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Global Optimization for Shape Fitting

Victor Lempitsky Yuri Boykov

Abstract

This work proposes a global optimization framework for
3D shape reconstruction from noisy sparse 3D measure-
ments frequently encountered in range scanning, sparse
feature-based stereo, and shape-from-X. Firstly, we suggest
a novel surface-fitting energy for sparse or incomplete noisy
data. Our flux-based functional maximizes the number of
data points contained by a surface while allowing for some
measurement errors. Combined with regularization, this ge-
ometric functional significantly improves data alignment.

We also show that typical local or “banded” optimiza-
tion techniques do not recover from initialization errors
while standard global optimization methods are prohibitive
due to sheer size of 3D grids required for high-resolution
surface reconstruction. To overcome these limitations, we
propose a first graph-cut algorithm that guarantees global
optimality on huge 3D grids while working on automati-
cally adjusted small sub-graph. Our global optima surface-
fitting results for noisy point clouds or sparse/incomplete
multi-view disparity maps are robust to noise, large missing
parts, and varying sampling density.

1. Introduction

Surface fitting to sparse points is widely studied in vi-
sion and graphics. The main two contributions of this work
are as follows. First, we address the surface fitting problem
via a novel data-fit functional directly derived from qual-
ity of feature-matching at data points. Second, we propose
a new memory-efficient global optima algorithm for high-
resolution surface fitting to sparse data that alleviates prob-
lems of standard local minima and narrow-band methods.

Our novel surface fitting functional directly enforces ge-
ometric proximity to data points. Intuitively, it counts data
points contained by a surface while allowing for localiza-
tion errors. Data points may have different weights re-
flecting confidence level that a point is not an outlier. We
also assume that each data point comes with some estimate
of surface orientation - a vector that we use to softly con-
strain (outward) normal of a surface that fits the point. Un-
like many previous methods using estimated surface nor-
mals, our approach requires orientations only for observed
(sparse) data points and is robust to orientation errors, see

Figure 1. An example of input data for our method showing two
(out of 10) range scans registered in 3D. Points in each scan come
with weak orientation estimates (blue and green arrows) sufficient
for our method. Typical noise and outliers are shown in a close-up
(from a different and more complete set of 112 scans). We also
show one image of the scanned object (not a part of our method’s
input). This data is courtesy of the Stanford 3D repository.

Fig.12. In practice, we produce good results even using di-
rections towards the sensor/camera which are often known
for data points (blue or green arrows in Fig.1) .

Our data-fit functional does not bias a reconstructed sur-
face to any particular shape but it can be combined with
appropriate shape priors (smoothness/regularization), volu-
metric occupancy data, or other terms. For example, our
discrete data fit energy can be combined with a separate
photoconsistency term for constraining the surface in fea-
tureless regions.

In contrast to many earlier regularization methods for
fitting a surface to sparse data, global optimization of our
cost functional does not result in a trivial (empty) solution.
Thus, our energy is well suited for global minima algo-
rithms which are typically more robust in practice. Unlike
standard local or banded optimization methods, our recon-
struction results do not depend on initial solution.

Global optimization methods for surfaces, e.g. graph-
cut [2], typically require a lot of memory for high resolu-
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a) Data term b) Initial shape c) Local optimization d) Global optimization e) Subgraph (in white)
Figure 2. Global vs. local/banded optimization in 2D shape reconstruction. We minimize a functional similar to (1) or (11). The data
term of the energy is based on pixels’ potentials (a): dark – negative, bright – positive, gray – zero. The regularization term is geometric
length of the shape’s boundary. Image (c) shows results of local optimization (level sets) from initial solution (b). Global optimization
(graph-cut on a full-size 2D grid) is in (d). Our method detects such global minima using a small subgraph (e) automatically grown from a
narrow-band around the same initial shape (b).

tion volumes. Standard hierarchical or narrow band tech-
niques do not guarantee global minima and generally be-
have as local optimization methods, see Fig.2,3. In contrast,
our new memory-efficient graph-cut algorithm guarantees
global minima. It can compute global minima surfaces at
fairly high resolutions on regular PCs. In the context of
surface fitting problem, our technique computes regularized
watertight surfaces demonstrating good alignment to data
points without over-fitting to outliers. Our memory efficient
graph-cut algorithm may potentially be generalized to other
optimization problems in computer vision.

1.1. Global vs. local optimization of surfaces

There are many existing techniques for fitting 3D shapes
to discrete data points. This paper follows a minimal surface
(regularization) approach where output optimizes some en-
ergy functional encoding available data and prior assump-
tions about the shape. We choose to work with geometri-
cally motivated functionals that typically include terms like
(non-Euclidean) surface area, flux, and regional bias (volu-
metric potentials). Minimal surface methods typically yield
consistent and predictable watertight surfaces, run reason-
ably fast, and, most importantly, are robust to noise, out-
liers, and large areas of missing data.

Commonly used geometric functionals are non-convex
and may have many local extrema. Consequently, the par-
ticular choice of optimization method is important. One
popular surface optimization approach is based on varia-
tional methods using deformable meshes or implicit level
set representation of the shape. However, variational meth-
ods find local minima which may depend on initialization
and on numerical implementation details (Figure2a-c).

Recently it was demonstrated that many continuous ge-
ometric functionals can be optimized via combinatorial
graph-cut algorithms on grids [2, 19]. This approach is
motivated by integral geometry. It approximates continu-

Figure 3. A cloud of data points (left). Banded graph-cut from
unoriented points [16] (middle): incorrect estimate of initial shape
may lead to significant reconstruction errors.Global graph-cut
approach proposed in this work (right) avoids local minima prob-
lem. We also show that even rough estimates of data points’ ori-
entation may significantly improve alignment with the data.

ous surface functionals using regular N-neighborhood grids
with specific edge weights. The optimal surface is implic-
itly represented by the minimum cut. As grid resolution and
connectivity increase, this discrete approximation becomes
more accurate. In contrast to local variational methods,
graph-cut approach yields a global minimum (Figure2d)
and it is not sensitive to initialization. On the negative side,
current min cut algorithms require a lot of memory when
used on high resolution grids.

The objective of this paper is to develop a global op-
timization framework for 3D shape fitting problems. To
develop this framework, we first propose a novel continu-
ous geometric functional for surface-to-data fit (see Sec.3).
Our flux-based functional is amenable to global (e.g. graph-
cut) or local (e.g. level-set) optimization methods. Essen-
tially, we maximize the number of points that lie on a sur-
face constrained by a shape prior. Yet, local optimization of
our functional is sensitive to initialization (Fig.2b,c) while
global optima solution is consistent (Fig.2d).

We also study the problem of computing globally opti-
mal cuts (surfaces) on high resolution volumes while tak-
ing advantage of high concentration of data points in a very
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small part of the volume. We would like to restrict com-
putations to a subgraph (e.g. narrow band),i.e. some part
of the grid surrounding the actual data points. Yet, exist-
ing narrow-band strategies [22, 16] do not guarantee global
optimality making the result depend on the actual shape of
the narrow band and on initial guess. Essentially, previ-
ous narrow-band techniques converted graph-cut into a lo-
cal optimizer similar to level-sets or other variational meth-
ods causing local minima problems, e.g Fig.3 (middle).

In order to retain global optimality, in Section4.1 we
prove a lemma that relates a minimum cut on a subgraph
to the minimum cut on the complete graph. Based on this
lemma, we propose a memory efficient graph-cut algorithm
that automatically adjusts the shape of the subgraph until
its minimum cut is guaranteed to coincide with the mini-
mum cut in the whole volume. This allows computation of a
globally optimal minimum cut using a subgraph (Fig.2d,e).
Our surface fitting experiments showed that our algorithm
can compute globally optimal cuts using an order of mag-
nitude less memory than what normally would be required
for a full resolution graph. These memory savings resulted
in a leap forward in resolution at which globally optimal
surface can be computed significantly increasing accuracy
of shapes generated by local optimization (see Fig.2) or by
standard narrow-band methods (see Fig.3).

Experiments show that our shape fitting method recon-
structs high-resolution watertight surfaces in presence of
noise, outliers, large missing parts, and varying sampling
density. Global optimality of our surface fitting solutions
implies no initialization issues, better robustness, consis-
tency, and possibly wider scope of applications.

1.2. Surface fitting for image-based data

In many applications surface measurements (sparse 3D
data points) come from triangulation of corresponding fea-
tures in calibrated image sensing (passive light) and/or im-
age projecting (active light) devices. Since our new surface-
to-data fit functional can be directly related to the quality of
matching between image features, it is possible to place our
surface fitting method in the context of existing approaches
to image-based shape reconstruction.

Many image-based reconstruction methods generate
continuous 3D shapes based on surface photoconsistency.
Yet, photoconsistency does not imply accuracy for sur-
face reconstruction in textureless regions where lack of
features prevents accurate triangulation (see Fig.4). Typi-
cally, reconstruction of textureless parts is based on assump-
tions about the surface, e.g. smoothness/regularity in a de-
formable model approach or maximal size in space carving.

An alternative standard approach to image-based shape
reconstruction is to generate sparse 3D points by matching
discriminant features. Typically, feature-based sparse stereo
methods are fast and localize surface points with good pre-

Figure 4. Photoconsistency vs. feature-based stereo. Three (yel-
low) data points are accurately localized by triangulation of the
corresponding image features (intensity edges). Shaded areas
show regions of good photoconsistency between green, blue, and
red pixels of cameras A and B. Minimal photo-inconsistency sur-
face may be far from the feature points. The problem is the
“shrinking bias” typical for regularization methods and the fact
that all points in the shaded area have the same cost even though
three feature points are the most useful in finding the true sur-
face position. In practice, the problem could be even worse be-
cause shaded regions may not even “touch” at feature points. In-
deed, corresponding pixels near intensity edges may be photo-
inconsistent due to sampling issues and partial voluming effects
causing some erosion of high photoconsistency (shaded) regions.

cision1. Yet, outliers could be a problem. Also, many ap-
plications need continuous shapes. Typically, continuous
surfaces are fit to sparse data points in a separate step where
some shape priors are introduced in order to deal with out-
liers, noise, and large gaps.

Our new surface fitting method optimizes an energy
combining two terms: a shape prior (regularization) and a
data-fit cost functional related to the quality of the matching
between image features. Unlike many existing approaches
to feature-based stereo, we combine feature matching costs
and prior shape (regularization) constraints in a single op-
timization step. Thus, our approach can be directly com-
pared to photoconsistency-based regularization methods for
stereo combining image data and a shape prior in one en-

1Laser scanning can be seen as an example of feature-based stereo.
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ergy. In contrast to standard photoconsistency function-
als, however, our flux-based data-fit cost at each point is
not bounded below by zero (indicating “consistency”) and
points with discriminant features can have large negative
values actively attracting minimal surfaces.

Fundamentally, both photoconsistency-based and dis-
crete data approaches to 3D surface reconstruction rely on
two similar basic factors: the accuracy comes from rela-
tively sparse features such as intensity edges, see Fig.4, or
silhouette edges [13] while the continuity comes from ex-
plicit or implicit shape priors. Yet, as illustrated in Fig.4,
optimal photoconsistency of a surface may contradict ge-
ometric alignment with feature points which are the main
indicators of the true surface position. Thus, directly en-
forcing geometric proximity of a surface to 3D data points
may improve accuracy. Another advantage of using discrete
measurements could be efficiency gained from sparsity.

Computation of depth (disparity) can be seen as a 1D
version of a more generaloptical flow (2D motion) prob-
lem. Interestingly, the basic problem illustrated in Fig.4
connects to some known properties of standard optical flow
methods. As widely known [1, 6], sparse (Lucas-Kanade)
techniques that focus on points with sufficiently discrim-
inant features can be more accurate and robust to noise
than dense (Horn-Schunck) techniques that enforce color-
consistency and regularization. Similarly to Fig.4, the
Horn-Schunck approach can oversmooth important data
points because color-consistency (or optical flow constraint)
does not distinguish points with reliable measurements
from color-consistent points in textureless parts. Ideally,
dense optical flows should be constrained to geometrically
fit motion detected at reliable data points. Unfortunately,
many standard techniques for dense optical flows (includ-
ing [6]) do not use such geometric constraints.

2. Related work on surface fitting

There is a large amount of work on fitting continu-
ous shapes to 3D sparse/incomplete data and we can ref-
erence only a fraction of existing publications. The ma-
jority of standard methods can be grouped according to
their approach to numerical representation of surfaces (see
Sec.2.1). Due to commonly present noise, outliers, and
large missing parts, energy-based methods are particularly
appropriate for robust surface fitting. In Sec.2.2 we review
existing regularization-based surface fitting techniques and
the surface functionals that they use.

2.1. Explicit and implicit surface representation

First, there is a group of methods using explicit repre-
sentation of surfaces via triangle mesh [9, 11]. This ap-
proach allows optimization of geometrically-motivated en-
ergies using gradient descent but it can be highly dependent

on good initialization. Also, if the shape undertakes sig-
nificant changes during gradient descent evolution, mesh-
based techniques have to use different heuristics for han-
dling topological changes. Mesh quality control is another
significant practical issue.

Many methods for surface fitting avoid mesh-related nu-
merical problems by representing surfaces implicitly. An
earlier group of such methods, including widely cited work
by Curless and Levoy [10], used level-set functions to repre-
sent surfaces but did not employ any surface regularization
functionals. To avoid any confusion with the widely known
level-setstechnique of Osher and Sethian [24], it should be
noted that [10] and other similar methods do not compute
the gradient descent evolution of a surface. They use data
points only to estimate some dense “interior” function in
3D space and reconstruct a continuous shape as its isosur-
face (level-set). For example, the VRIP algorithm of Cur-
less and Levoy [10] computes a weighted sum of signed
distance functions of individual range scans and thresholds
it (at level zero) to recover a continuous surface. Another
group of methods (e.g. [7]) compute an interior function as
a combination of radial-basis functions. The Poisson sur-
face reconstruction algorithm [17] considers oriented points
as samples of gradients of the interior (signed distance map)
function and reconstructs it using the Poisson equation.

Any surface fitting method that lacks geometrically mo-
tivated regularization is prone to problems when the data
contains large gaps and outliers. Some of these methods are
also sensitive to the accuracy of point orientations estimates
and varying sampling density. To counteract such problems,
another group of algorithms (e.g. [28, 29, 25]) combine
implicit surface representation with regularization via the
well-known level-setstechnique of Osher and Sethian [24].
This variational method can compute the gradient descent
evolution of an implicitly represented surface with respect
to a given cost functional. Level-sets cope seamlessly with
topological changes and avoid re-meshing issues. Yet, sur-
face fitting methods based on level-sets converge to a local
minimum of the corresponding functionals. Thus, they de-
pend on proper initialization. Some regularization function-
als for surface fitting are reviewed in Sec.2.2.

Our work uses a different approach where surfaces are
represented as binary partitionings (s/t cuts) on discrete
grids [2, 5]. This implicit representation technique is based
on integral geometry [2] and allows global optimization of
a large class of surface functionals [19] via efficient combi-
natorial graph-cut algorithms. Robust global graph-cut al-
gorithms have already demonstrated a strong potential for
many problems in computer vision, but they have not been
applied to surface fitting yet. One exception is a very re-
cent method of Hornung and Kobbelt [16], but they com-
pute an optimal surface in a fixed narrow band (a crust) and
the shape of this crust directly affects the optimized energy.
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Similarly to variational methods, their results depend on the
initialization, i.e. on the particular shape of the constructed
crust. Using banded (non-global) optimization may lead to
gross errors in reconstruction, while discarding orientation
information may lead to oversmoothing (Figure3). Our
graph-cut based algorithm is a first surface fitting method
that guarantees global optima in the whole volume. We
also designed a novel geometric surface-to-data fit func-
tional suited for global optimization.

2.2. Geometric surface fitting functionals

Regardless of numerical approach to surface represen-
tation, different regularization-based surface fitting tech-
niques can be compared by the energy they use in order
to cope with noise, outliers, and large gaps. Since we use
a geometric approach, we mainly concentrate on geometric
regularization functionals used for surface fitting in the past.

To merge incomplete range scans obtained from multiple
view points Whitaker [28] uses functional

E(S) =
∫

interior(S)

D(v)dv +
∫

S

ds (1)

whereD(v) =
∑

j Dj(v) is a potential function based on a
combination of signed distance maps of independent scans
obtained from multiple view points. FunctionD(v) is very
similar to the interior function used by Curless and Levoy
[10]. Both [28] and [10] assume that eachj-th scan is dense
which allows the corresponding signed distance function to
be defined in a straightforward fashion. In fact, minimizing
the first term in (1) is equivalent to extracting a zero-level
isosurface ofD(v) which is exactly the algorithm in [10].
The main contribution of [28] was to combine the data-fit
energy as in [10] with the second regularization term in (1)
thereby improving robustness to outliers and noise.

Zhao, Osher, and Fedkiw [29] proposed a different
regularization-based surface fitting functional applicable to
an arbitrarily sparse set of points

E(S) =
∫

S

dn
P (s) · ds, 1 ≤ n ≤ ∞ (2)

wheredP (s) is a distance from points on surfaceS to the
nearest data point in setP . FunctiondP (·) is an unsigned
distance map that is well defined for any set of pointsP .
Thus, functional (2) can be applied to a wider class of sur-
face fitting problems than (1) as the set of pointsP can
combine arbitrarily sparse data from different views and no
estimates of surface orientation are required.

Functional (2) combines surface-to-data proximity with
smoothing/regularization into one term. Similarly to
geodesic active contours [8], functional (2) can be seen as
the area of surfaceS under a Riemannian metricd defined
by the data. As discussed in [29], optimization of (2) via

variational (level-set) approaches will converge to a local
minima of this functional: a surface composed of facets
from Delaunay triangulation for a given sparse set of points.
The particular local solution will depend strongly on good
initialization.

Hornung and Kobbelt [16] apply graph-cut surface opti-
mization [2] to a sparse data fitting functional very similar
to (2). However, functional (2) is not appropriate for global
optimization since its global minima is a trivial (null) sur-
face. Thus, [16] compute their solution in a (fixed) narrow
band reducing graph-cut framework to local optimization
essentially equivalent to variational approach in [29]. Con-
nection between narrow-band graph-cut methods and varia-
tional optimization (e.g. level-sets) was shown in [4].

Savadjiev, Ferrie, and Siddiqi [25] formulate surface fit-
ting as a problem of estimating a dense vector field{vp}
of surface normals from sparse data points. Then, a contin-
uous surface can be recovered from a dense field{vp} by
optimizing aflux functional

E(S) =
∫

S

〈vs, ns〉 · ds (3)

wherens is a surface normal. To estimate a dense vec-
tor field {vp}, [25] finds a local surface patch of the least
square fit at each sparse data point and use regularization
framework to propagate local patch information around. In
particular, they usevariational relaxationon a discrete 3D
grid to enforce curvature consistency over local (quadric)
patch models. Once local patch models are estimated, nor-
mal vectors{vp} are determined with±180 degree ambi-
guity due to lack of global surface orientation in the for-
mulation of [25]. Thus, [25] cannot recover a continuous
surface by optimizing flux (3) with respect to the obtained
{vp}. They propose some heuristic to overcome the ambi-
guity of their vector field orientation but it causes geometric
artifacts (e.g. “thickness” [25]) and reconstruction errors.

We believe that it is possible to resolve the ambiguity of
an estimated dense vector field{vp} in [25] by enforcing
global orientation consistency. At each grid nodep one can
select one of two possible vectors±vp in a spatially consis-
tent way according to a binary MRF formulation with pair-
wise smoothness between neighboring grid points. Such
MRFs posterior energies (possibly super-modular) can be
optimized using graph-cut, QPBO methods [20], and/or
other powerful combinatorial optimization techniques. Yet,
in this work we study a different approach to surface fit-
ting. In contrast to [25], we do not want to brake the surface
fitting problem into two (artificially?) separated steps: com-
puting a dense field{vp} of normals by propagating surface
patches estimated in sparce data points and then computing
a surface that fits this dense field of normals.
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2.3. Our geometric approach vs. prior art

Our insight is that flux-based data fit functionals like (3)
do not have to rely on dense and accurate estimates of sur-
face normals{vp}. Unlike [25], we skip attempts to accu-
rately estimate a dense field of surface normals and use only
some weak estimates of global surface orientation at sparse
data pointspi ∈ P . We assume a sparse vector field

{vi| pi ∈ P}

where each vectorvi softly constrains true surface normal
ni at data pointpi. In particular, we expect large positive
values of thecosine of the angle between vectorsvi andni.
Yet, we show that even fairly coarse orientation estimates
at data pointspi ∈ P work well in practice. For example,
the experimental results in this paper use the direction from
a data pointpi to the corresponding sensor2. We also note
thatvi does not have to be a unit vector and its length may
indicate confidence of data pointpi and/or its orientation.

Before computing flux (3), we convert our sparse vec-
tor field {vi| pi ∈ P} to a semi-dense field by “blurring”
each vectorvi in a small neighborhood of pointpi using a
Gaussian (or other) kernel corresponding to the measure-
ment error or uncertainty of data pointpi, see Fig.5b. In
Section3.1 we show that flux with respect to such semi-
dense vector field can be directly related to the quality of
feature matching. Despite blurring, such semi-dense vector
fields may still have large gaps due to data sparsity. Note
that our flux based data-fit functional is linear w.r.t. combi-
nations of multiple data points (or scans).

In contrast to [25], we combine flux of a semi-dense
field of “rough surface normals” with regularization (or
shape prior3) in a single geometric functional and com-
pute its global minima. The regularization term propagates
information and resolves ambiguities while flux enforces
alignment with the observed data points and counteracts
the “shrinking bias” of standard regularization (length/area)
functionals. It is known that combining flux with regular-
ization allows reconstruction of elongated structures, nar-
row protrusions, or other fine surface details [26, 18, 19, 5].

3. Our energy formulation

Discrete measurements are common in range scanning,
feature-based sparse stereo or shape-from-X. Dense but in-
complete data4 can also be seen as a collection of discrete
data points. In all cases, data points come with some mea-
surement errors or other forms of uncertainty. We derive a

2If sparse data pointspi ∈ P come with absolutely no surface orien-
tation information, a sparse vector field can be obtained by locally fitting
plane patches into pointspi ∈ P and by removing±180 orientation ambi-
guity via global consistency optimization (as suggested earlier) on a binary
MRF with nearest k-neighbor or Delaunay-graph connectivity.

3E.g. elastic membrane (low area) or stiff membrane (low curvature).
4As in multiview reconstruction from multiple disparity maps

(a) Observing surfaceS (b) Vector fieldv̄i
p = gi

pf
i
pv̄i

Figure 5. Data points from active or passive reconstruction tech-
niques (e.g. range scanning or feature-based stereo) are not as dis-
crete as they may appear. For example, thei-th data point from a
laser scanner (a) corresponds to noisy non-deterministic measure-
ments of an illuminated patch which could be smaller or larger de-
pending on the beam’s width and the patch’s orientation. In laser
scanning, “source” imagef i(α) is a probability of emitting a pho-
ton in directionα and “sensor” imagegi(β) measuresradianceof
surface points viewed at angleβ. Statistically motivated function-
als like (6) suggest that sparse/discrete surface measurements can
be represented via flux of continuous vector fields (b).

novel geometrically motivated surface-to-data fit functional
(Sec.3.1) and combine it with surface regularization or other
generic forms of shape prior (Sec.3.2).

3.1. Quality of Fit to Data

Ideally, if all discrete data points have absolute preci-
sion then the quality of a surface fit can be measured by
the number of data points that lie on it. Reconstruction of
a continuous/dense surface would require imposing a shape
prior (e.g. regularization) even for perfect discrete data but
this factor is separate from the quality of fit to data.

In practice, it is well known that even range scanning
measurements are not exact, not to mention accuracy of
feature-based sparse stereo. How should the quality of a
fit be measured in the presence of noisy data? In order to
clarify this question it is very instructional to analyze the
uncertainty of a single data point in laser scanning which is
often considered to be the most accurate approach to surface
reconstruction. Our basic analysis can be extended to other
active or passive light acquisition methods and laser scan-
ning is chosen mainly as the simplest example illustrating
our main approach.

Consider the active light surface measurement process
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(a) Flux (b) Divergence

Figure 6. Maximization of flux through vector field̄vp =
∑N

i=1 v̄i
p

can be seen as maximization of the number of data points con-
tained by a surface while allowing measurement uncertainty (a).
This is equivalent to maximizing divergence of vector field{v̄p}
inside surface interior (b). Points with non-zero (positive or nega-
tive) values of scalar functiondiv(v̄p) are indicated by+ or−.

shown in Figure5 (a). The amount of light energy reaching
surface patchds from the source in a unit of time is

ds · f i
s · 〈v̄i, n̄s〉 (4)

wheren̄s is surface normal,̄vi gives direction to the source,
andf i

s := f i(αs) for angleαs at which the source views
given points in space. The Lambertian assumption about
surfaceS implies thatradianceof points on patchds is the
same in all angular directions. Since image sensor measures
radiance of surface points then the total energy of light re-
flected by patchds in a unit of time is

ds · π · gi
s (5)

wheregi
s := gi(βs) for angleβs at which the sensor ob-

serves points in space. There is a connection between (4)
and (5): if surfacealbedois ρ thenπ · gi

s = ρ · f i
s · 〈v̄i, n̄s〉.

Functions (4) and (5) are defined for pointss on any surface
S. However, the linear relationship

gi
s ∝ f i

s · 〈v̄i, n̄s〉 ∀s ∈ S

only holds if pointss and normalsns belong to the (un-
known) surface that reflected the light. It is natural to esti-
mate surfaceS by maximizing some measure of similarity
between the two functions onS.

For example, maximization of the dot product

max
S←−

∫
S

gi
s · f i

s · 〈v̄i, n̄s〉 · ds (6)

could be a reasonable approach to align (4) and (5). Alter-
natively, one can maximizecovariance5 of (4) and (5) as
functions (random variables) overΩ = S with respect to
Lebesgue measure

max
S←−

∫
S

gi
s · f i

s · 〈v̄i, n̄s〉 · ds −
∫

S

c · gi
s · ds (7)

5Covar(X, Y ) = E(X − X̄)(Y − Ȳ ) = E(XY )− X̄Ȳ .

where constantc =
∫

f i(α) ·dα (total energy of the source)
is independent ofS. Large covariance indicates that two
functions “vary together.” Note that functionals (6) and (7)
are essentially the same except for an additional smooth-
ness term in (7). Since surface regularization is imposed
in a separate shape-prior functional (see Sec.3.2), we will
concentrate onflux-based data fit functionals like (6).

Note that Lambertian assumption above is non-essential
for our main argument as long as there is a correlation be-
tween the irradiance on patchds and the reflected light ra-
diance in the direction to the sensor.

In case of multiple data points1 ≤ i ≤ N , our measure
of surface fitness sums functionals (6) for all pointsi. This
is analogous to counting the number of points contained by
S in the case of absolutely precise data. We obtain func-
tional

max
S←−

∫
S

〈v̄s, n̄s〉 · ds (8)

which isflux for vector fieldv̄p =
∑N

i=1 v̄i
p representing all

(uncertain) data points, see Figures5(b) and6(a). Note that
Gauss-Ostrogradsky (a.k.a.divergence) theorem∫

S

〈v̄s, n̄s〉 · ds =
∫

inter(S)

div(v̄p) · dp. (9)

implies that (8) is equivalent to maximizing the integral of
vector field’sdivergencein the interior ofS, see Figure6(b).

We showed that flux-based functionals like (9) are well
justified data-fit measures accounting for uncertainties or
noise in the data points. This approach easily generalizes
beyond laser scanning. In the majority of existing active
or passive light methods for acquiring discrete/sparse sur-
face measurements, eachi-th data point naturally comes
with direction to the sourcēvi or even better estimate of
surface orientation. Moreover, instead of a single data point
pi most methods can report some distribution functionρi(p)
describing probability thati-th measurement corresponds to
a surface patch located at pointp ∈ R3. The specific form
of ρi(·) depends on particularities of the specific acquisition
method. In many cases this distribution is a Gaussian with a
given mean (data pointpi) and some covariance matrix spe-
cific to each technique. In general, we suggest flux-based
functional (9) as a generic surface-to-data fit quality mea-
sure where vector field{v̄p} representing data is

v̄p =
∑

i

ρi(p) · v̄i ∀p ∈ R3. (10)

In the special case of laser scanning we hadρi(p) = gi
p · f i

p

which in most cases is a Gaussian whose variance depends
on the laser beam width. In feature-based sparse stereo,
variance depends on the size of the image features.
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Figure 7. Surface fitting with different sampling density and priors.
a) Optimization of the data-fit term in combination with a mem-
brane prior produces consistent reconstruction for densely sam-
pled points. b) The same fails when the sampling density is low.
c) Widening the support of each point (ad-hoc “low curvature”
prior) allows to obtain correct reconstruction.

3.2. Adding Shape Prior

In the presence of large gaps and outliers in the data, im-
posing some shape prior is essential for surface reconstruc-
tion. One simple approach is to augment functional (8) with
an area-based regularization term (elastic membraneprior)
giving the following minimization problem:

min S←−
∫

S

λ · dS −
∫

S

〈v̄, n̄s〉dS (11)

where{v̄p} is a vector field representing data, as in (10).
The exact value ofλ determines the strength of the mem-

brane prior and may be chosen according to the sampling
density. If sampling density varies significantly over differ-
ent parts of the true surface, a better approach is based on
spatially varyingλ = λ(p) proportional to some estimate of
local data sampling density. In our experiments, however,
constantλ gave good result and we used constantλ in all
experiments (unless noted otherwise).

The optimization of the functional (11) maximizes the
number of collected data points while minimizing the area,
thus handling noise and outliers in the initial data, see Fig-
ure 7(a). However, if data points are sampled at distances
much sparser than each point’s “support”, see Figure7(b),
then the membrane prior may produce inconsistent results
for all choices of fixedλ. It is unclear if spatially varyingλ
can solve the problem. Potentially, one may try combining
our flux-based data-fit term with a regularization functional
similar to (2) where value of spatially varying regulariza-
tion parameterλ could be set according to the distance to
the nearest facet on the data points’ Delaunay graph.

An alternative and probably better approach is to use
a low-curvature (stiff membrane) prior instead of a low-
surface (elastic membrane) prior. The corresponding varia-
tional models are known. In the context of global graph-cut
optimization it might be possible to incorporate low curva-
ture priors using N-cliques but, to the best of our knowl-

edge, an exact construction is unknown. Yet, we propose
a simple heuristic for low curvature shapes. Note that each
observed data pointpi with estimated orientation̄vi may
correspond to a small surface patch of certain size∆. The
smaller expected surface curvature is, the larger∆ gets.
Then, thei-th data point support functionρi(p) that rep-
resents the likelyhood of pointp to be on a surface with ori-
entationv̄i (see (10)) can be widened by∆ in the direction
orthogonal tōvi. Thus, the low curvature prior may justify
the use of support functionsρi(p) wider than the span of
the measurement error model. Figure7(c) demonstrates the
effect of this ad-hoc low-curvature prior.

3.3. Occupancy data

In many cases, there is some information about the
scene’s geometry that comes not in the form of surface
points but in the form ofspatial occupancy. It can be de-
fined by a volumetric functionO(p) where positive values
indicate that pointp is likely to be inside the surface and
vice versa, while absolute values ofO(p) correspond to the
certainty. Such occupancy data usually comes from line-
of-sight information6 or silhouette intersection and may be
easily incorporated into functional (11). As a result, in the
most general case the optimization problem has the form:

min S←
∫

S

λ · dS −
∫

S

〈v̄, n̄s〉dS −
∫

inter(S)

O(p) · dp.

(12)

4. Energy optimization

In [19], it was shown that global minima of geomet-
ric surface functionals combining area, flux, and volumet-
ric potentials as in (12) can be efficiently computed via a
simple graph-cut. A typical graph construction is shown
in Figure8(a). Normally, neighboring pixels are connected
with n-links. The cost of n-links severed by a cut repre-
sents length (or area in 3D) of the boundary. Pixels are also
connected to the terminalsS andT via t-links. The cost
of t-links represents volumetric potentials. Divergence of a
vector field in (9) is an example of volumetric potential that
can be represented by weighted t-links either to the source
(positive divergence) or to the sink (negative divergence).

4.1. Global optimization via subgraphs

As shown in Figure9(a), the data (or non-zero t-links)
may concentrate in a very small subset of the domain of in-
terest. It may look good enough to consider optimization in
a band containing all the data, but this converts graph-cut
into a local optimization technique (like level-sets). As was
shown in Figure2, this makes surface reconstruction very

6For each range scan, the space between the scan surface and the scan-
ner is likely to be empty (lines of sight).
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sensitive to initial guess. Yet, in cases like one in Figure9(a)
it seems ridiculous to do global optimization by building a
huge 3D grid in the whole domain. The natural question is
whether is it possible to guarantee global optimality while
doing computations on a small subgraph. The lemma below
demonstrates a condition that has such a guarantee. Our op-
timization algorithm is a natural consequence of this lemma.
We compute an optimal cut on a subgraph and then adjust
the subgraph until the conditions in the lemma are met.

We will use the following definitions. Consider subgraph
(a band)Gsub of graphG that contains only a subset of the
nodes onG and both terminalsS andT . Edges connect-
ing any pair of vertices inGsub are the same as edges con-
necting them inG. We call two subgraphsdisjoint if their
node sets do not intersect (except for terminal nodesS and
T ). We also say that two disjoint subgraphs (or simply non-
intersecting node subsets)G1 andG2 areconnected, if there
is a pair of nodesn1 ∈ G1 andn2 ∈ G2 connected with an
edge inG.

Global optimality lemma: Let GS , GT , andB be dis-
joint subgraphs ofG such that their union contains all nodes
in G. Assume that:

1. Nodes inGS do not have (non-zero) t-links toT .

2. Nodes inGT do not have (non-zero) t-links toS.

3. GT andGS are not connected (i.e. separated byB).

Consider a minimal cut[BS , BT ] onB separating its nodes
into set BT connected to sink and setBS connected to
source. IfBS is disconnected fromGT andBT is discon-
nected fromGS (see Fig.8b), then[GS ∪ BS , GT ∪ BT ]
is a minimal cut onG (thus, the minimal cut onG is found
directly from the computations done within its subgraphB).

Proof. The proof uses the standard terminology from
network flows theory and the Ford-Fulkerson theorem (min-
imal cut/maximum flow duality) [12]. We will also use the
corollary of the theorem stating that if all edges that are cut
by some cut are saturated by some (feasible) flow than the
cut is minimal and the flow is maximal.

Consider a cut[GS ∪ BS , GT ∪ BT ] in graphG and a
cut [BS , BT ] in subgraphB. Due to adjacency conditions,
they cut the same set of edges, which we denoteC. Let us
prove, that the cut[GS ∪BS , GT ∪BT ] is minimal.

Consider the maximal flowF in B. Due to the Ford-
Fulkerson theorem this flow saturates all edges inC. Also,
this flow is feasible inG (sinceB is a subgraph inG).

Therefore, for cut[GS ∪BS , GT ∪BT ] in G all severed
edges are saturated by a feasible flow. The aforementioned
corollary implies that the cut is minimal. �

Our lemma suggest an efficient algorithm that can take
advantage of the banded structure of the data (t-links) with-
out loosing the global optimality of the cut.

Algorithm: assume that we are given a network graph
G with some initial segmentation/partitioning into setsGS ,

(a) Grid graphG (b) Partitioning of nodes
Figure 8. A typical grid graph in computer vision (a). Pixels corre-
spond to nodes. See lemma formulation for other details. Global
optimality lemma assumes partitioning of graph nodes into sets
GT , GS , andB = BS ∪ BT (b). Note thatGT does not contain
t-links to source andGS does not contain t-links to sink.

(a) Divergence of{v̄p} (b) Global minima inR3

Figure 9. Our algorithm can take advantage of narrow concen-
tration of data points. Image (a) shows divergence of a vector
field representing “Bunny” data. While our algorithms guaran-
tees global optima in the whole domain, it can often find it while
working on a relatively small subgraphB in (b).

GT , and subgraph(narrow band)B. Alternatively, if our
graph is embedded in 3D space and the initialization is
given by some shapeS0, one may createGT from the nodes
exterior toS0, GS from the nodes interior toS0, andB from
the nodes near the shape surface. The following algorithm
computes the globally minimal cut onG using such initial-
ization. (The final result is independent of it!)

On the first step, we add toB all nodes inGS with non-
zero t-links to the sink and all nodes inGT with non-zero
t-links to the source. Such subgraphsGS , GT , andB meet
the first three conditions of the lemma. We compute a min-
imum s/t cut inB. If the min-cut inB satisfied the last con-
dition of the lemma, we have found the globally minimal
cut and, hence, stop. If obtained componentsBS andBT

have nodes connected to the “wrong” inactive component
(GT for BS andGS for BT ) then the subgraphB is dilated
near these nodes. Then we iterate until a global minima is
found. SinceB grows monotonically at each step, the pro-
cess converges.

The number of iterations may be large (e.g. dozens). It
is important, therefore, that the maximum flow computed in
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B on the previous iteration is a feasible flow for the next
iteration. Thus, each iteration has to do only small updates
of the flow to get the maximum flow, which is much faster
then computing maximum flow from scratch.

This algorithm always yields the globally minimal cut.
However, the size ofB and the number of iterations de-
pends on the accuracy of the initialization. This behaviour
is different from the local optimization methods, where both
result and consumed resources depend on the accuracy of
initialization, see Figure2. Note, although we used level
sets to get the results in Figure2(c), any other local op-
timization method (inc. snakes, banded graph-cut) would
perform similarly.

Hierarchical algorithm: the proposed algorithm can be
used within a hierarchical strategy. Indeed, the result com-
puted using downsampled data can be used as a good initial-
ization on the higher level of hierarchy, which is a common
approach in computer vision. What is also important, is that
the shapes of the subgraphB, which our algorithm creates
at different resolutions are also similar.

We assume that we can compute t-link and n-link ca-
pacities for the grids at different resolutions. One way to
do this is to recall that these capacities are motivated by
the continuously-formulated geometric functional. A more
general and simple strategy, which we actually use, is to
downsample the t-links and n-links by summation, i.e. con-
struct a pyramid of n-links and t-links.

The following algorithm computes the globally minimal
cut on the grid of resolutionnx× ny × nz:

1. Compute the shapeS1/4 as a result of minimal cut
at full grid at resolutionnx/4× ny/4× nz/4.

2. Compute the minimal cut at the resolutionnx/2 ×
ny/2× nz/2, using the shapeS1/4 as initialization
for our narrow band algorithm. LetGS1/2, GT1/2,
andB1/2 be the network graph components on con-
vergence.

3. Compute the minimal cut at full resolutionnx ×
ny × nz, using the “upsampled” versions ofGS1/2,
GT1/2, and B1/2 as initialization for our narrow
band algorithm.

Typically, we observe 10–20 iterations on step 2, and 2–
3 iterations on step 3. However, the vast majority of time
is spent at single graph-cut computation on the starting it-
eration of step 3. Thus, such algorithm has a very small
computation overhead compared with a single minimal cut
computation in a narrow band. In other words, the algo-
rithm acts as follows:a) automatically chooses the shape of
the narrow band (steps 1,2)b) computes the minimal cut in
a narrow band (beginning of step 3), andc) makes few addi-

(a) Low-res. graph-cut (b) Sub-pixel smoothing
Figure 10. Extracting subvoxel resolution isosurfaces via level-
sets (b) from binary segmentation on a grid (a). To emphasize the
smoothing effect, we used a low-resolution grid in this example.

tional iterations updating the narrow band and the minimal
cut (rest of step 3). Here, a) and c) takes very small amount
of time compared to b).

5. Experimental evaluation

This section presents our experimental results based on
hierarchical algorithm from the previous section, which em-
ploys the popular min-cut/max-flow algorithm from [3] as a
subroutine. In general, our global optimization algorithm
produced watertight meshes of low genus. In the cases
when our method produced several connected components,
we left only the largest, due to the prior knowledge of shape
connectivity. To extract isosurfaces from binary segmenta-
tion of discrete grids without aliasing artifacts, we used a
modification of the method in [27] whereconstrained level-
setssmooth a surface on subvoxel level for better 3D render-
ing, see Fig.10. Our modification applies such constrained
level-sets approach to our own functional (12)7.

The numerical details of our algorithm’s performance
in the experiments are summarized in table1. The peak
RAM allocation size for all models was 1.5-2.5 GB. Note,
that most of these experiments would demand prohibitively
large amount of memory being run at the same resolutions
with full min-cut/max-flow.

5.1. Fitting to range data

In this subsection, we present the result of our method on
the range scan datasets from Stanford 3D Scanning Repos-
itory. These well known datasets contain 10-112 registered
range scans per dataset. Each range scan was treated simply
as a collection of 3D points. To demonstrate the robustness
of our method to orientation estimation errors, we used a
single orientation vector (corresponding to scan viewing di-
rection) for all points in the scan. We also used coarse line-
of-sight information near the legs of Buddha for correct hole

7Using our own functional was suggested by Olivier Juan
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Figure 11. Our results on the range scan datasets from the Stanford Repository using coarse orientation estimates (one direction per scan).
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Poisson [17] Flux (ours) Poisson [17] Flux (ours)

From points with weak orientation (direction to scanner) From points with good estimates of surface normals

Figure 12. Comparison of our method with Poisson surface reconstruction algorithm [17]. Both methods use surface orientation informa-
tion. Two images on the right show that both methods work well when points come with accurate estimates of surface normals (here we
used surface normals generated by VRIP reconstruction [10]). Two images on the left show the results obtained when data points had only
weak orientation information (direction towards the scanner) clearly demonstrating that our flux-based approach is much less sensitive to
accuracy of surface orientation information.

Scene Grid size Band size Time
Bunny 551x544x428(6) 3.72% 61.7
Dragon 602x425x269(6) 9.61% 62.9

Dragon(VRIP) 901x637x403(6) 3.06% 47.5
Armadillo 601x635x501(6) 2.23% 70.7
Buddha 377x914x377(6) 10.75% 1269.9

Temple Full 452x704x332(6) 10.37% 359.5
Temple Ring 451x707x331(6) 11.91% 640.7

Temple Sparse 275x427x202(26) 21.92% 1116.1
Dino Full 252x300x253(26) 20.59% 629.3
Dino Ring 251x300x253(26) 21.31% 1038.2

Dino Sparse 252x300x253(26) 21.68% 667.3

Table 1. Minimal cut stats for the models in subsections5.1,5.2.
Neighborhood system size is shown in brackets. The fourth col-
umn contains the percentage of all nodes that were included in the
subgraphB on convergence. Time is given in seconds.

filling of a large hole. Otherwise, occupancy data were not
used. The results for all datasets are shown in Fig.11.

We also compared the results of our method with Pois-
son surface reconstruction recently proposed in [17]. There,
it was demonstrated to compare favourably to several other
state-of-the-art methods. For a less challenging dataset with
accurate normal orientations it produced the results equally
good to ours (Figure12, right two images). However, it
was unable to handle original raw scans dataset with coarse
orientation estimates, whereas our method produced a rea-
sonable results (Figure12, left two images).

We also tested the ability of our approach to handle large
variations in sampling density. To do that, we removed 98%
of points from the right half of Armadillo and then applied
our method. With the use of non-uniform Euclidean regu-
larization, our method was able to handle such 50-to-1 dif-
ference in sampling density gracefully (Figure13).

Figure 13. Our results (right) on the pruned Stanford Armadillo
range scans data (left). 98% of points were removed from the left
part, thus creating 50-to-1 difference in density.

5.2. Fitting to incomplete stereo data

Recently, a number of multiview reconstruction methods
have been proposed that produce highly-accurate ”quasi-
dense” output, leaving holes where the stereo correspon-
dence cannot be established [21, 14, 15]. Our method can
post-process such outputs turning them into consistent, wa-
tertight meshes, while preserving their high level of details.

Thus, we considered incomplete meshes produced by
multiview reconstruction method [14] on Middlebury mul-
tiview stereo page datasets [23]. We used the vertices as
input points to our algorithms with the normals estimated
from local mesh structure. In order to perform the hole fill-
ing in ambiguous cases, we used the occupancy information
based on the coarse silhouette intersection.

We performed the evaluation on 6 datasets (a group of
three for dino model, and another group of three for tem-
ple model). Originally, within each group the multiview
datasets differed by the number of images. Therefore, the
meshes produced by [14] differ by the size of the holes
and by the amount of noise and outliers. Also, the sil-
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Temple Full Temple Ring Temple Sparse Dino Full Dino Ring Dino Sparse

0.42mm 98.0% 0.61mm 86.2% 0.87mm 56.6% 0.56mm 80.0% 0.46mm 57.8% 0.56mm 26.0%

0.42mm 99.7% 0.54mm 99.7% 0.95mm 93.2% 0.52mm 99.0% 0.64mm 95.9% 1.22mm 88.8%

Figure 14. Shape fitting to incomplete meshes on six Middlebury multiview stereo datasets. Top – two views of the results of Goeseleet
al method [14], bottom – the same views for the watertight shapes fitted to those results using our method. First numbers are the accuracy
measures (90% of the surface lies within this distance from the ground truth). Second numbers are completeness measures (percentage of
the ground truth that lies within 1.25 mm from the surface).

houette intersection results for ‘sparse’ and ‘ring’ datasets
are much coarser approximations to real surface then for
“full” datasets. The input (results of [14]) and the out-
put of our method, along with statistical measurements of
similarity with ground truth are shown on Figure14. As
both visual inspection and statistical measurements verify,

our method significantly improved the completeness of the
meshes, while the accuracy of the reconstructions remained
on par with the input meshes.
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