[18] N. Lazic, I. Givoni, B. Frey, and P. Aarabi. FLoSS: Facility

Location for Subspace Segmentation. In ICCV, 2009. 4

[19] H. Li. Two-view Motion Segmentation from Linear Pro-

gramming Relaxation. In CVPR, 2007. 1, 4, 5, 6, 7

[20] D. G. Lowe. Distinctive Image Features from Scale-Invariant

Keypoints. IJCV, 60:91–110, 2004. 6

[21] D. J. C. MacKay. Information Theory, Inference, and Learn-

ing Algorithms. Cambridge University Press, 2003. 4, 6

[22] C. Rother, V. Kolmogorov, and A. Blake. GrabCut: Inter-

active Foreground Extraction using Iterated Graph Cuts. In

SIGGRAPH, 2004. 4

[23] D. B. Shmoys, E. Tardos, and K. Aardal. Approximation

algorithms for facility location problems (extended abstract).

In ACM STOC, pages 265–274, 1998. 4

[24] R. Szeliski, R. Zabih, D. Scharstein, O. Veksler, V. Kol-

mogorov, A. Agarwala, M. Tappen, and C. Rother. A com-

parative study of energy minimization methods for Markov

random fields with smoothness-based priors. IEEE TPAMI,

30(6):1068–1080, June 2008. 7

[25] P. H. S. Torr. Geometric Motion Segmentation and Model

Selection. Philosophical Trans. of the Royal Society A, pages

1321–1340, 1998. 4

[26] R. Tron and R. Vidal. A benchmark for the comparison of

3-d motion segmentation algorithms. In CVPR, 2007. 1, 7

[27] R. Zabih and V. Kolmogorov. Spatially Coherent Clustering

with Graph Cuts. In CVPR, June 2004. 2, 4, 6, 7

[28] S. C. Zhu and A. L. Yuille. Region competition: unifying

snakes, region growing, and Bayes/MDL for multiband im-

age segmentation. TPAMI, 18(9):884–900, 1996. 2, 4, 6, 7


