Graph-Based Image Segmentation: LOGISMOS

Milan Sonka & The IIBI Team

Iowa Institute for Biomedical Imaging
The University of Iowa, Iowa City, IA, USA

Background

- Computer-aided segmentation of medical images plays a vital role in many biomedical applications
- Main challenges
 - Weak boundaries
 - Large variation
 - Mutual interaction between multiple objects
- Segmentation is the foundation of quantitative image analysis
- Segmentation is needed in 3D, 4D, 5D, …
State of the Art – Clinical

- Medical imaging is everywhere
- Medical image analysis is (almost) nowhere
- Screening success ➔ mainstream
 - Mammography
 - Virtual colonoscopy
 - Ophthalmology
 - Cardiovascular disease (IMT, FMD)
- Diagnostic/Treatment success
 - Cell microscopy for routine lab tests
 - Coronary angiography
- Research must be translated to routine clinical care

State of the Art – Research

- Anatomy/morphology
 - Body is 3D ➔ Analysis must be 3D
- Function
 - Frequently 4D/5D ➔ Analysis still mainly 3D
- Multi-modality imaging
- Imaging is not enough
 ➔ Widely accepted at conferences
 ➔ Not so much by
 - Industry, FDA, physicians
Medical Image Analysis is Challenging

- 3D/4D/5D segmentation tasks
- Abnormal anatomy
- Variable imaging parameters
- Low quality images
- Ambiguous appearance
- Etc.

- Virtually impossible without a priori knowledge
- Context ➔ Highest likelihood/optimality

Optimal Border Detection in 2D

- 2D dynamic programming was a workhorse of Dutch cardiovascular endeavors for decades
- Still used in most QCA packages
- Problem simplifies to design of cost function

- Context-based simultaneous detection of both borders
Dynamic Programming

- Algorithm example
- Vascular ultrasound image analysis
 - Carotid IMT – DEMO

- Context can be represented using graphs
- Optimality can be accomplished by solving a related graph-theoretical problem

→ Context & Graphs & Optimality

Main 3D … nD graph-based approaches

- Graph Cut (incl. multi-region framework) [1]
 - Topologically flexible
 - Interactive initialization
 - Constraints between different regions.
- LOGISMOS – multi-object, multi-surface segmentation using graph search [2,3]
 - No human interaction required
 - (pre-segmentation required)
 - Incorporation of shape prior information
 - Interaction constraints/context between different surfaces and/or objects

3D & 4D – Surfaces

- 3D slice by slice segmentation – 3D context missing (spatial, temporal, both)
- Extension of 2D dynamic programming to 3D
 - Combinatorial explosion
- Optimal surface detection in 3D and above
 - Seemingly NP complete
 - Solutions were missing for decades
 - 2002 – Chen & Wu - single surface graph-based solution in low-order polynomial time and formal proof of optimality

While graph cut is used for optimization, this is NOT Boykov’s graph cut segmentation
Finding Surfaces – Pulmonary Fissures

Retinal Image Analysis – 3D OCT
- macula
Retinal Image Analysis – ONH

MR Images of Knee Joint
MR Images of Knee Joint

RT3DE
LOGISMOS: Layered Optimal Graph Image Segmentation of Multiple Objects and Surfaces

- Single surfaces
- Multiple interacting surfaces
- Cost functions
- Complex and topology-changing surfaces
- Multiple objects and multiple surfaces
- Non-segmentation use – Image Resizing & Stitching

Just Enough Interaction

- Robustness in clinical-quality images
- Close-to 100% success rate – Just Enough Interaction (JEI) paradigm.
- JEI paradigm inherently tied to LOGISMOS
- Highly efficient minimal (just-enough) user interaction to refine automated segmentation
- Clinically acceptable results obtained with no or only small increase in human analyst effort
- Pulmonary and IVUS case studies
Specific Translational Research
Applications of LOGISMOS

- **Ophthalmology**
 - SEADs
 - Multi-field segmentation

- **Cardiovascular imaging**
 - IVUS
 - Aorta – DEMO
 - LV/RV

- **Brain**
 - Humans
 - Rats

- **Cancer**
 - Tumors
 - Lymph nodes

- **Etc.**

More Context, Shape Priors

- **Regional Priors**
 \[E = \frac{E_{gs}}{E_{region}} \]

- **Surface-Region segmentation**
 with context constraints
 \[E = E_{gs} + E_{gc} + E_{context} \]

- **Shape & Context priors** for multi-surface segmentation
 \[E = E_{gs} + E_{shape} + E_{context} \]

- **Co-segmentation** of multi-modality data with **mutual context**
 \[E = E_{CT} + E_{PET} + E_{context} \]
Priors …

Regional Priors

Surface-Region context

Shape & Context priors

Graph-based framework

Globally optimal image segmentation

Co-segmentation with mutual context

Conclusion

- A low-order polynomial-time algorithm for detecting multiple interacting optimal surfaces for multiple objects
- Optimality achieved with respect to cost function(s), smoothness constraints, mutual surface relationship constraints, mutual object-relationship constraints
- Many nice properties:
 - Complexity-bound is independent of the smoothness constraints
 - Solves the circular connectivity criterion of cylindrical surfaces with no performance penalty
 - Directly extendible to n-D
Conclusion

- Novel graph-based approaches for multi-object – multi-surface segmentation
- Incorporation of
 - Regional information
 - Shape priors
 - Context
 - Surface to surface
 - Object to object
 - Modality to modality
- Globally optimal solution obtained in low-order polynomial time via single maximum flow
- Performance improvement demonstrated in numerous applications

This is a TEAM Work

- Faculty at Iowa
 - Xiaodong Wu
 - Michael Abramoff
 - Mona Garvin
 - Andreas Wahle
 - Reinhard Beichel
- Notre Dame/UWO
 - Danny Chen
 - Yuri Boykov
- Collaborator
 - Xiangmin Zhang

- Researchers
 - Kang Li
 - Kyungmoo Lee
 - Xiaomin Liu
 - Qi Song
 - Xin Dou
 - Yin Yin
 - Fei Zhao
 - Honghai Zhang
 - Dongfeng Han
 - Shanhui Sun
 - Li Zhang
 - Zhi Chen
 - Ling Zhang
 - Hrvoje Bogunovic
 - Ipek Oguz
 - Kashyap Satyananda

- R01-EB004640, R01-EY018853, R01-HL064368, R21-AR054015, R01-EY019112, R01-HL063373,...