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Graph Cuts versus Level Sets

� Part  I:  Basics of graph cuts

� Part II:  Basics of level-sets

� Part III: Connecting graph cuts and level-sets

� Part IV: Global vs. local optimization algorithms
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Graph Cuts versus Level Sets

� Part  III:  Connecting graph cuts and level sets

• Minimal surfaces, global and local optima

• Integral and differential approaches

• Learning and shape prior in graph cuts and level-sets
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Connecting graph cuts and level sets

• Integral and differential approaches

– Integral vs. differential geometry

• Implicit surface representation via level sets and graph cuts

• Sub-pixel accuracy vs. non-deterministic surface 

– Differential and integral solutions for surface evolution PDEs

• Gradient flow as a sequence of optimal small step

• L2 distance between contours/surfaces

• PDE-cuts (pluses and minuses)

• Spatio-temporal approach

• Shortcomings of narrow band cuts and DP snakes
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A contour may be 
approximated from 
u(x,y) with sub-
pixel accuracy 
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• Level set function u(p) is normally stored on image pixels

• Values of u(p) can be interpreted as distances or heights of image pixels

Integral and differential approaches:

Implicit (region-based) surface representation
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Integral and differential approaches:

Implicit (region-based) surface representation

),( ppp yxcc =

• Graph cuts represent surfaces via binary function c(p) on image pixels

• Two values of c(p) indicate interior and exterior labeling of pixel centers

There are many 
contours satisfying 
interior/exterior
labeling of points 

Question: Is this a contour
to be reconstructed from 
binary labeling c(x,y) ? 

Answer: NO
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Integral and differential approaches:

Implicit (region-based) surface representation

� Both level-sets and graph cuts use region-based 
implicit representation of contours

� Level-set function u(p) allows to approximately 
reconstruct a contour with  sub-pixel accuracy

� Graph cuts use a “non-deterministic” 
representation of contours. No particular 
contour satisfying given pixel labeling is fixed
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Integral and differential approaches:

Sub-pixel accuracy

� Level-set function u(p) allows to approximately 

restore a contour 

• with  “sub-pixel accuracy”

� Graph cuts do not identify any particular contour 

among those that satisfy the pixel labeling

• no “sub-pixel accuracy”
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Integral and differential approaches:

Sub-pixel accuracy,… what for?

� “Super Resolution” 

• … if original data does not have sufficient resolution.

� In any case, one can use a regular grid of acceptable 

resolution which can be either finer or courser than 

the data.

� Now-days images often have fairly high resolution 

and pixel-size segmentation accuracy is more than 

enough for many applications.
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Integral and differential approaches:

Sub-pixel accuracy,… who cares, who does not, and why?

� Level-sets need sub-pixel accuracy for a technical 
reason:

• Explicit estimation of contour derivatives (e.g. curvature) is 
an intrinsic part of variational optimization techniques of 
differential geometry

� Graph cuts methods DO NOT use any surface 
derivatives in their inner workings

• sub-pixel accuracy is unnecessary for graph cuts to work

|| u
t
u ∇⋅=

∂
∂ κe.g. curvature flow equation ⇒⋅= NCt

r
κ

explicit (snakes) implicit (level-sets)
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Integral and differential approaches:

Contour length in differential geometry?

C
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� Limit of finite differences approximation
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Integral and differential approaches:

Contour length in differential geometry?

� This is standard Differential Geometry approach to length
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� Variational optimization gives standard mean curvature flow
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∇⋅=⇒ κ as in level-sets
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Integral and differential approaches:

How do graph cuts evaluate contour length?

� As mentioned earlier, the cost of a cut can approximate geometric 

length of contour C  [Boykov&Kolmogorov, ICCV 2003]

� This result fundamentally relies on ideas of Integral Geometry (also 

known as Probabilistic Geometry) originally developed in 1930’s.

• e.g. Blaschke, Santalo, Gelfand 

∑
∈
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Integral and differential approaches:

Integral geometry approach to length

C π2

0

ρ

φ

∞+

a set of all 
lines L

CL

a subset of lines L
intersecting contour C

∫ ⋅⋅= φρε ddnC L2
1||||Euclidean length of C : 

the number of times
line L intersects C

Cauchy-Crofton formula

probability that a “randomly drown” line intersects C
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Integral and differential approaches:

Graph cuts and integral geometry

C
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graph cut cost 

for edge weights:the number of edges of 
family k intersecting C

Edges of any regular 

neighborhood system 

generate families of lines

{    ,    ,    ,    }

Graph nodes are imbedded

in R2 in a grid-like fashion

Length can be estimated without computing any derivatives
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Differential vs. integral approach to length
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Integral and differential approaches:

Graph cuts and integral geometry

[Kolmogorov&Boykov, ICCV 2005]

[Boykov&Kolmogorov, ICCV 2003]

� In the most general case of directed graphs,                    

a cost of n-links is a linear combination of            

geometric length and flux of a given vector field

while t-links can implement any regional bias

e.g. Riemannian

� Min-cut/max-flow algorithms find globally optimal cut
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integral approach

differential approach

Integral and differential approaches:

From global to local optimization

� In some problems local minima is desirable

• when global minima is a trivial solution

• when a good initial solution is known

• many “shape prior” techniques rely on intermediate 
solutions (Daniel will explain more)

� Level-sets is a variational optimization technique 
computing gradient flow evolution of contours 
converging to a local minima.

� In fact, graph cuts can be also converted into a local 
optimization method.
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set of contours within

small distance       from  Cε

Integral and differential approaches:

Gradient flow of a contour for energy F(C)

� Contour C is a point in the space of all contours

C

space of all contours

C

� Gradient flow evolution implies infinitesimal step 

in the space of contours giving the largest energy 

decrease among all small steps of the same size

C’
C’ - best contour in 

the neighborhood
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Integral and differential approaches:

Differential approach to gradient flow

� Level-sets and other differential methods for 

computing gradient flow of a contour explicitly 

estimate local motion (speed) at each point 

C

|| u
t
u ∇⋅=

∂
∂ κe.g. mean curvature flow

minimizing Euclidean length
N

dt

dC r
⋅= κ

explicit (snakes) implicit (level-sets)

and

Local speed could be 
proportional to 
local curvature

C’
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Integral and differential approaches:

Integral approach to gradient flow

� Discrete and continuous max-flow algorithms can 

“directly” compute an optimal step  C’ in the 

small neighborhood of  C.

set of contours within

small distance       from  Cε

space of all contours

C
C’ - best contour in 

the neighborhood

- integral approach 

to estimating 

contour evolution.

Boykov, Kolmogorov, Cremers, Delong, ECCV ’06 
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Integral and differential approaches:

Measuring distance between contours

� What is a small “neighborhood” of  contour  C ?

� Typically, gradient flow is based on        metric 

in the space of contours

ε≤′− |||| CC

2L

Boykov, Kolmogorov, Cremers, Delong, ECCV ’06 
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Integral and differential approaches:

Measuring       distance between contours

Boykov, Kolmogorov, Cremers, Delong, ECCV ’06 
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Integral and differential approaches:

Integral approach to gradient flow

)(CF

)(min
),(: 0

CF
CCdistC ε=

surface functional   (energy)

gradient flow step from 0C

),()(min 0

2
CCdistCF

C
⋅+ λ unconstrained optimization

with Lagrangian multiplier 

• There is a connection between         and timeλ

Boykov, Kolmogorov, Cremers, Delong, ECCV ’06 

• Penalty for moving away from the current position

- converts global optimization of  F(C) into gradient descent (flow)
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Integral and differential approaches:

Integral approach to gradient flow

Boykov, Kolmogorov, Cremers, Delong, ECCV ’06 
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Integral and differential approaches:

PDE cuts

� A sequence of cuts

� Transition times
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Compute minimum cut for different values of time parameter t

Local minima criteria: ………………….
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Integral and differential approaches:

Gradient flows via discrete graph cuts 

Boykov, Kolmogorov, Cremers, Delong, ECCV ’06 

ε||||)( CCF = Under mean curvature motion any contour should 
converge to a circle before collapsing into a point 

4-grid

8-grid

16-grid
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Integral and differential approaches:

Gradient flows via discrete graph cuts 

Boykov, Kolmogorov, Cremers, Delong, ECCV ’06 

ε||||)( CCF = Under mean curvature motion a point on a contour 
Moves with a speed proportional to local curvature 

NOTE: straight sides of the sausage should not move until 
the sausage collapses into a circle from the top and the bottom

16-grid
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Integral and differential approaches:

Gradient flows via discrete graph cuts 

Boykov, Kolmogorov, Cremers, Delong, ECCV ’06 

Empirical plot for
radius of a circle vs. time

under mean curvature motion

Theoretically,
this plot should be

tconsttr 2)( −=
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Integral and differential approaches:

PDE cuts for image based metric 
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Integral and differential approaches:

Gradient flows via discrete graph cuts 

ε||||)( CCF = mean curvature motion in 3D
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Integral and differential approaches:

Gradient flows via discrete graph cuts 

ε||||)( CCF = mean curvature motion in 3D
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Integral and differential approaches:

Gradient flows via discrete graph cuts 

ε||||)( CCF = mean curvature motion in 3D
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Integral and differential approaches:

Gradient flows via discrete graph cuts 

ε||||)( CCF = mean curvature motion in 3D
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Integral and differential approaches:

Gradient flows via discrete graph cuts 

ε||||)( CCF = mean curvature motion in 3D
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Integral and differential approaches:

Gradient flows via discrete graph cuts 

ε||||)( CCF = mean curvature motion in 3D
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Integral and differential approaches:

Gradient flows via discrete graph cuts 

ε||||)( CCF = mean curvature motion in 3D
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Integral and differential approaches:

Gradient flows via discrete graph cuts 

ε||||)( CCF = mean curvature motion in 3D
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Integral and differential approaches:

Gradient flows via discrete graph cuts 

ε||||)( CCF = mean curvature motion in 3D
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Integral and differential approaches:

Gradient flows via discrete graph cuts 

ε||||)( CCF = mean curvature motion in 3D



European Conference on Computer Vision 2006 :  “Graph Cuts vs. Level Sets”,  Y. Boykov (UWO), D. Cremers (U. of Bonn), V. Kolmogorov (UCL) 

Integral and differential approaches:

Gradient flows via discrete graph cuts 

ε||||)( CCF = mean curvature motion in 3D
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Integral and differential approaches:

Gradient flows via discrete graph cuts 

ε||||)( CCF = mean curvature motion in 3D
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Integral and differential approaches:

Gradient flows via discrete graph cuts 

ε||||)( CCF = mean curvature motion in 3D
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Integral and differential approaches:

Gradient flows via discrete graph cuts 

Boykov, Kolmogorov, Cremers, Delong, ECCV ’06 

16-grid

mean curvature motion
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Integral and differential approaches:

Earlier discrete methods for local optima

� Banded graph cuts  [Xu et al., CVPR 03]

• binary 0-1 metric on the space of contours
– thresholding Hausdorff distance between contours 

• jerky motion

• produces “erosion” in case of the  sausage example 

• r(t) = const-t in case of a collapsing circle example

� DP-snakes [Amini et al., PAMI 1990]

• Explicit boundary representation 
– constrained topology, non-geometric energy 

• Their method gives L1 metric on the space of contours
– this is easy to correct based on insights in [BKCD, ECCV 2006]

• 2D only
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Integral and differential approaches:

PDE cuts, pluses and minuses

� Efficient binary search for dt (reuses residual graph)

• No guessing for choosing time step is required

� No oscillatory motion, guaranteed energy decrease

� Does not need to estimate surface derivatives

� Should reset distance map to better approximate gradient 
flow in L2 metric

� Can not produce arbitrarily small (sub-pixel) motion

� “Frying pan” artifact: small motion may be ignored if 
surface has large variation in curvature
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Integral and differential approaches:

Summary

� Level-sets are based on ideas from differential geometry

• sub-pixel accuracy, estimates derivatives

� Graph cuts use integral geometry to estimate length

• no sub-pixel accuracy, but derivatives are unnecessary

� Level sets compute gradient flow by estimating local 
differential motion (speed) of contour points

• derivatives (e.g curvature) are estimated at every point

� Discrete or continuous max-flow algorithms directly 
estimate integral motion of a contour as a whole.

• no derivatives at contour points are estimated


