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Abstract. Visibility estimation is arguably the most difficult problem in
dense 3D reconstruction from multiple arbitrary views. In this paper, we
propose a simple new approach to estimating visibility based on position
and orientation of local surface patches. Using our concept of oriented
visibility, we present a new algorithm for multiview reconstruction based
on exact global optimization of surface photoconsistency using graph
cuts on a CW-complex. In contrast to many previous methods for 3D
reconstruction from arbitrary views, our method does not depend on
initialization and is robust to photometrically difficult situations.

Keywords: multiview reconstruction, image-based modeling, visibility,
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1 Introduction

A multiview reconstruction is a problem of inferring a 3D shape of a scene from
a set of its 2D views. In a sequel, we assume that these views are registered
within the global world coordinate system, i.e. for each point in the world space,
it is possible to determine the coordinates of its projection onto each view.

Recent advances in multiview reconstruction are by far concerned with dis-
crete optimization methods. Such methods (graph cuts [5], belief propagation [12],
tree-reweighted message passing [19]) allow efficient minimization of a specific
class of energies that can be associated with Markov random fields (MRF).
These methods do not require initialization and converge to strong minima of
the energy functionals; in particular, graph cuts are able to find a globally op-
timal labelling for a wide class of binary-labelled MRFs [10]. Due to all these
benefits, approaches based on discrete optimization methods are now considered
as state-of-the-art for several special cases of multiview reconstruction, namely,
reconstruction from a stereo pair [8], from a set of views with similar viewing
directions [9, 11], and from a set of views with controlled background [16].



In this paper, we consider the most general case of multiview reconstruc-
tion, i.e. reconstruction from the views observing the scene from the arbitrarily
distributed viewpoints. Only this case allows to infer the complete shape of an
object and therefore is the most interesting for many applications. Unfortu-
nately, this case is the most difficult, as any matching process between views has
to reason explicitly about visibility of different scene parts in different views.

To estimate the true visibility of some surface element one needs to know the
true scene geometry and vice versa. To solve this chicken-and-egg problem, it
is necessary to use some approximation of visibility. Current approaches (space
carving [7], level sets stereo [4]) reconstruct the scene geometry during iterative
process, and at each moment of time, a point is considered visible from a view-
point if it is not occluded with current scene configuration (Fig. 1-left). We call
this approach state-based visibility, as the visibility is determined by the current
state of the scene.
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Fig. 1. Two approaches to visibility approximation. Left — state-based visibility: a
current global scene configuration is used to estimate the visibility for a point X on its
surface. Right — oriented visibility: a local patch (X, n) is considered visible from the
viewpoints within the predefined angle from the normal direction n.

Using iterative optimization results in a significant problem: iterative up-
dates are not guaranteed to converge to the globally optimal configuration. This
convergence essentially depends on the initialization and/or on the threshold
values. The problem with convergence is worsened by the fact that if the current
scene state is far from the true state, state-based visibility approximates the true
visibility with significant errors.

The convergence problem could be solved by the application of discrete op-
timization. Unfortunately, state-based visibility results in an energy function
that models interaction between distant scene parts, and discrete optimization
methods become really inefficient for such energies with long-range dependence.
One possible way to get rid of long-range dependence and to apply discrete
optimization is proposed in [15, 17, 18]. There, the reconstruction is initialized
with some given-from-aside approximation, and the state-based visibility is cal-



culated based on this approximation. As the true surface is assumed to be close
to the initialization, the energy function ignores the visibility changes and is,
therefore, short-range dependent and suitable for discrete optimization. Though
using discrete optimization, these approach still require a good initial approxi-
mation. Thus, state-based visibility prevents them from taking full advantage of
the discrete optimization’ virtues.

In this paper, we propose a reconstruction method employing an alternative
approach to visibility estimation. This approach called oriented visibility (sec-
tion 2) is based on the geometric fact that the visibility of a local patch is to
a large extent determined by its orientation. Therefore, oriented visibility esti-
mates the visibility of a patch from a viewpoint based on the patch position and
normal direction (Fig. 1-right).

This local approach to visibility is in contrast with the traditional global
state-based visibility. The main benefit is that the energy functional based on
this visibility estimate (formulated in section 3) is amenable for efficient discrete
minimization with graph cuts (section 4), which yield its global minimum. From
the application standpoint, the key advantage of our method is its ability to
find the globally optimal (with respect to the reconstruction functional) scene
configuration within given bounding volume without any initialization.

Both state-based visibility (global) and oriented visibility (local) are not ex-
act. We argue, however, that in the situation when no good initialization is given,
our reconstruction method based on oriented visibility is a good choice. At the
very least, it can be used to supply an initial guess to any of the reconstruction
methods relying on state-based visibility; due to their dependency on initializa-
tion, this would greatly promote their convergence to the correct scene state. We
also briefly discuss an alternative iterative reconstruction method, which fuses
state-based and oriented visibilities (section 5). The results of our approach on
real and synthetic imagery are demonstrated in section 6, and the discussion of
its perspectives in section 7 concludes the paper.

2 Oriented Visibility

To formalize the idea of oriented visibility, we need to introduce some notations.
We assume, that the whole scene (or its part we are interested in) is located
within some bounding volume B. Each allowed scene configuration is character-
ized by some occupied subvolume M ⊂ B with the piecewise-smooth oriented
boundary ∂M (the scene surface).

Let us assume that the scene is observed by N views, taken with pinhole
cameras with viewpoints p1, p2, . . . pN . The positions, orientations, and intrin-
sic parameters of the cameras are assumed known. Consequently, each point
X ∈ B can be projected onto each view. Then, let c1(X), c2(X), . . . cN (X) be
the colors of the projections (either grayscale intensities or RGB triples). Let
also v1(X),v2(X), . . . vN (X) be the vectors representing normalized viewing di-
rections from X to pi:

vi(X) =
pi −X

‖pi −X‖
. (1)
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Fig. 2. Oriented visibility in action. Note, that the shown oriented visibility correspond-
ing to the value φ = 60◦ is correct for patch (A, nA) but underestimates visibility for
patch (B, nB).

Let (X, n) denote an infinitesimal patch located at point X and having out-
ward looking normal n. Then the scene surface ∂M can be regarded as a union
of patches (X, n∂M ), where X lies on ∂M and n∂M is an outward normal to
∂M at X.

Let α1(X, n), α2(X, n), . . . αM (X, n) be the binary variables indicating the
visibility of a patch (X, n) in the corresponding view. Then, orientation-based
αi is calculated as

αi(X, n) =

1, if 6
(
vi(X),n

)
< φ

0, otherwise
, (2)

where φ is some acute angle (Fig. 1-right).
Thus, our approximation of visibility reflects the fact that the surface ele-

ment will be always self-occluded for the viewpoints behind it and frequently
self-occluded for the viewpoints observing it from oblique angles. The angle φ,
therefore, determines the threshold of obliqueness, below which the observation
from the viewpoint is considered unreliable. Setting φ small allows to estimate
visibility correctly for concave parts of a scene, while setting it large allows to
involve more cameras and hence to increase the discriminative power of our pho-
toconsistency measure (Fig. 2). In our experiments, we found φ ≈ 60◦ to suit a
large variety of scenes and adhered to this value.

3 Energetic Formulation

The goal of this section is to render a multiview reconstruction as an energy
minimization problem by assigning an energy cost based on oriented visibility
to each scene configuration. As do most other approaches, we assume that the
surface of the unknown scene is nearly lambertian, i.e. the color of some small
patch on its surface is independent on the viewpoint it is observed from.



Under this assumption, patches belonging to the true surface should have
similar colors in the viewpoints observing them (be photoconsistent). Therefore,
the energy cost A(X, n) of a patch can be defined as:

A(X, n) =
1
T

∑
i<j

αi(X,n)=1,αj(X,n)=1

‖ci(X)− cj(X)‖2 , (3)

where T is the number of items in the summation. Thus, this cost is the mean of
pairwise squared differences between the colors of the projections onto the views
observing the patch (L2-norm is used for RGB triples). The smaller is this cost,
the more photoconsistent is the patch and the more likely does it belong to the
surface of the scene.

The overall surface energy cost for the scene configuration (M,∂M) is then
calculated by integrating the patches’ costs over the scene surface:

EI(∂M) =
∫∫
∂M

A(X, n∂M ) dS . (4)

Now, we have expressed the surface photoconsistency with an energy term
EI(∂M). Minimizing EI(∂M) solely is, however, uninteresting as it has an obvi-
ous global minimum (M,∂M) = ∅ that equals zero. In fact, it has been demon-
strated in [7] that in the absence of noise, the scene configuration consistent
with a given set of views is not unique, and there is a continuous family of such
configurations. Therefore, reconstruction based solely on photoconsistency is an
ill-posed problem.

To regularize it, we propose to augment the energy functional with a regu-
larization term ER(M) =

∫∫∫
M

B(X) dV . Here, B(X) is some volume potential

corresponding to the prior tendency for point X to belong or not to the recon-
struction. E.g., constant negative B(X) produces monotonic ballooning effect
biasing the reconstruction process towards larger reconstructions. This simple
potential can be used if no prior knowledge is available. It is also possible to
introduce boundary conditions in the problem by setting B(X) to large positive
or negative values near the boundary. In our experiments, we used the com-
bination of the ballooning potential and the potential encoding the boundary
conditions (more details are given in Section 6). An interesting option is to con-
struct B(X) based on the information about background in a way analogous to
[16]. Finally, B(X) can encode some prior domain-specific knowledge about the
scene geometry.

In conclusion of this section, let us write down the full energy functional
guiding the reconstruction:

E(M,∂M) = EI(∂M) + ER(M) =
∫∫
∂M

A(X, n∂M ) dS +
∫∫∫

M

B(X) dV . (5)
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Fig. 3. Discrete optimization of our energy. a) A bounding volume B is discretized into
a complex C. One of the C-consistent configurations is shaded. b) The local structure
of our complex. Two adjacent cells Ri and Rj are separated with a pair of oriented
faces Fij and Fji. c) The cells of our three-dimensional complex produced by voxel
subdivision. One of the cells is emphasized. d) Local structure of the graph G dual to
the complex from b). The vertices Vi and Vj dual to the cells Ri and Rj are connected
with two directed n-links Eij and Eji dual to the faces Fij and Fji (t-links are not
shown).

4 Energy Minimization

4.1 Problem Discretization

To make the minimization of functional (5) tractable, we discretize our prob-
lem. The bounding volume B is subdivided into polyhedral cells R1, R2, . . . RK

(Fig. 3a). Each pair of neighboring cells Ri and Rj is considered to be sepa-
rated with a pair of oriented polygonal faces – Fij separating Rj from Ri and
Fji separating Ri from Rj (Fig. 3b). We denote an outward looking normal
to Fij directed towards Rj as nij . We will refer to our discretization structure
{Ri, Fij} as complex (borrowing this term from algebraic geometry where similar
structures are called ’CW-complexes’).

Given a particular complex C, we may introduce the notion of C-consistent
scene configuration (Fig. 3a). We call the scene configuration (M,∂M) consistent
with complex C (or, simply, C-consistent) if M is composed from the cells of the



complex:
M =

⊔
k=1..Q

Rik
. (6)

Then, the boundary ∂M consists of oriented faces, separating a cell not belonging
to M from a cell within M :

∂M =
⊔
i,j

Ri⊂M,Rj⊂M

Fij . (7)

Assuming that our complex has an appropriate resolution, we can restrict our
optimization process to the set of C-consistent scene configurations. The energy
cost E(M,∂M) for a C-consistent configuration can be calculated as:

E(M,∂M) =
∫∫
∂M

A(X, n∂M ) dS +
∫∫∫

M

B(X) dV =

∑
i,j

Ri⊂M,Rj⊂M

∫∫
Fij

A(X, nij) dS +
∑

Ai⊂M

∫∫∫
Ri

B(X) dV =

∑
i,j

Ri⊂M,Rj⊂M

wij +
∑

Ai⊂M

wi ,

where wij =
∫∫
Fij

A(X, nij) dS is the energy cost for including the oriented face

Fij into the scene surface ∂M (face cost), and wi =
∫∫∫
Ri

B(X) dV is the energy

cost for including the cell Ri into the scene M (cell cost).
After the numeric computation of these costs, we have a purely discrete

optimization problem: find the set of cells with the minimal sum of cell costs
and boundary faces costs.

4.2 Graph Cuts Minimization.

Although there are so many (2K) possible C-consistent configurations, the best C-
consistent configuration can be found in a low order polynomial on K time using
graph cuts, recently employed for the optimization of energies in many vision
problems (e.g. [1, 14, 2]; the last one having the most similar optimization scheme
to ours). Under graph cuts, they usually mean the mincut/maxflow algorithm
solving the following problem.

Consider a directed graph with two distinguished vertices (terminals) S and
T . To each edge between non-terminal vertices (n-link), a nonnegative scalar
weight is assigned. Edges going to and from terminal vertices (t-links) are at-
tributed with arbitrary real weights. A cut is a partition of all vertices into two
non-intersecting sets called S-set and T -set, such that the former contains ter-
minal S and the latter contains terminal T . A weight of a cut is by definition
the sum of the weights of all edges going from a vertex in S-set to a vertex in



T -set (cut edges). Mincut algorithms are able to find the cut with the minimal
possible weight (the minimal cut) in the time that is low order polynomial on
the graph complexity.

To render our problem as a mincut/maxflow problem, we embed a dual graph
G into our complex C (Fig. 3d). For each cell Ri from C, G contains a vertex Vi

located in the center of a cell. For each oriented face Fij from C, G contains an
n-link Eij going from Vi to Vj with the weight wij . Thus, the direction of this
n-link is in accordance with the direction of an outward looking normal nij . We
also augment G with two terminal vertices S and T and add t-links ET

i going
from Vi to T having weights wi.

To any C-consistent scene configuration (M,∂M), there corresponds the cut
on G with S-set including the vertices corresponding to the cells within M plus
the terminal S.

M =
⊔

k=1..Q

Rik
←→ S-set = {Vik

|k = 1..Q} ∪ {S} . (8)

With such correspondence, any n-link is cut iff the corresponding oriented face
is included in the boundary ∂M , and any t-link is cut iff the corresponding cell
is included in the scene. Consequently, the weight of a cut always equals the
energy cost of a corresponding C-consistent configuration.

Due to this equality, the minimal cut corresponds to the C-consistent scene
configuration with the minimal energy. The multiview reconstruction is therefore
performed as follows. First, construct a complex C. Second, calculate face costs
and cell costs. Third, embed a dual graph G; find a minimal cut on G and the
corresponding scene configuration.

4.3 Complex Construction

Let us now consider the choice of an exact structure of the complex C. Assume
that our bounding volume B is a box, and let us qualitatively analyze the factors
that should be taken into consideration while choosing the complex.

The choice of C determines how ”densely” C-consistent configurations sample
the set of all configurations and how close would be the minimal C-consistent
scene configuration to the global minimum over the whole set of scene configu-
rations. Obviously, the smaller is the size of cells and faces, and the larger are
their numbers, the richer is the set of C-consistent configurations. The fineness
of resolution is not, however, the only factor to be considered. Due to the depen-
dence of A(x, n) on the orientation, another important matter is how densely the
orientations of complex faces sample the set of all possible orientations. Thus, a
straightforward but not a proper choice for C would be a commonly-used rect-
angular voxel grid. The deficiency of such grid is that it has the oriented faces
of only six orientations irrespective of the resolution.

There can be several strategies in constructing complex better than rectan-
gular grid. In our experiments, we first subdivide our bounding box into voxel
cubes and then subdivide each cube with six planes, each passing through a pair



of opposite cube edges (Fig. 3c). As a result, the voxel in split into 24 tetrahedral
cells. This complex has an advantage of having oriented faces with as much as
18 different orientations.

Apart from the tripled number of orientations, another pleasant property of
our complex is that the surfaces of scene configurations consistent with it are
triangular meshes suitable for immediate storage and rendering. More than that,
with such complex, typical reconstructed surfaces are not so jaggy as those com-
posed from voxels and do not require additional smoothening quality-degrading
postprocessing like marching cubes.

5 Semi-local Optimization

Oriented visibility gives incorrect visibility estimate in a situations when a part
of a scene has an orientation visible from a viewpoint but is occluded by another
distant part of a scene (distant occlusion). In many cases, however, such distantly
occluded areas constitute a relatively small part of the scene surface.

When the accurate reconstruction of distantly occluded parts is required, the
result obtained with our method can be used as a starting point for any other re-
construction method relying on iterative optimization and state-based visibility.
Alternatively, we developed our own algorithm for a (semi-)local optimization,
which searches for a globally optimal configuration within a band around the
previous configuration.

Making use of the current state of the scene, this algorithm combines both
state-based and oriented approaches to visibility, yielding the following visibility
estimate for a patch (X, n) from the ith viewpoint:

αi(X, n) = αor
i (X, n) · αstate

i (X) , (9)

where αor
i (X, n) is the oriented visibility indicator defined in (2), and αstate

i (X)
is a visibility computed based on the current state of the scene. Thus, the role
of αstate

i (X) is to detect distant occlusions. In all other aspects, our semi-local
optimization procedure is similar to the initial global optimization step.

With such visibility updates, the semi-local optimization can be reapplied
several times, each time considering the band around a previous configuration
as a novel bounding volume. Changing the thickness of a band allows to trade
between the accuracy of distant occlusion estimate on one side and the speed
of convergence and the robustness to trapping in local minima on the other.
Typically, a few (< 10) iterations is enough to converge.

As the computations are restricted to a narrow band around current config-
uration, it is also possible to use finer resolution of the complex within the same
amount of memory and computation time, thus obtaining more accurate results.

6 Experimental Results

In this section, we present the results of our method on three image sets (Fig. 4).
The artificial solids setup contains virtual objects “hanging” in the air. Its main



Fig. 4. Samples of the source imagery in our experiments. Image sets comprised 16–
20 views surrounding the scene from all accessible positions. Left — solids setup was
rendered artificially using POV-Raytm [13]. Middle and right — camel and matreshkas
setups were taken using consumer digital camera.

challenges are fine texture details paired with a uniform background. For many
photoconsistency-based algorithms such combination results in numerous “float-
ing” artifacts. The real camel and matreshkas setups contain objects placed on
the ground table/plane. The position of this plane as well as camera parame-
ters using structure-and-motion methods. The matreshkas setup is particularly
difficult for reconstruction, as the varnished surfaces are highly non-lambertian.

The following volume potentials expressing the prior geometric knowledge
were used for reconstruction (B1 for solids, B2 for camel and matreshkas):

B1(X) =

{
+∞ near the bounding box boundary ,
β inside bounding box .

B2(X) =


−∞ below ground plane ,
+∞ near the bounding box boundary above ground plane ,
β inside bounding box .

Here, β is some small negative value introducing a slight ballooning effect, which
was kept constant throughout our experiments. Infinities in the volume potential
ensure the closeness of the recovered scene for solids and the ”object on the
ground” topology for camel and matreshkas.

For the evaluation purposes, we implemented an improved version [3] of the
popular space carving approach [7]. Since space carving is very sensitive to the
selection of photoconsistency threshold, we did our best while selecting the opti-
mal threshold for each setup. However, as demonstrates Fig. 5a, our setups were
too photometrically difficult for space carving.



The results of our method are presented on the rest of Fig. 5. Note, that
despite significant distant occlusions, global optimization based on the oriented
visibility solely (Fig. 5-middle) produced generally correct reconstructions for
solids and camel setups. This suggests that the ability to find a global minimum
often justifies the use of inexact visibility estimate.

In our experiments, the complex C comprised upto 20 million of cells re-
sulting in the same number of vertices in the dual graph G. Therefore the min-
cut/maxflow algorithm was the computational bottleneck for our approach. Per-
forming global reconstruction for such resolution demanded upto 20 minutes on
a P4-2.6GHz computer. Subsequent semi-local updates took few minutes.

7 Discussion

In this paper, we have proposed a novel orientation-based approach to visibility
estimation. Such purely local visibility estimate allows us to cast a multiview
reconstruction problem as an optimization of a novel energy functional amenable
for minimization with graph cuts.

Our main advantage over other methods, which rely on state-based visibility
and on iterative updates, is the independence from the initialization due to the
ability of our optimization to yield a global minimum of the energy functional.
The result produced with our global optimization can be improved with our
semi-local optimization combining oriented and state-based approaches to visi-
bility. Alternatively, it can be used as a good starting point for any of the other
reconstruction methods.

The main limitation of our method in its current implementation is its compu-
tational demands. To deal with this problem, one can consider complexes based
on spatially non-uniform sampling of the reconstruction space. Non-uniform sam-
pling can be driven by some domain-specific knowledge or the cues resulting from
another reconstruction algorithm. In both cases, uncertain knowledge about po-
sition and orientation of the surface may be used to include faces in the complex
at some positions and with some orientations more frequently then others. An
interesting option for implementing this are random grids arranged in BSP-trees
proposed for discrete minimal surface search in [6].

The second deficiency of our method is the difficulties it faces while recovering
the protruding parts of objects (e.g. camel ears). This problem is, however,
inherent to all minimal surface methods, since they minimize the integral of
non-negative energy function over a scene surface.

Another prospect for future investigation is concerned with the fact that our
patch energy cost A(X, n) accounts for both position and orientation of a patch.
This can allow to use different shading models in our method. Thus, we can
consider the reconstruction based on non-lambertian reflectivity models (e.g.
Phong model) or shape-from-shading reconstruction.
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Fig. 5. The reconstruction results. a) The results of space carving algorithm. b) The
results of the proposed algorithm after global optimization. c) The results after three
steps of subsequent semi-local optimization. d) Renderings of image based textured
models created from real imagery with our method.
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