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Abstract. We address the continuous problem of assigning multiple
(unordered) labels with the minimum perimeter. The corresponding dis-
crete Potts model is typically addressed with a-expansion which can gen-
erate metrication artifacts. Existing convex continuous formulations of
the Potts model use TV-based functionals directly encoding perimeter
costs. Such formulations are analogous to ’min-cut’ problems on graphs.
We propose a novel convex formulation with a continous ’max-flow’ func-
tional. This approach is dual to the standard TV-based formulations of
the Potts model. Our continous max-flow approach has significant nu-
merical advantages; it avoids extra computational load in enforcing the
simplex constraints and naturally allows parallel computations over dif-
ferent labels. Numerical experiments show competitive performance in
terms of quality and significantly reduced number of iterations compared
to the previous state of the art convex methods for the continuous Potts
model.

1 Introduction

The multi-partitioning problem, or multi-labeling problem, was extensively in-
vestigated in image processing and computer vision [1]. It computes the optimal
labeling l ∈ l1, ..., ln of each graph node or image pixel. Looking for such optimal
labeling function with respect to some energy functional is an important mathe-
matical strategy to model a wide range of applications, e.g. image segmentation
[2, 3], 3D reconstruction [4] etc. In this work, we focus on the Potts model that
does not favor any particular order of the labels. The Potts model is also referred
to as a piecewise constant labeling model which minimizes the total perimeter of
the one-label (constant) regions.

In a discrete setting, Potts model corresponds to a practically important
special case of a Markov Random Field (MRF) defined over a graph [5]. A
typical MRF energy sums unary potentials defined over graph nodes and pairwise
potentials defined over graph edges. When pixels can take only one of 2 labels,
the resulting binary energy function can be efficiently and globally minimized by
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graph cuts [6], provided that the pairwise potentials are submodular [7]. However,
for more than two labels typical MRF optimization problems are NP hard, so is
Potts model. In particular, Potts model corresponds to a multi-terminal graph
cut problem where only provably good approximate solutions are guaranteed,
for example, via α-expansion or α − β swap [2] and some LP relaxations [8, 9].
Another drawback of the discrete setting is that the results are often biased by
the discrete grid causing metrication errors. Such visual artifacts can be largely
reduced by either adding more neighbour nodes [10, 11] or applying high-order
clique [12]. However, extra computation and memory load are introduced.

Parallel to these developments, variational methods have been proposed for
solving the same Potts model in the spatially continuous setting where a bounded
image domain is considered. In this regard, level set introduces the most direct
and natural way to encode the piecewise constant labeling function and its re-
lated computation provides an efficient way to resolve the optimal partitions with
a subgrid accuracy, see e.g. [13–15] and its variant of the piecewise constant level
set method (PCLSM) [16, 17]. Unfortunately, these formulations are nonconvex
and computation often gets stuck in a local minima. Recently, convex relaxation
approaches were proposed, e.g. [3, 18–22]. Comparing to level set methods, Great
advantages in numerics can be achieved, e.g. reliable algorithms can be build up
by standard convex optimization theories [23]. Since a strict mathematical proof
of the exactness of such a convex relaxation approach to the nonconvex Potts
model is still open and argued, its approximation result can only be accepted
as suboptimal. One may claim the convex relaxation method gives the solution
which is closer to the exact global minimum than the local minima by the level
set formulation. Our experiment results confirmed this.

In this paper, we study and solve the Potts problem in the spatially con-
tinuous setting through its convex relaxed formulation, i.e. the convex relaxed
Potts model. In [18, 22], such convex minimization problem is computed directly
through the minimization over the labeling functions, i.e. tackle the minimal
cut problem in a direct way, extra computation load is introduced to explore
the pointwise simplex constraint within each iteration. Bae et. al. [21] proposed
an equivalent dual model and its associated smoothing formulation based on the
maximum entropy regularization, which properly avoids the extra step to handle
simplex constraints and leads to a much simpler numerical scheme. To the best
of our knowledge, none of previous works investigates the potential max-flow for-
mulation which is dual to the concerning minimal cut. This is in contrast to the
discrete case, where the minimal cut of a graph is often studied and computed
over its dual maximal flow formulation, most efficient algorithms of graph-cuts
were designed and explained in a flow maximization manner [24]. We devote this
work to study the max-flow model associated to the convex relaxed Potts model.
We also propose a fast max-flow based algorithm for computing continuous min-
cuts. Experiments show that our max-flow algorithm is much more efficient than
the state of art of computational methods [18, 22].
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Contributions We summarize our main contributions in this paper as follows:
first, we propose the novel max-flow formulation to the minimal cut of the given
continuous image domain, i.e. the convex relaxed Potts problem. We show the
studied max-flow and min-cut models are equivalent and dual to each other,
hence the convex relaxed Potts problem can be solved through the proposed
max-flow formulation. Analysis of the max-flow problem also leads to a new
variational perspective of the corresponding minimal cut or continuous Potts
problem. In addition, we build up the new multiplier-based max-flow algorithm
upon the equivalent primal-dual model. It is numerically reliable and efficient. Its
convergence can be proved by classical optimization theories. Our experiments
show it is around 4 times faster than the previous methods [18, 22]. Last but not
least, such algorithm has a natural parallel framework over labeling functions
and can, therefore, be easily implemented and accelerated on a parallel platform.

2 Convex Relaxed Potts Model and Previous Works

2.1 Convex Relaxed Potts Model

The Potts model originates from the statistical physics [25] and its spatially
continuous version tries to partition the continuous domain Ω into n disjoint
subdomains {Ωi}ni=1 by

min
{Ωi}n

i=1

n
∑

i=1

∫

Ωi

ρ(li, x) dx+ λ

n
∑

i=1

|∂Ωi| (1)

s.t. ∪n
i=1 Ωi = Ω , Ωk ∩Ωl = ∅ , ∀k 6= l (2)

where |∂Ωi| measures the perimeter of each disjoint subdomain Ωi, i = 1 . . . n.
The function ρ(li, x), i = 1 . . . n, evaluates the performance of assigning the label
li to the specified position x. As a special case, the piecewise constant Mumford-
Shah functional can be encoded in terms of (1) with ρ(li, x) = |I(x)− li|p where
l1 . . . ln are the given grayvalue constants. Obviously, Potts model favors the
labeling with ’tight’ boundaries.

Let ui(x), i = 1 . . . n, denote the indicator function of the disjoint subdomain
Ωi, i.e.

ui(x) :=

{

1 , x ∈ Ωi

0 , x /∈ Ωi
, i = 1 . . . n .

The perimeter of each disjoint subdomain can be computed by

|∂Ωi| =

∫

Ω

|∇ui| dx , i = 1 . . . n . (3)

The Potts model (1) can then be rewritten as

min
ui(x)∈{0,1}

n
∑

i=1

∫

Ω

{

ui(x)ρ(li, x) + λ |∇ui|
}

dx , s.t.
n
∑

i=1

ui(x) = 1 , ∀x ∈ Ω (4)
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where the constraints to ui(x), i = 1 . . . n, just corresponds to the condition (2)
of subdomains Ωi, i = 1 . . . n.

Clearly, the Potts model (4) is nonconvex due to the binary configuration of
each function ui(x) ∈ {0, 1}. The convex relaxed Potts model [20, 22, 21] proposes
to relax such binary constraints to the convex interval [0, 1] and approximates
(4) by the reduced convex optimization problem:

min
u∈S

n
∑

i=1

∫

Ω

ui(x) ρ(li, x) dx + α

n
∑

i=1

∫

Ω

|∇ui| dx (5)

where S is the convex constrained set of u(x) := (u1(x), . . . , un(x)):

S = {u(x) | (u1(x), . . . , un(x)) ∈ △+ , ∀x ∈ Ω } ,

△+ is the simplex set, i.e.

for ∀x ∈ Ω ,

n
∑

i=1

ui(x) = 1 ; ui(x) ∈ [0, 1] , i = 1 . . . n .

The computation result of the convex relaxed Potts model (5) gives rise to a
cut of the continuous image domain Ω with multiple terminals. (5) is, therefore,
also called the continuous min-cut model in this paper. This is in comparison to
its equivalent max-flow formulation proposed in later sections.

2.2 Previous Works

In [18], Zach et al introduced an alternating optimization approach to solve (5)
in a numerically splitting way:

min
u,v∈S

n
∑

i=1

∫

Ω

vi(x) ρ(li, x) dx +
1

2θ
‖u− v‖2 + α

n
∑

i=1

∫

Ω

|∇ui| dx .

Obviously, when θ takes a value small enough, the above convex optimization
problem properly approximates the convex relaxed Potts model (5). Within each
iteration, two substeps are taken to tackle the total-variation term and explore
the pointwise simplex constraint S respectively.

In [22], a Douglas-Rachford splitting algorithm was proposed to solve a quite
similar problem as (5), where a variant of the total-variation term is considered:

∫

Ω

√

|∇u1(x)|
2
+ . . .+ |∇un(x)|

2
dx .

As in [18], the proposed splitting procedure involves an outer loop with two
substeps, where the first substep solves a tv minimization problem iteratively
until convergence, while the second substep projects the current solution to the
convex set S.
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In [20, 26], the authors introduced another relaxation based on a multi-layered
configuration, which was shown to be tighter. A more complex constraint on the
dual variable p is given to avoid multiple countings. In addition, a PDE-based
projection-descent scheme was applied to achieve the minimum.

In contrast to [18, 22, 20, 26], [21] did not try to tackle the labeling function
of the continuous min-cut problem (5) directly, but solved its equivalent dual
formulation:

max
pi∈Cα

∫

Ω

{

min ( ρ(l1, x) + div p1 . . . ρ(ln, x) + div pn )
}

dx . (6)

where div pi, i = 1 . . . n, correspond to the total-variation terms under the dual
perspective and the convex set Cα is defined as

Cα = {p | ‖p‖∞ ≤ α , pn|∂Ω = 0 } . (7)

Once the optimal functions p∗i (x), i = 1 . . . n, were resolved, the labeling
functions ui(x), i = 1 . . . n, can be simply recovered by

u∗
k(x) =

{

1 if k = argmini=1...n ρ(li, x) + div p∗i (x)
0 otherwise

. (8)

provided the above argmin is unique. It was further shown by [21] that the
highly nonsmooth dual formulation (6) can be properly approximated by the
maximization of a smooth energy function, i.e.

max
pi∈Cλ

−s

∫

Ω

{

log

n
∑

i=1

exp(
−fi − div pi

s
)
}

dx . (9)

Such a smooth dual model (9) approaches (6) with a maximum entropy regu-
larizer and can be solved efficiently by a simple and reliable algorithmic scheme
due to its smoothness and convexity.

In this paper, we propose a new continuous max-flow formulation which is
equivalent to the continuous min-cut model (5), actually dual to each other. In
theory, it provides a new variational perspective to investigate the continuous
min-cut with multiple terminals or labels. In numerics, its great advantages over
previous works are: it avoids pointwise projections onto the simplex constraint
S within each outer loop as [18, 22]; in comparison to [21], it exactly solves (6)
without any smoothing procedure; it is globally optimized based on an efficient
and reliable multiplier-based max-flow algorithm, in contrast to the PDE-descent
method [20, 26] whose convergence may suffer from uncareful stepsizes resulting
in suboptimums; experiments show a faster convergence rate, about 4 times,
than [18, 22].

3 Continuous Max-Flow Model

In this section, we introduce the novel continuous max-flow formulation to the
continuous min-cut problem (5) with n labels.
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(a) (b)

Fig. 1. (a) Continuous settings of max-flow with two labels; (b) Continuous configu-
ration of max-flow with n labels.

3.1 Continuous Max-Flow Model

Continuous Max-Flow Model with 2 Labels Before we introduce the con-
tinuous max-flow model with n labels, we first introduce the recent study of the
continuous max-flow model with 2 labels proposed by the authors [27] which is
dual to the continuous s-t cut. This is directly analoguous to the graph-based
max-flow and s-t cut: given the continuous image domain Ω, we assume there
are two terminals, the source s and the sink t, see figure (a) of Fig. 1. We assume
that for each image position x ∈ Ω, there are three concerning flows: the source
flow ps(x) ∈ R directed from the source s to x, the sink flow pt(x) ∈ R directed
from x to the sink t and the spatial flow field p(x) ∈ R

2. The three flow fields
are constrained by capacities

ps(x) ≤ Cs(x) , pt(x) ≤ Ct(x) , |p(x)| ≤ C(x) ; ∀x ∈ Ω . (10)

In addition, for ∀x ∈ Ω, all flows are conserved, i.e.

pt − ps + div p = 0 , ∀x ∈ Ω . (11)

Therefore, we formulate the corresponding max-flow problem by maximizing
the total flow from the source:

max
ps,pt,p

∫

Ω

ps dx (12)

subject to flow constraints (10) and (11).
Yuan et al [27] proved that such a continuous max-flow formulation (12) is

equivalent to the continuous s-t min-cut problem [3, 28] as follows:

min
u(x)∈[0,1]

∫

Ω

(1− u)Cs dx+

∫

Ω

uCt dx+

∫

Ω

C(x) |∇u| dx . (13)

Actually, (13) just gives the dual model to (12) and the labeling function u(x) is
the multiplier to the flow conservation condition (11). Furthermore, an efficient
and reliable max-flow based algorithm can be built up through (12).
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Continuous Max-Flow Model with n LabelsMotivated by the above obser-
vations, we give a continuous configuration of the max-flow model with n labels,
see figure (b) of Fig. 1:

1. n copies Ωi, i = 1 . . . n, of the image domain Ω are given in parallel;
2. For each position x ∈ Ω, the source flow ps(x) tries to stream from the

source s to x at each copy Ωi, i = 1 . . . n, of Ω. The source flow field is the
same for each Ωi, i = 1 . . . n, i.e. ps(x) is unique;

3. For each position x ∈ Ω, the sink flow pi(x), i = 1 . . . n, is directed from x
at the i-th copy Ωi to the sink t. The n sink flow fields pi(x), i = 1 . . . n,
may be different;

4. The spatial flow fields qi(x), i = 1 . . . n, are defined within each copy Ωi,
i = 1 . . . n. They may also be different from each other.

For such a contiuous setting, we give the constrained conditions for flows
pi(x) and qi(x), at x ∈ Ω, as follows

|qi(x)| ≤ Ci(x) , pi(x) ≤ ρ(ℓi, x) , i = 1 . . . n ; (14)

(

div qi − ps + pi
)

(x) = 0 , i = 1, . . . , n . (15)

Note: there is no constraint for the source flow ps(x).
We, then, formulate the respective continuous max-flow model, over all the

flow fields ps(x), p(x) := (p1(x), . . . , pn(x)) and q(x) := (q1(x), . . . , qn(x)), as

max
ps,p,q

{

P (ps, p, q) :=

∫

Ω

ps dx
}

(16)

subject to (14) and (15).
In the following section, we introduce the equivalent models of the continuous

max-flow formulation (16). We show its equivalent dual model just gives the
continuous min-cut model (5) provided C(x) = α.

Comments It is easy to notice that when the source flow ps(x) tries to pass the
same position x at each Ωi, i = 1 . . . n, in view of the flow conservation condition
(15), we have

ps(x) = div qi(x) + pi(x) , i = 1 . . . n .

Observe the righthand of the above formulation and the configuration shown
in Fig. 1, ps(x) is constrained and should be given within a feasible set, i.e.
consistent to all n flow configurations of div qi(x) + pi(x), i = 1 . . . n, at x.
Consider the flow capacity constraint of pi(x) (14), it is easy to conclude that

ps(x) = min(div q1(x) + ρ(l1, x), . . . , div qn(x) + ρ(ln, x)) , ∀x ∈ Ω . (17)

Therefore, the maximum of
∫

Ω
ps dx suggests

max
|qi(x)|≤Ci(x)

∫

Ω

{

min(ρ(l1, x) + div q1, . . . , ρ(ln, x) + div qn)
}

dx , (18)
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which discovers the dual model (6) of [21] when Ci(x) = α are constant.
We can consider each image copy Ωi, i = 1 . . . n, together with the con-

strained sink flow field pi(x) and the spatial flow field qi(x) given in (14), as a
’filter’ Fi whose capacity at x ∈ Ω is constrained by div qi(x) + pi(x). Then one
can explain the max-flow model (16) such that all the filters Fi, i = 1, . . . , n, are
layered one by one and the source flow ps(x) tries to pass such a stack of ’filters’
in one time. It is obvious that ps(x) is bottlenecked by the minimum capacity of
div qi(x)+pi(x), i = 1 . . . n. In such a filter configuration, (16) aims to maximize
the total flow passing this ’filter’ set.

3.2 Equivalent Primal-Dual Formulation

We introduce the multiplier functions ui(x), i = 1 . . . n, to the flow balance
condition (15). Therefore, we have the equivalent primal-dual model of (16)

max
ps,p,q

min
u

{

E(ps, p, q;u) :=

∫

Ω

ps dx +

n
∑

i=1

∫

Ω

ui(div qi − ps + pi) dx
}

(19)

s.t. pi(x) ≤ ρ(ℓi, x) , |qi(x)| ≤ Ci(x) ; i = 1 . . . n

where u(x) := (u1(x), . . . , un(x)).
Rearranging the energy function E(ps, p, q;u) of (19), we have

E(ps, p, q;u) =

∫

Ω

{

(1−
n
∑

i=1

ui) ps +
n
∑

i=1

ui pi +
n
∑

i=1

ui div qi
}

dx (20)

For the primal-dual model (19), the conditions of the minimax theorem (see
e.g., [29] Chapter 6, Proposition 2.4) are all satisfied. That is, the constraints of
flows are convex, and the energy function is linear in both the multiplier u and
the flow functions ps, p and q, hence convex l.s.c. for fixed u and concave u.s.c.
for fixed ps, p and q. This confirms the existence of at least one saddle point,
see [29, 30]. It also follows that the min and max operators of the primal-dual
model (19) can be interchanged, i.e.

max
ps,p,q

{

min
u

E(ps, p, q;u)
}

= min
u

{

max
ps,p,q

E(ps, p, q;u)
}

. (21)

3.3 Equivalent Dual Formulation

Now we investigate the optimization of (19) by the min-max order as the right-
hand side of (21), i.e. first maximize E(ps, p, q;u) over the flow functions ps, p
and q then minimize over the multiplier function u. We show that this leads to
the equivalent dual model of the continuous max-flow formulation (16), i.e.

min
u

{

D(u) :=

n
∑

i=1

(

∫

Ω

ui(x) ρ(ℓi, x) dx +

∫

Ω

Ci(x) |∇ui| dx
)}

(22)

s.t.
n
∑

i=1

ui(x) = 1 , ui(x) ≥ 0 .
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Optimization of Flow Functions p, q and ps: In order to optimize the flow
function p(x) in (20), let us consider the following maximization problem

f(q) = max
p≤C

p · q . (23)

where p, q and C are scalars.When q < 0, p can be chosen to be a negative infinity
value in order to maximize the value p · q, i.e. f(q) = +∞. In consequence, we
must have q ≥ 0 so as to make the function f(q) meaningful. Observe now that

{

if q = 0 , then p ≤ C and f(q) reaches the maximum 0
if q > 0 , then p = C and f(q) reaches the maximum q · C

. (24)

By virtue of (24), we can equally express f(q) by

f(q) = q · C , q ≥ 0 . (25)

Apply (23) to the maximization of E(ps, p, q;u) of (20) over the sink flows
pi(x), i = 1 . . . n, we have

max
pi(x)≤ρ(li,x)

∫

Ω

uipi dx =

∫

Ω

ui(x)ρ(li, x) dx , ui(x) ≥ 0 , i = 1, . . . , n . (26)

For the maximization over the spatial flow functions qi(x), i = 1, . . . , n, it is
well-known [31] that

max
|qi(x)|≤Ci(x)

∫

Ω

ui div qi dx =

∫

Ω

Ci(x) |∇ui| dx . (27)

Furthermore, observe the source flow function ps(x) is unconstrained, the
maximization of (20) over ps simply leads to

1−
n
∑

i=1

ui(x) = 0 , ∀x ∈ Ω . (28)

By the results of (28), (26) and (27), it is easy to conclude that the maxi-
mization of the primal-dual model (20) over flow functions ps, p and q gives its
equivalent dual model (22), hence we have

Proposition 1. The continuous max-flow model (16), the primal-dual model

(19) and the dual model (22) are equivalent to each other.

In this work, we focus on the case when Ci(x) = α, ∀x ∈ Ω and i = 1, . . . , n.
Obviously, we have

Proposition 2. When Ci(x) = α, ∀x ∈ Ω and i = 1 . . . n, the dual model (22)
equals the continuous min-cut model (5).
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3.4 Variational Perspective of Flows and Cuts

Through the above analytical results, we can also give a variational perspective
of flows and cuts, which recovers conceptions and terminologies used in the graph
setting.

Consider the maximization problem (23), for any fixed q, let some optimal
p∗ maximize q · p over p ≤ C. By means of variations, if such p∗ < C strictly,
its variation directly leads to q = 0 since the variation δp can be both negative
and positive. On the other hand, for p∗ = C, its variation under the constraint
p ≤ C gives δp < 0, then we must have q > 0. In terms of graph-cut, p∗ < C
means p does not reach its maximum C, i.e. ’unsaturated’; then it leads to q = 0
which means the so-called ’cut’.

In the same manner, for the maximization of pi(x), i = 1 . . . n, it is easy to
see that when the flow pi(x) < ρ(li, x) at x ∈ Ω, i.e. ’unsaturated’, we must have
ui(x) = 0, i.e. ui(x)pi(x) = 0, which means that at the position x, the flow pi(x)
has no contribution to the energy function and the flow pi(x), from x ∈ Ωi to
the sink t, can be ’cut’ off from the energy function of (19). On the other hand,
in view of (8), the indicator function ui(x) = 0 definitely means the position x
is not labeled as li.

4 Multiplier-Based Max-Flow Algorithm

Observe that the energy function of the primal-dual model (19) just gives the
Lagrangian function of (16) where ui(x), i = 1 . . . n, are the corresponding mul-
tiplier functions. We introduce our multiplier-based max-flow algorithm, which
is based on the augmented lagrangian method [23]. We define the augmented
Lagrangian function

Lc(ps, p, q, u) =

∫

Ω

ps dx +

n
∑

i=1

〈ui, div qi − ps + pi〉 −
c

2

n
∑

i=1

‖div qi − ps + pi‖
2

where c > 0. Each iteration of the algorithm can then be generalized as follows:

– Optimize spatial flows qi, i = 1 . . . n, by fixing other variables:

qk+1
i := arg max

‖qi‖
∞

≤α
−
c

2

∥

∥div qi + pki − pks − uk
i /c

∥

∥

2
, (29)

which can be solved by Chambolle’s projection algorithm [32].

– Optimize sink flows pi, i = 1...n, by fixing other variables

pk+1
i := arg max

pi(x)≤ρ(ℓi,x)
−
c

2

∥

∥pi + div qk+1
i − pks − uk

i /c
∥

∥

2
, (30)

which can be computed at each x ∈ Ω in a closed form.



A Continuous Max-Flow Approach to Potts Model 11

– Optimize the source flow ps and update multipliers ui, i = 1 . . . n

pk+1
s := argmax

ps

∫

Ω

ps dx−
c

2

n
∑

i=1

∥

∥ps − (pk+1
i + div qk+1

i ) + uk
i /c

∥

∥

2
, (31)

uk+1
i =uk

i − c (div qk+1
i − pk+1

s + pk+1
i ) . (32)

Both can be obtained in a closed form.

Consider the above numerical steps, it is easy to see that the two flows qi
and pi, i = 1 . . . n, computed by (29) and (30) can be handled independently for
each label i. Hence, (29) and (30) can be implemented in a parallel way. Once
such two steps are finished, the source flow ps(x) and the labeling functions
ui(x), i = 1 . . . n, are updated. Obviously, such parallelism naturally originates
the configuration shown in Fig. 1.

5 Experiments

In this section, we show some experiments to validate the proposed max-flow
model and its resulted algorithm. The quality of the relaxation (5) has been
evaluated extensively in [18, 22, 21] where it has been shown to be competitive
to several state of the art methods from discrete optimization like alpha expan-
sion and alpha beta-swap [2] for approximately minimizing the Pott’s energy.
In addition the variational model comes with the important advantage of ro-
tational invariance, which means that metrication errors are avoided. We will
therefore not elaborate too much on the quality of the solutions in this paper.
Examples are given in Figure (2), where we have used the Mumford-Shah data
term ρ(ℓi, x) = |I(x) − ℓi|2, i = 1, ..., n. As we see, equally good solutions as
alpha expansion are produced, but without the metrication artifacts.

In contrast to the minimization approach of Zach et. al. [18], the proposed
algorithm can be proved to converge by classical optimization theories. The
Douglas-Rachford splitting approach given in [22] can also be proved to con-
verge (in the discrete setting), but we experienced that our approach was more
efficient than both these approaches. The inner problem has the same complexity
for all approaches, since it is dominated by the process of iteratively solve a tv
minimization problem. However, in contrast to [18, 22] our approach avoids iter-
ative projections to the convex set S and consequently require much less outer
iterations. Convergence is reached for a wide range of the outer ”step size” c.
To measure converge, we first find a good estimate of the ground truth energy
E∗ by solving the problem with 10000 outer iterations. The energy precision at
iteration k is then measured by

ǫ =
Ek − E∗

E∗
.

For the three images (see Fig. 2), different precision ǫ are taken and the total
number of iterations to reach convergence is evaluated, see Tab 1: clearly, our
method is about 4 times faster than the Douglas-Rachford-splitting [22], the
approach in [18] is even slower and failed to reach such a low precision.
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Fig. 2. Each row (from left to right): the input image, result by Alpha expansion
with 8 neighbors, result by the proposed max-flow approach. For the inpainting exper-
iment (1st row), α = 0.03 and n = 3; for the experiment at 2nd row, α = 0.047 and
n = 10; for the experiment at 3rd row, α = 0.02 and n = 8; for the experiment at 4th
row, α = 0.04 and n = 4.

6 Conclusions

In this paper, we introduce and study the novel continuous max-flowmodel which
is dual to the continuous min-cut problem, i.e. the convex relaxed Potts model.
We also propose a variational perspective of flows and cuts in the continuous
configuration, which recovers and well explains connections of flows and cuts.
Moreover, in comparison to previous efforts which are trying to compute the
optimal labeling functions in a direct way, we propose the new multiplier-based
max-flow algorithm. Main advantages of such max-flow algorithm are: it avoids
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Brain ǫ ≤ 10−5 Flower ǫ ≤ 10−4 Bear ǫ ≤ 10−4

Zach et al [18] fail to reach such a precision

Lellmann et al [22] 421 iter. 580 iter. 535 iter.

Proposed algorithm 88 iter. 147 iter. 133 iter.

Table 1. Comparisons between algorithms: Zach et al [18], Lellmann [22] and the
proposed max-flow algorithm: for the three images (see Fig. 2), different precision ǫ are
taken and the total number of iterations to reach convergence is evaluated.

extra computation load to explore the simplex constraint, each flow is adjusted
in a simple way and its numerical scheme contains a natural parallel framework,
which can be easily accelarated. Numerical experiments show it outperforms
state of art approaches in terms of quality and efficiency.
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