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Abstract

Capacity scaling is a hierarchical approach to graph

representation that can improve theoretical complexity and

practical efficiency of max-flow/min-cut algorithms. Intro-

duced by Edmonds, Karp, and Dinic [7, 6] in 1972, capac-

ity scaling is well known in the combinatorial optimization

community. Surprisingly, this major performance improv-

ing technique is overlooked in computer vision where graph

cut methods typically solve energy minimization problems

on huge N-D grids and algorithms’ efficiency is a widely

studied issue [3, 12, 16, 10].

Unlike some earlier hierarchical methods addressing ef-

ficiency of graph cuts in imaging, e.g. [16], capacity scal-

ing preserves global optimality of the solution. This is the

main motivation for our work studying capacity scaling in

the context of vision. We show that capacity scaling signif-

icantly reduces non-polynomial theoretical time complex-

ity of the max-flow algorithm in [3] to weakly polynomial

O(m2n2 log(U)) where U is the largest edge weight. While

[3] is the fastest method for many applications in vision,

capacity scaling gives several folds speed-ups for problems

with large number of local minima. The effect is particu-

larly strong in 3D applications with denser neighborhoods.

1. Introduction

In computer vision max-flow/min-cut algorithms are

largely seen as powerful global energy optimization tech-

niques for N-D grids [5, 15, 13]. In this case capacity

scaling for graph cut algorithms can be interpreted as a

method for approximating energy functions at different ac-

curacy levels. At the coarsest scale the energy function is

only roughly approximated but it can be quickly optimized.

Moreover, the coarse scale solution can be efficiently reused

by max-flow/min-cut algorithms when moving to a better

approximation of the energy at the next successive finer

scale. At the finest scale one gets an exact global minimum

of the original energy. Our goal is to demonstrate that com-

putation of the global minimum for energies in computer

vision can often be accelerated using the standard capacity

scaling approach from combinatorial optimization. Interest-

ingly, our tests on applications in image analysis show that

even the coarsest scale solution is often very similar (if not

identical) to a global minimum of the original energy.

The remaining part of the introduction outlines well-

known connections between energy minimization and stan-

dard max-flow/min-cut algorithms. Section 2 reviews the

standard capacity scaling framework for max-flow/min-cut

algorithms. In Section 3 we discuss the implications of ca-

pacity scaling for optimization on N-D grids in the context

of image analysis. In particular, we demonstrate an im-

provement of theoretical time complexity and practical ef-

ficiency for a widely used in vision max-flow algorithm for

grids [3]. We show that capacity scaling allows to gener-

ate good approximate solutions with a known quality bound

at a fraction of the time required to converge to the global

minimum. We also demonstrate how capacity scaling sig-

nificantly improves performance in complicated examples

with a large number of local minima. Finally, detailed ex-

perimental evaluation of the algorithm in [3] with and with-

out capacity scaling are presented in Section 3.4. In partic-

ular, we show that capacity scaling has the strongest effect

on running time efficiency for grids of larger neighborhoods

and for grids of higher dimensions (e.g. in 3D).

1.1. Energy minimization in vision and graph cuts

This paper focuses on minimization of binary energies

of the simplest form

E(f) =
∑

p∈P

Dp(fp)+
∑

(p,q)∈N

wpq ·δ(fp = 1, fq = 0) (1)

where P is a set of sites (usually pixels) and N is a neigh-

borhood system (a set of connected pairs of sites). Each

site p should be assigned a label fp ∈ {0, 1}. The map-

ping from sites to labels f = {fp|p ∈ P} is called a con-

figuration. The optimal configuration of labels is selected

based on energy E combining data fit terms Dp(·) and non-

negative discontinuity penalties wpq ≥ 0.
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Global minimization of binary energies as in (1) is prob-

ably the most common use for graph cuts in vision. In par-

ticular, many powerful object/background image segmenta-

tion methods [1, 2, 17] and volumetric multi-view surface

reconstruction techniques [18, 4] use such energies. More

generally, any submodular (2-clique) binary energy [15] can

be converted to a form in (1). While exact global optimiza-

tion via graph cuts is restricted to submodular energies, ap-

proximate optimization of non-submodular functions can be

done via powerful QPBO methods [14] that first double the

number of variables (sites) but then use binary graph cuts to

minimize an energy like (1) on a twice bigger graph. Also,

widely used multi-label energy minimization methods such

as α-expansion or α/β-swap [5] use s/t graph cuts mini-

mizing binary energies like (1) as a subroutine.

To keep it simple and intuitive, this paper discusses min-

imization of energy (1) in the context of binary image seg-

mentation [1]. In this case, two possible values of labels

fp ∈ {1, 0} at each pixel p can be interpreted as “object”

and “background”. The data term gives two costs Dp(0)
and Dp(1) describing individual preference of pixel p be-

tween two labels. Discontinuity penalty wpq describe as-

sociativity between two neighboring pixel p and q. Typi-

cally, Dp(0) and Dp(1) are based on how well intensity Ip

of pixel p fits given color models of an object and a back-

ground, while penalties wpq are based on intensity differ-

ence |Ip − Iq|. Data term Dp() can also impose hard con-

straints on certain pixels (seeds).

The connection between global minimization of binary

energy (1) and s/t graph cut problems in combinatorial op-

timization is fairly intuitive [1]. Consider a graph G =
(V, E) composed of a set of nodes (vertices) V and a set

of weighted directed edges E . Nodes can be associated

with sites (pixels/voxels). V also contains two special ter-

minal nodes: source s and sink t. The set of edges E
is composed of two different types of link between the

nodes. The t-links connect regular nodes (pixels) to the ter-

minals, while n-links connect pairs of neighboring pixels

{p, q} ∈ N . Each (directed) n-link (p, q) is assigned a pos-

itive weight wpq ≥ 0. The t-links (s, p) and (p, t) connect-

ing a pixel to the terminals are assigned costs wsp = Dp(0)
and wpt = Dp(1). An s/t cut C = {S, T } is a binary parti-

tioning of nodes into source S and sink T components such

that s ∈ S, t ∈ T , S ∩ T = ∅, and S ∪ T = V . Any cut

C = {S, T } has a cost

|C| =
∑

p∈S,q∈T

wpq

which is a sum of weights of severed edges. It is easy to

check that |C| = E(f) when each cut C = {S, T } is asso-

ciated with configuration f such that fp = 1 for p ∈ S and

fp = 0 for p ∈ T defining a one-to-one correspondence

between cuts and labelings.

Figure 1. Minimization of binary energy (1) on images via graph

cuts.

Thus, finding a globally optimal configuration f is

equivalent to finding the minimum cost s/t cut on graph

G. It is well known that minimum s/t cut can be found via

standard max-flow/min-cut algorithms from combinatorial

optimization.

1.2. Overview of maxflow/mincut algorithms

In 1955 Ford and Fulkerson, e.g. [8], showed that the

problem of computing a minimum cost s/t cut on a graph

is equivalent to fining a maximum s/t flow on the same

graph. The max-flow problem can be intuitively formulated

as follows. Each graph edge is seen as a pipe in a network

and its weight corresponds to capacity to move water along

that pipe. The source node is given the special role of flood-

ing the graph with water, while the sink is the destination

for this water. The max-flow problem can be formulated as:

“How much water could reach the sink from the source ?”

Ford and Fulkerson showed that the maximum flow on

the graph equals the cost of the minimum cut. The mini-

mum cut can be seen as the bottleneck for the graph flow.

Ford and Fulkerson also provided the first algorithm for

solving the problem of maximum flow, the augmenting path

algorithm. This algorithm iteratively finds non-saturated

paths in the graph from the source to the sink and sends

a flow along these paths until all paths have at least one

saturated edge. Note that any non-saturated path from the

source to the sink will do for the generic augmenting path

approach of Ford and Fulkerson. Each augmentation in-

creases the total flow between the terminals and the algo-

rithms greedily converges to the maximum flow.

As was shown later, selection of paths significantly af-

fects theoretical time complexity and practical efficiency of

max-flow/min-cut algorithms. The generic method of Ford

and Fulkerson has time complexity O(m|C|) which is not

even polynomial due to dependence on the cost of the min-

imum cut giving an upper bound on the number of aug-

mentations. Edmonds, Karp, and Dinic proposed methods

for path selection that reduce the number of required aug-

menting paths: maximum capacity path (fattest path) and

shortest path. Various versions of these methods give max-

flow/min-cut algorithms of strongly polynomial time com-

plexity such as O(m2n) or O(mn2).

Ideally, one may want to combine the benefits of the

shortest and the largest capacity paths; while we want a



short path to reach the sink quickly, we also want to send

as much flow as possible along each path. However, having

both the shortest and the fattest path at the same time is prac-

tically impossible. Yet, a compromise could be obtained

by relaxing the “maximum capacity” requirement and set-

tling for a “sufficiently large capacity” instead. Capacity

scaling approach proposed by Edmonds, Karp, and Dinic

in 1972 suggest to selects the shortest path among all paths

of capacity higher than a given threshold. Interestingly, ca-

pacity scaling generalizes to many max-flow/min-cut algo-

rithms beyond augmenting path style technique of Ford and

Fulkerson. For example, it can be applied to more recent

methods based on pre-flows (e.g. push-relabel algorithm

of Goldberg and Tarjan) and on pseudo-flows (Hochbaum

[9]). Capacity scaling is widely used in the combinatorial

optimization community to reduce theoretical complexity

and to actual running time of graph algorithms. Section 2

provides a more detailed review of capacity scaling.

In the context of relatively sparse grids widely used in

computer vision, an augmenting path algorithm [3] gives

the state of the art empirical performance using dynamic

trees. Yet, its worst case time complexity O(mn2|C|) is

not polynomial. This complexity is worse than Dinic’s

or Edmonds and Karp’s, but in practice [3] significantly

outperforms them and other polynomial algorithms based

on heuristics that work well on sparse grids. But, as [3]

notes, empirical performance of the algorithm deteriorates

on denser (larger neighborhood) grids and when moving

from 2D to 3D applications. In fact, 3D grids are widely

used in vision and larger neighborhoods are known to re-

duce geometric artifacts [2]. This paper addresses the limi-

tations of the algorithm in [3] using capacity scaling frame-

work; time complexity is reduced to weakly polynomial and

we show that the running time on denser grids may reduce

several folds.

2. Review of capacity scaling

Edmonds, Karp, and Dinic introduced capacity scaling

in 1972 in order to solve some problems of the shortest

augmenting path approach illustrated in Fig. 2. Capacity

scaling first concentrates on “fatter” paths that can quickly

increase the graph flow in a small number of augmentations

even though these paths may not be the shortest. Yet, the

method does not try to find the “fattest” (highest capacity)

path which would be computationally expensive. Instead,

it looks for paths of capacity larger than a given threshold

∆. Finding such paths is easy since they lie within a set

of edges whose capacity exceeds ∆. For example, one can

use breadth-first search to find the shortest path along edges

(p, q) such that wpq ≥ ∆.

Capacity scaling is a hierarchical (multi-scale) approach

where initial coarser scales focus on higher capacity paths

while later finer scales handle remaining lower capacity

Figure 2. A number of required augmentations using the shortest

paths (left) may be much larger then the number of augmentations

based on “fatter” paths (right).

paths. At each given scale ∆, a max-flow/min-cut algorithm

is run on a graph G∆ = 〈V, E∆〉 including the complete set

of nodes and a subset of edges E∆ whose residual capac-

ity is above the threshold. At scale ∆, the algorithm stops

when there are no paths with capacity ∆ or more.

When a coarser scale ∆k is completed, the algorithm

switches to a finer scale ∆k−1 < ∆k by adding graph edges

with capacities wpq ≥ ∆k−1 exceeding the new threshold.

The flow computed at a coarser scale remains feasible on a

larger graph G∆k−1
and graph cut algorithms can continue

to increase that flow. At the new scale the algorithm can use

paths of lower capacity ∆k−1. Following the same proce-

dure, one gets to the finest scale ∆ = 0 where all edges are

present and the final max-flow (min-cut) solves the original

graph cut problem exactly. Note that this approach avoids

the problem outlined in Fig. 2 (left).

Selecting the right set of scales (thresholds) S =
{∆N , ...,∆k, ...,∆1,∆0 = 0} is important as it can change

the complexity and the running time of graph cut algo-

rithms. Assume that U denotes the highest edge capacity in-

side the graph. Obviously, no path on the graph has capacity

higher than U and it would be useless to start at the coars-

est scale ∆N > U . Consider two extreme sets of scales

S∞ = {U,U − 1, ..., 2, 1, 0} and S∅ = {0} in the context

of augmenting path methods. In case of S∅ = {0} there are

no constraints on the capacity of paths and capacity scal-

ing reduces to the non-polynomial approach of Ford and

Fulkerson. Choosing S∞ leads to the highest capacity aug-

menting path algorithm which could be too expensive due to

significant overhead. A balanced number of scales is often

achieved by a geometrically decreasing series of thresholds

like S = {2log U , ..., 2k, ..., 2, 1, 0} which can convert some

non-polynomial max-flow algorithms to a weakly polyno-

mial worst case complexity.

2.1. Improving time complexity of augmenting path
algorithms

In this section, we outline how capacity scaling can

change the complexity of the algorithms. Consider the set

of scales S = {2log U , ..., 2k, ..., 2, 1, 0}. Then, Lemma 2.1

gives an upper bound on the incremental flow that can be

pushed at the lower/finer scales.

Lemma 2.1. The maximum flow on graph G is bounded
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Figure 3. Illustration for lemma 2.1. At the end of scale ∆ =

2
k any path from s to t has (bottleneck) capacity lower than ∆.

Thus, the graph can be partitioned into two disjoint sets A and Ā

such that all arcs from A to Ā have (residual) capacity lower than

∆. The thick and thin connections in the drawing above represent

edges with (residual) capacity above and, correspondingly, lower

than ∆.

above by |fk|+ 2k ·m where |fk| is the amount of flow that

reached the sink at scale ∆ = 2k.

This lemma implies that after scale ∆ = 2k the graph

flow could increase in the remaining scales only at most by

2k ·m. The proof is based on the following observations: at

the end of scale ∆ = 2k the graph nodes can be partitioned

into two parts Ak and Āk where all arcs leaving Ak have

residual capacities lower than 2k while an upper-bound of

the number of arcs between Ak and Āk is m (the number of

edges). Note that a set of partitions Ak obtained at different

scales define a sequence of coarse-to-fine approximations

Ck = {Ak, Āk} of the minimum cut. Section 3.3 shows

that such approximate cuts come with good quality bounds

and that they may be useful in image analysis.

Lemma 2.2 provides an upper bound on the number of

augmenting paths per scale.

Lemma 2.2. The number of augmenting paths at scale k is

at most 2m.

Proof. This is a direct consequence of the previous lemma.

Each augmenting path at scale k has at least capacity 2k.

Since the remaining flow at the end of the previous scale

k + 1 is bounded by 2k+1m, the maximum number of aug-

menting paths is 2m.

Theorem 2.3. The total number of augmenting paths is at

most O(m log(U)).

Proof. Combine lemma 2.2 and the fact that the number of

scales is log U .

In case of Ford and Fulkerson algorithm, the cost of

a path is O(m) and combined with capacity scaling the

complexity of the algorithm becomes weakly polynomial

O(m2 log(U)) instead of O(m|C|) [7]. Later, Dinic [6] in-

corporated the shortest path strategy that further improved

complexity to O(mn log(U)).

3. Capacity scaling for problems in computer

vision

In this section we describe a number of implications of

applying capacity scaling to graph cut methods in computer

vision. As explained in the introduction, we do not loose

generality by concentrating on energy (1) and on binary im-

age segmentation.

3.1. Integrating capacity scaling into the maxflow
algorithm in [3] (BK)

As shown in [3], their version of augmenting path algo-

rithm outperforms many standard max-flow/min-cut meth-

ods on sparsely connected grids common in computer vi-

sion. [3] is based on dynamic trees using a number of

heuristics to efficiently maintain paths. Yet, their algorithm

looses efficiency on denser graphs (with larger neighbor-

hoods and in 3D). In part, this behavior can be explained

by a non-polynomial worst-case complexity of this method

O(mn2|C|) which explicitly depends on the cost of the

optimal cut. For example, on “simpler” problems (e.g.

sparse grids) the algorithms works significantly better than

well known strongly polynomial methods like shortest paths

(Dinic, Edmond, and Karp) or push-relabel (Goldberg and

Tarjan). But, as was shown in [3], their algorithm’s relative

performance is miserable on denser test graphs commonly

used for benchmarking in the combinatorial optimization

community.

Relatively high worst-case complexity O(mn2|C|) of

the algorithm in [3] comes with dependence on the cost

of the optimal cut. Similarly to the algorithm of Ford and

Fulkerson, |C| is the only bound on the number of required

augmentations available for [3]. Section 2.1 shows that ca-

pacity scaling can significantly improve that bound. The

practical problems addressed by capacity scaling (see Sec-

tion 2.1 and Fig. 2) are fairly representative of problems

that occur on graphs in image segmentation and in other

computer vision problems (see Section 3.2). The potential

of improving theoretical complexity and practical running

time performance provided us with substantial motivation

to incorporate capacity scaling into the graph cut algorithm

in [3].

By applying capacity scaling to Boykov-Kolmogorov

(BK) algorithm [3], we are able to reduce its complexity

from O(mn2|C|) to O(m2n2 log U). This complexity im-

provement follows from Theorem 2.3 and the fact that BK

does at most O(mn2) operations per each augmenting path.

Therefore, a combination of capacity scaling and dynamic

trees in [3] results in a weakly polynomial max-flow al-

gorithm (BKCS). As we show in Section 3.4, BKCS out-

performs BK mostly on denser grids (high dimension, big

neighborhood) and it is comparable to BK on simpler prob-

lems.
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Figure 4. The red and blue regions correspond to the source and

the sink trees respectively. The nodes outside of these regions are

free nodes that were not reached by the trees due to the scale ∆

constraint. The Os and Ot are respectively the outer nodes - the

first neighbors of the source and sink tree respectively. The green

arrows show the “reactivation” relationship between the outer and

inner nodes based on graph edges.

Note that BK [3] uses two dynamic trees (rooted at the

source and the sink) that help to find augmenting paths.

To implement BKCS we would like to preserve these trees

between the scales as rebuilding them between two scales

would be inefficient (similarly to dynamic cuts [12]). More-

over, preserving the trees from coarser scales reinforces a

more balanced structure for the trees at the finer scales:

stronger edges will be closer to the roots and weaker edges

will be closer to the leaves. This happens because preserved

branches from coarser scales will be stronger (fatter) than

the new weaker branches added at a finer scale. Maintain-

ing a strong balanced structure for the trees has a strong

impact on practical performance since it helps to avoid un-

necessary saturations closer to the root. Generally speaking,

edge saturations closer to the root are harder to fix as they

require rebuilding a big part of the tree.

Below we discuss some critical modifications that we

had to implement for BKCS in order to achieve efficient

integration of capacity scaling (CS) and dynamic tree struc-

tures in BK. Preserving the trees between two scales is not

entirely straightforward. Like in Dijkstra’s, BK maintains

a list of active nodes located on the border of two trees in

order to grow them. The algorithm terminates when the two

trees cannot grow anymore. In this case there are no more

active nodes. The same occurs at the end of each scale of

BKCS. In order to reuse the trees for next scale, one needs

to reactivate the nodes on the border of the trees and those

nodes may not be the leaves (see Fig. 4).

To efficiently reactivate the nodes, we keep track of the

nodes located on the outer border of the two trees using two

(independent) lists and by flagging the nodes. Then, reacti-

vating the inner border nodes becomes easy since they are

all neighbors of the outer border nodes. This approach is

easier and more efficient than trying to keep track of the in-

ner border nodes directly. While our approach to reactivat-

ing nodes between two scales is relatively efficient, it still

presents a non-negligible computational overhead of BKCS

when compared to BK.

For completeness, we also implemented capacity scal-

ing for push-ralabel algorithm. [3] shows that on dense 3D

grid, Push-Relabel challenges the state of the art algorithm

in vision. In the next section, we compare BKCS to Push-

Relabel (PR) (with both Global Relabel and Gap Relabel

heuristics) on some vision problems.

The Push-Relabel algorithm is a very different and el-

egant algorithm. It uses a labeling method to encode the

structure of the graph instead of dynamic trees. A “label-

ing” is in fact an implicit representation of a tree in a graph.

To each node is assigned a label which is a lower bound es-

timation of the distance to the sink. It is a different but yet

“equivalent” representation of a graph structure since one

can build a dynamic tree from a labeling by following the

natural order relation between nodes induced by the labels

(and vice-versa).

The modifications of Push-Relabel are pretty much nat-

ural and the overall algorithm is easy to implement. How-

ever, at the end of each scale, the labeling is no more valid

for the next scale. Different approaches had been tried to re-

store the labeling efficiently. A naive way would be to trig-

ger a global relabeling. This is equivalent to dropping the

dynamic trees between two stages which has been proved

inefficient (empirically). To efficiently restore the labeling,

we used a similar technique as for BKCS but the overhead

is still important. This is mainly due to the lack of sym-

metry of Push-Relabel which implies to relabel a big region

of the graph. One can expect better performance using a

symmetric approach such as active cuts [10].

3.2. Multiple local minima

Any max-flow/min-cut algorithm finds a global mini-

mum solution even in difficult cases when there is a large

number of local minima. Yet, each algorithm’s running time

may strongly depend on the amount of clutter in an image.

For example, Fig. 5(a2) shows that BK [3] uses only 1020

augmenting paths to find a global minimum for a synthetic

image segmentation problem in (a1) but it takes 5572 aug-

mentations (b2) to find the same global optimum solution

when other local minima are added (b1).

Improved theoretical complexity of capacity scaling ap-

proach may suggest that the number of required augmenta-

tions for BKCS algorithm should be less sensitive to spe-

cific instances of image data of the same size. Fig. 5(a3,b3)

shows that the number of augmenting paths required by

BKCS is less sensitive to clutter (other local minima) in the

image. This can be explained as follows. In case of no

clutter (a1) all paths are equally good and both algorithms

use approximately the same number of paths. Yet, capacity

scaling can identify stronger (fatter) paths in more compli-

cated cases with large amount of clutter in the image (b1).

Obviously, there are much fewer “fat” paths (b3) but using

them max-flow algorithms can reach the maximum faster.

Similar observations can be made on real images. For



Easy case Tough case

(one local minimum) (multiple local minima)

(a1) Simple image (b1) Image with clutter

(a2) 1020 paths (BK) (b2) 5572 paths (BK)

(a3) 1020 paths (BKCS) (b3)1704 paths (BKCS)

Figure 5. Augmenting paths generated by graph cut algorithms in

image segmentation. We compare an image with one good so-

lution (a1) and an image with multiple local minima (b1). The

object seeds are red, the sink seeds are located on the image bor-

der. In both cases the global minimum is the same (a gray circle)

and any max-flow/min-cut algorithm finds it. The second and third

rows illustrate augmenting paths obtained with and without capac-

ity scaling. Black color shows nodes that were used at least by one

augmenting path.

example, a “flower” image in Table 3.4 has relatively small

amount of clutter. Even then, BK needs 92711 augmenting

paths while BKCS uses only 18532 (5 times less) paths to

find the same minimum cut. There is even more clutter in

the “lung” example in Fig. 7 where a global optima solution

is a faint line (lobe fissure) surrounded by similar looking

structures (vessels). In this case capacity scaling reduces

the number of required augmenting paths almost 8 times

(from 74258 for BK to 9881 for BKCS). Note that if there

is absolutely no clutter, as in Fig. 5(a1), then BK and BKCS

obtain the same number of augmenting paths.

Similar behavior can be seen when increasing noise. In

that case, the noise generates more and more “local min-

ima” when its level increases. Fig. 6 shows how the number

augmenting path increases with the level of noise on a sim-

ple example (left image of Fig. 5).
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Figure 6. The number of augmenting path is dramatically increas-

ing with the noise level for the standard BK algorithm, while for

BKCS, this number stays stable. This will allow good performance

on noisy and/or challenging data.

3.3. Fast approximate solutions with optimality
bounds

As explained in Section 2, at the end of each scale

∆ = 2k capacity scaling approach generates an interme-

diate cut Ck = {Ak, Āk}. In this section we will show

that such intermediate cuts are good approximations of the

global minimum cut. First of all, each cut Ck comes with

a guaranteed optimality bound that typically gets tighter for

finer scales. Note that the finest scale cut C0 is guaranteed

to be the exact global minimum. In practice, the actual devi-

ation of the cost of Ck from the cost of the global minimum

is very low even at the coarsest scales. Moreover, the image

segmentation corresponding to Ck is often almost identical

visually to the solution corresponding to the global mini-

mum C0. Fig. 7 demonstrates segmentation results corre-

sponding to intermediate cuts Ck for two images.

First we will show the optimality bound that each inter-

mediate cut Ck comes with. The results in Section 2.1 imply

that

fk ≤ |C| ≤ |Ck| ≤ fk + 2k · m

where |C| is the cost of the global minimum cut and |Ck|
is the cost of the intermediate scale cut on a full graph G.

Note that flow value fk and cost |Ck| are known at the end

of computations at scale ∆ = 2k. This gives a relative error

bound
|Ck|−fk

|Ck|
for the cost of Ck with respect to the global

minimum. Plots at the bottom of Fig. 8 show these approxi-

mation error bounds and the actual errors with respect to the

global minimum for intermediate cuts on images in Fig. 7.

We also show similar plots for “typical” 3D segmentation

examples (on real medical data) in Fig. 9. The actual errors

in our tests were much lower than the upper bound.

The good quality of approximate cuts generated by ca-

pacity scaling allows to use them instead of the global min-

imum in imaging applications where speed is a priority.

These coarse scale solutions are obtained at a fraction of

the time it takes to converge to the global minimum and in

many cases these solutions are as good. In particular, cuts

Ck are safe to use in low clutter examples. Also, a decision

to use an intermediate cut may be based on available quality

bound value.
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Figure 7. Each scale of capacity scaling returns an intermediate so-

lution. These solutions are good approximations of the global min-

imum (bottom row) even though they are computed much faster.

Note that the relative cost error (w.r.t. global minimum) is fairly

small even at the coarsest scale (top row). Interestingly, interme-

diate solutions at the coarser scales are hard to distinguish visually

from the global minimum (bottom row). However, in challeng-

ing cases with substantial clutter some scales may return a local

minima (see “lung”, scale 4).

3.4. Experimental comparison of Capacity Scaling

In the previous section we showed that capacity scaling

can produce very good quality approximate cuts Ck well

before it converges to the guaranteed global minimum at

the finest scale. Yet, in some cases it is important to have a

guaranteed global solution. Our experiments below demon-

strate the running time of capacity scaling approach to com-

plete convergence at the finest scale. We compare it in Ta-

ble 3.4 against the running time of BK algorithm [3] which

is the state of the art max-flow algorithm for applications on

sparse grids in computer vision. We also compare it to push-

relabel (PR) algorithm which is the state of the art max-flow

algorithm on dense grids in combinatorial optimization (we

use Global and Gap Relabel heuristics).

For the sake of completeness, we also applied Capacity

Scaling to Push Relabel. It turned out to be a failure. The

speed and the complexity of PR are related to the number of

non-saturating pushes while CS avoids unnecessary satura-

tion and increases the number of non-saturating pushes. A

better approach for PR is a technique called “Excess Scal-
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Figure 8. Capacity scaling for 2D images: “flower” (left) and

“lung” (right), same images as in Fig. 7. First row: flow reaching

the sink vs. running time for BK (blue) and BKCS (red). Ver-

tical dotted lines correspond to the end of scales. Second row:

estimated error bounds (blue) and real observed errors (green) of

intermediate solutions produced after each scale of BKCS.
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Figure 9. Capacity scaling for 3D image volumes: a hip bone (left)

and a challenging lung lobe (right). See caption of Fig. 8 for de-

tails.

ing” but if it improves the worst case complexity, it in-

creases the computational time due to a big overhead in the

implementation (for more details, refer to [11].

4. Conclusions and future work

Capacity scaling improves theoretical complexity of BK

[3] to weakly polynomial by reducing the number of aug-

mentations required to converge to the global minimum.

BKCS outperforms BK on challenging graphs but the speed

up can be deceiving on simple graph (e.g. 4-neighbor 2D)

due to the overhead of capacity scaling. Yet, BKCS sig-



Samples Size

BK BKCS Comparison PR Comparison

#Paths #Paths BK/BKCS #Push PR/BKCS

(Running Time) (Running Time) (Running Time)

2
D

1
6

N
ei

g
h

b
o

rs
Ventricle 128x128 7554 (11ms) 1507 (6.9ms) 1.6 60155 (6.3ms) 0.9

Fish 250x179 20177 (46ms) 3639 (24ms) 1.9 168681 (26ms) 1.1

Coronary 256x256 57647 (136ms) 8517 (45.5ms) 3 736874 (137ms) 3

Lung 256x256 74258 (282ms) 9881 (131ms) 2.1 671234 (116ms) 0.9

Flower 400x300 92711 (296ms) 18532 (134ms) 2.2 1642615 (345ms) 2.6

Neurovasc 512x512 229204 (786ms) 40482 (344ms) 2.3 2285073 (700ms) 2

3
D

2
6

N
ei

g
h

b
o

rs Heart 128x128x86 297902 (1.4s) 78275 (1.3s) 1.1 3736132 (2.3s) 1.8

Acetabulum 128x128x119 1066971 (15.8s) 162523 (2.7s) 5.8 11082897 (7.7s) 2.9

Acetabulum 256x256x119 5610213 (185s) 647579 (29s) 6.4 69559385 (63s) 2.2

Baby Face 250x25x81 19272649 (419s) 2865353 (123s) 3.4 162483987 (147s) 1.2

Lung 205x165x253 18893807 (391s) 914817 (111s) 3.5 116791629 (122s) 1.1

Table 1. Timing for BK, BKCS, and PR on 2D and 3D segmentation on regular grid. CS reduces sensitively both the number of augmenting

paths and the running time of BK algorithm. In [3], BK was outperformed by PR on dense 3D grid. Capacity Scaling fixes that since BKCS

outperforms PR on dense graph. More experiments are available in the tech report [11].

nificantly outperforms BK and PR on denser grids and in

cases with clutter (many local minima) and noise. The

speed-up factor (up to 6) is particularly strong for 3D grids

(volumes) and for larger neighborhoods (e.g. 26) which

are important for reducing geometric artifacts of combi-

natorial graph cut methods in vision. Running time can

be further improved (by a factor of 2-4) using approxi-

mate solutions that capacity scaling generates at coarser

scales. These approximate solutions come with a certain

optimality bound. Often they are visually indistinguish-

able from a global minimum solution. It is also possible

to apply capacity scaling to active cuts [10] and to dy-

namic cuts [12]. An implementation will be available at

http://www.csd.uwo.ca/∼juan/software.html.
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