
CS3350B Computer Organization
Introduction

Alex Brandt

Department of Computer Science
University of Western Ontario, Canada

Tuesday January 8, 2019

Alex Brandt CS3350B Computer Organization Introduction Tuesday January 8, 2019 1 / 28

Outline

1 Highlights of Hardware History

2 Modern Computer Architectures

3 System and Hardware Abstractions

Alex Brandt CS3350B Computer Organization Introduction Tuesday January 8, 2019 2 / 28

Konrad Zuse’s Z3 electro-mechanical computer (1941, Germany). Turing
complete, though conditional jumps were missing.
Alex Brandt CS3350B Computer Organization Introduction Tuesday January 8, 2019 3 / 28

Colossus (UK, 1941) was the world’s first totally electronic programmable
computing device. But not Turing complete.

Alex Brandt CS3350B Computer Organization Introduction Tuesday January 8, 2019 4 / 28

Harvard Mark I – IBM ASCC (1944, US). Electro-mechanical computer.
No conditional jumps and not Turing complete. It could store 72 numbers,
each 23 decimal digits long. It could do three additions or subtractions in
a second. A multiplication took six seconds, a division took 15.3 seconds,
and a logarithm or a trigonometric function took over one minute.

Alex Brandt CS3350B Computer Organization Introduction Tuesday January 8, 2019 5 / 28

Electronic Numerical Integrator And Computer (ENIAC, 1945). The first
general-purpose, electronic computer. It was a Turing-complete, digital
computer capable of being reprogrammed and was running at 5,000 cycles
per second for operations on the 10-digit numbers.
Alex Brandt CS3350B Computer Organization Introduction Tuesday January 8, 2019 6 / 28

The IBM Personal Computer (IBM PC) (Introduced on August 12, 1981).

Alex Brandt CS3350B Computer Organization Introduction Tuesday January 8, 2019 7 / 28

Outline

1 Highlights of Hardware History

2 Modern Computer Architectures

3 System and Hardware Abstractions

Alex Brandt CS3350B Computer Organization Introduction Tuesday January 8, 2019 8 / 28

Von Neumann Architecture

The Von Neumann architecture saw a shared memory for instructions and
data. Modern computers, especially w.r.t what software “sees”, use his
model.

Alex Brandt CS3350B Computer Organization Introduction Tuesday January 8, 2019 9 / 28

Multi-core Architecture

Core Core Core Core

L1
inst

L1
data

L1
ins

L1
data

L1
ins

L1
data

L1
ins

L1
data

L2 L2

Main Memory

Modern multi-core processors see a varying hierarchy of independent and
shared memories.

Alex Brandt CS3350B Computer Organization Introduction Tuesday January 8, 2019 10 / 28

Memory Hierarchy

Alex Brandt CS3350B Computer Organization Introduction Tuesday January 8, 2019 11 / 28

Cache Memory Statistics

L1 Data Cache
Size Line Size Latency Associativty
32 KB 64 bytes 3 cycles 8‐way32 KB 64 bytes 3 cycles 8‐way

L1 Instruction Cache
Size Line Size Latency Associativty
32 KB 64 bytes 3 cycles 8‐way

L2 CacheL2 Cache
Size Line Size Latency Associativty
6 MB 64 bytes 14 cycles 24‐way

Typical cache specifications of a multicore in 2008.

Alex Brandt CS3350B Computer Organization Introduction Tuesday January 8, 2019 12 / 28

The Processor-Memory Gap is a key contributor to the Memory Wall –
the point where a program’s performance is totally determined by memory
speed. Faster processors will not make programs run faster!

Alex Brandt CS3350B Computer Organization Introduction Tuesday January 8, 2019 13 / 28

Outline

1 Highlights of Hardware History

2 Modern Computer Architectures

3 System and Hardware Abstractions

Alex Brandt CS3350B Computer Organization Introduction Tuesday January 8, 2019 14 / 28

Components of a computer

Same components for all kinds of computer
ë desktop, server, supercomputer, embedded

Alex Brandt CS3350B Computer Organization Introduction Tuesday January 8, 2019 15 / 28

Layers of Software

Application software
ë Written in a high-level language (HLL)
ë Javascript, Python, Java.

System software
ë Compiler: translates HLL code to

machine code
ë Operating system: service code

Handling input/output
Managing memory and storage
Scheduling tasks & sharing
resources

Hardware
ë Processor, memory, I/O controllers

Alex Brandt CS3350B Computer Organization Introduction Tuesday January 8, 2019 16 / 28

Levels of Program Code

High-level language
ë Level of abstraction closer to

problem domain
ë Provides productivity and

portability
Assembly language

ë Textual representation of
machine instructions

Hardware representation
ë Binary encoding of

instructions and data

Alex Brandt CS3350B Computer Organization Introduction Tuesday January 8, 2019 17 / 28

Layers of Abstraction in Computer Systems

After a brief look at processors and memory, we will start down at circuit
design and build up to ISA.

Alex Brandt CS3350B Computer Organization Introduction Tuesday January 8, 2019 18 / 28

Complicated Systems are Inevitable

Think economic specialization.

Each layer is separate and can be optimized independently in the pursuit
of performance.

Eight great ideas in computer architecture (Patterson)
1 Use abstraction to simplify design
2 Design for Moore’s Law
3 Make the common case fast
4 Performance via parallelism
5 Performance via pipelining
6 Performance via prediction
7 Hierarchy of memories
8 Dependability via redundancy

Alex Brandt CS3350B Computer Organization Introduction Tuesday January 8, 2019 19 / 28

Great Idea #1: Abstraction

temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

lw $t0, 0($2)
lw $t1, 4($2)
sw $t1, 0($2)
sw $t0, 4($2)

Anything can be represented as a

number, i.e., data or instructions

0000 1001 1100 0110 1010 1111 0101 1000
1010 1111 0101 1000 0000 1001 1100 0110
1100 0110 1010 1111 0101 1000 0000 1001
0101 1000 0000 1001 1100 0110 1010 1111

Alex Brandt CS3350B Computer Organization Introduction Tuesday January 8, 2019 20 / 28

Great idea #2: Design for Moore’s Law

Alex Brandt CS3350B Computer Organization Introduction Tuesday January 8, 2019 21 / 28

Great idea #4: Performance via Parallelism

Parallelism can be used to tackle the processor-memory gap.

Alex Brandt CS3350B Computer Organization Introduction Tuesday January 8, 2019 22 / 28

Great idea #5: Performance via Pipelining

Alex Brandt CS3350B Computer Organization Introduction Tuesday January 8, 2019 23 / 28

Great idea #7: Memory Hierarchy (Principle of Locality)

Alex Brandt CS3350B Computer Organization Introduction Tuesday January 8, 2019 24 / 28

Great Idea #8: Dependability via Redundancy

Redundancy so that a failing piece doesn’t make the whole system fail

Increasing transistor density reduces the cost of redundancy

Alex Brandt CS3350B Computer Organization Introduction Tuesday January 8, 2019 25 / 28

Great Idea #8: Dependability via redundancy

Applies to everything from physical hardware components to the data
encoded in binary.

Redundant data centers so that can lose 1 datacenter but Internet
service stays online
Redundant disks so that can lose 1 disk but not lose data
(Redundant Arrays of Independent Disks/RAID)
Redundant memory bits of so that can lose 1 bit but no data (Error
Correcting Code/ECC Memory)

Alex Brandt CS3350B Computer Organization Introduction Tuesday January 8, 2019 26 / 28

In This Course...

Check the syllabus!

Course topics
Evaluation
Schedule
Textbook (recommended, not required)
Missed quiz policies
TAs, Office hours

Check OWL for continued updates and announcements. It’s your fault if
you miss something that was announced.

Alex Brandt CS3350B Computer Organization Introduction Tuesday January 8, 2019 27 / 28

Acknowledgements

The lecture slides of this course are adapted from previous years’ slides by
Marc Moreno Maza which in turn have been adapted from text book
accompaniments and teaching materials posted on the internet by other
Computer Architecture instructors.

Alex Brandt CS3350B Computer Organization Introduction Tuesday January 8, 2019 28 / 28

CS3350B Computer Organization
Chapter 1: CPU and Memory

Part 1: The CPU

Alex Brandt

Department of Computer Science
University of Western Ontario, Canada

Thursday January 10, 2019

Alex Brandt Chapter 1: CPU and Memory, Part 1: The CPU Thursday January 10, 2019 1 / 34

Outline

1 The Basics

2 Clock Cycles per Instruction (CPI)

3 Power, Trends, Limitations

4 Benchmarks and Profiling

Alex Brandt Chapter 1: CPU and Memory, Part 1: The CPU Thursday January 10, 2019 2 / 34

Components of a computer

Micro-architecture: the internals of a CPU (control and datapath) will
come later in the course. For now, we look at the CPU as a whole.

CPU and memory are highly coupled, especially when we look at
performance. This will be seen by the end of this chapter.

Alex Brandt Chapter 1: CPU and Memory, Part 1: The CPU Thursday January 10, 2019 3 / 34

Programmer’s View of CPU Performance

At a basic level, the running time of some program on a CPU is
determined by:

The clock rate of the CPU (e.g. 3.4 GHz),
The type of instructions being performed,

ë Addition/Subtraction faster than Multiplication/Division, etc.
ë Affects the average clock cycles per instruction (CPI)

Memory access time.
ë Recall processor-memory gap

Assuming CPU clock rate is fixed, programmers can influence program
performance by changing the type of instructions they use as well as how
their code accesses memory.

Alex Brandt Chapter 1: CPU and Memory, Part 1: The CPU Thursday January 10, 2019 4 / 34

Aside: Changing Instructions for Performance
On 6th-generation Intel CPUs

32-bit integer division ∼26 clock cycles vs. logical bit shift ∼1 clock
cycle

ë int i = 1234567; i /= 2;
ë int i = 1234567; i >>= 1;

Floating point division ∼14 clock cycles vs. multiplication ∼5 clock
cycles

ë float x = 1.2f; x /= 2.0f;
ë float x = 1.2f; x *= 0.5f;

Fast Inverse Square Root thanks to Quake:
https://en.wikipedia.org/wiki/Fast_inverse_square_root

Alex Brandt Chapter 1: CPU and Memory, Part 1: The CPU Thursday January 10, 2019 5 / 34

Understanding and Analyzing Performance

Algorithmic analysis: Estimating the complexity of algorithms in
some abstract, idealized way. In reality, two different 𝑂(𝑛2)
algorithms can have wildly different running times.
Programming language, compiler, architecture:

ë Programming language and corresponding compiler determine the
actual machine instructions the CPU will perform.

ë Resulting number and type of machine instructions vary by compiler
and language and therefore resulting performance varies.

Processor and Memory: Determines how fast instructions are
executed and how fast data moves to and from the processor.
I/O system (including OS): Determines how fast I/O operations
are executed

Alex Brandt Chapter 1: CPU and Memory, Part 1: The CPU Thursday January 10, 2019 6 / 34

Need for Performance Metrics

Purchasing Perspective. For a collection of machine which one has
the

ë “best” cost?
ë “best” cost relative to performance?

Design perspective. Given many design options and directions which
one has the

ë “best” performance improvement?
ë “best” cost relative to performance improvement?

In either case we need: (i) a basis for comparison, (ii) metrics for
evaluation.

Our goal is to understand what factors in the architecture contribute to
the overall system performance and the relative importance (and cost) of
these factors.

Alex Brandt Chapter 1: CPU and Memory, Part 1: The CPU Thursday January 10, 2019 7 / 34

CPU Performance: Latency
CPU performance is largely measured by latency, throughput, clock
frequency.

Want reduced response time (aka execution time, aka latency) – the
time between the start and the completion of a task.

- Important to general PC users.
To maximize performance of some code segment (program) 𝑋, we
need to minimize execution time.

performance𝑋 = 1⇑execution_time𝑋

If 𝑋 is n times faster than 𝑌 , then
performance𝑋

performance𝑌

= execution_time𝑌

execution_time𝑋

= 𝑛

Note: Can also compare latency of the same single instruction on
different CPUs.

Alex Brandt Chapter 1: CPU and Memory, Part 1: The CPU Thursday January 10, 2019 8 / 34

CPU Performance: Throughput

Want increased throughput - the total amount of work done in a
given unit of time.

- Important to users like data center managers.

Again, throughput depends on the code segment being executed.
Different instructions result in different throughput measures.

Decreasing response time usually improves throughput, but other
factors are important (task scheduling, memory bandwidth, etc.).

Alex Brandt Chapter 1: CPU and Memory, Part 1: The CPU Thursday January 10, 2019 9 / 34

CPU Performance: Clock Frequency

Clock Frequency is a code-agnostic measure of CPU performance.
Typically, a faster clock (higher frequency) yields a higher performing
CPU.

But the micro-architecture and the instruction set architecture play a
large role.

ë They influence how much work the CPU does per cycle (i.e. efficiency)

Example:
CPU 𝐴 runs at 3 GHz and a division takes 20 cycles.
CPU 𝐵 runs at 2 GHz and a division takes 10 cycles.

20 cycles ⇑ 3 𝐺𝐻𝑧 = 20 ⇑ 3000000000 𝐻𝑧 = 6.66𝑛𝑠

10 cycles ⇑ 2 𝐺𝐻𝑧 = 10 ⇑ 2000000000 𝐻𝑧 = 5.00𝑛𝑠

Alex Brandt Chapter 1: CPU and Memory, Part 1: The CPU Thursday January 10, 2019 10 / 34

CPU Clocking

Synchronous digital systems (e.g. a CPU) are governed and controlled by
a clock. This clock synchronizes internal circuits, memory states, and data
movement.

Length of clock period determined by internal circuits and
micro-architecture design. We will look at this with CPU datapaths and
pipelining.

Alex Brandt Chapter 1: CPU and Memory, Part 1: The CPU Thursday January 10, 2019 11 / 34

CPU Clocking

Clock period (cycle): duration of a clock cycle (CC)
determines the speed of a computer processor
Caveat: again, not necessarily latency or throughput though
e.g., 250ps = 0.25ns = 250 × 10−12𝑠

Clock frequency or rate (CR): cycles per second
the inverse of the clock period
e.g., 3.0GHz = 3000MHz = 3.0 × 109Hz

CR = 1 / CC.

Alex Brandt Chapter 1: CPU and Memory, Part 1: The CPU Thursday January 10, 2019 12 / 34

CPU Time

It is important to distinguish elapsed time and the time spent on your
task.

ë Wall time vs. CPU time

ë CPU time does not include time waiting for I/O or time spent on other
processes

CPU execution time = #CPU clock cycles × clock − cycle
for a program for a program

or

CPU execution time = #CPU clock cycles ⇑ clock − rate
for a program for a program

We can improve performance by reducing either the length of the
clock cycle or the number of clock cycles required for a program.

Alex Brandt Chapter 1: CPU and Memory, Part 1: The CPU Thursday January 10, 2019 13 / 34

Outline

1 The Basics

2 Clock Cycles per Instruction (CPI)

3 Power, Trends, Limitations

4 Benchmarks and Profiling

Alex Brandt Chapter 1: CPU and Memory, Part 1: The CPU Thursday January 10, 2019 14 / 34

Instruction Performance

#CPU clock cycles = #Instructions × Average # of clock cycles
for a program for a program per instruction

Clock cycles per instruction (CPI) - the average number of clock
cycles each instruction takes to execute.

ë Different instructions may take different amounts of time depending on
what they do.

ë A way to compare two different implementations of the same ISA.
ë Calculated by a simple averaging of each instruction type in a program

and their corresponding number of cycles.

Alex Brandt Chapter 1: CPU and Memory, Part 1: The CPU Thursday January 10, 2019 15 / 34

The Classic Performance Equation
CPU time = Instruction_count ×CPI × clock_cycle

or
CPU time = Instruction_count ×CPI ⇑ clock_rate

Keep in mind that the only complete and reliable measure of
computer performance is time.

For example, redesigning the hardware implementation of an
instruction set to lower the instruction count may lead to an
organization with

ë a slower clock cycle time or,
ë higher CPI,

that offsets the improvement in instruction count.

Note: CPI depends on the type of instruction executed, so the code
which executes the fewest instructions may not be the fastest.

Alex Brandt Chapter 1: CPU and Memory, Part 1: The CPU Thursday January 10, 2019 16 / 34

A Simple Example (1/2)

Overall effective CPI = 𝑛∑
𝑖=1(CPI𝑖 × IC𝑖)

Op Freq CPI𝑖 Freq × CPI𝑖 (1)
ALU 50% 1 .5 .5
Load 20% 5 1.0

.4

Store 10% 3 .3 .3
Branch 20% 2 .4 .4∑ = 2.2

1.6

(1) How much faster would the machine be if a better data cache
reduced the average load time to 2 cycles?

CPU time new = 1.6 × IC × CC; so 2.2 versus 1.6 which means
37.5% faster

Alex Brandt Chapter 1: CPU and Memory, Part 1: The CPU Thursday January 10, 2019 17 / 34

A Simple Example (1/2)

Overall effective CPI = 𝑛∑
𝑖=1(CPI𝑖 × IC𝑖)

Op Freq CPI𝑖 Freq × CPI𝑖 (1)
ALU 50% 1 .5 .5
Load 20% 5 1.0 .4
Store 10% 3 .3 .3

Branch 20% 2 .4 .4∑ = 2.2 1.6

(1) How much faster would the machine be if a better data cache
reduced the average load time to 2 cycles?
CPU time new = 1.6 × IC × CC; so 2.2 versus 1.6 which means
37.5% faster

Alex Brandt Chapter 1: CPU and Memory, Part 1: The CPU Thursday January 10, 2019 17 / 34

A Simple Example (2/2)

Overall effective CPI = 𝑛∑
𝑖=1(CPI𝑖 × IC𝑖)

Op Freq CPI𝑖 Freq × CPI𝑖 (2) (3)
ALU 50% 1 .5 .5

.25

Load 20% 5 1.0 1.0 1.0
Store 10% 3 .3 .3 .3

Branch 20% 2 .4

.2

.4∑ = 2.2

2.0 1.95

(2) How does this CPI compare with using branch prediction to save a
cycle off the branch time?

CPU time new = 2.0 × IC × CC so 2.2 versus 2.0 means 10% faster

(3) What if two ALU instructions could be executed at once?

CPU time new = 1.95 × IC × CC so 2.2 versus 1.95 means 12.8%
faster

Alex Brandt Chapter 1: CPU and Memory, Part 1: The CPU Thursday January 10, 2019 18 / 34

A Simple Example (2/2)

Overall effective CPI = 𝑛∑
𝑖=1(CPI𝑖 × IC𝑖)

Op Freq CPI𝑖 Freq × CPI𝑖 (2) (3)
ALU 50% 1 .5 .5

.25

Load 20% 5 1.0 1.0 1.0
Store 10% 3 .3 .3 .3

Branch 20% 2 .4 .2 .4∑ = 2.2 2.0

1.95

(2) How does this CPI compare with using branch prediction to save a
cycle off the branch time?
CPU time new = 2.0 × IC × CC so 2.2 versus 2.0 means 10% faster

(3) What if two ALU instructions could be executed at once?

CPU time new = 1.95 × IC × CC so 2.2 versus 1.95 means 12.8%
faster

Alex Brandt Chapter 1: CPU and Memory, Part 1: The CPU Thursday January 10, 2019 18 / 34

A Simple Example (2/2)

Overall effective CPI = 𝑛∑
𝑖=1(CPI𝑖 × IC𝑖)

Op Freq CPI𝑖 Freq × CPI𝑖 (2) (3)
ALU 50% 1 .5 .5 .25
Load 20% 5 1.0 1.0 1.0
Store 10% 3 .3 .3 .3

Branch 20% 2 .4 .2 .4∑ = 2.2 2.0 1.95

(2) How does this CPI compare with using branch prediction to save a
cycle off the branch time?
CPU time new = 2.0 × IC × CC so 2.2 versus 2.0 means 10% faster

(3) What if two ALU instructions could be executed at once?
CPU time new = 1.95 × IC × CC so 2.2 versus 1.95 means 12.8%
faster

Alex Brandt Chapter 1: CPU and Memory, Part 1: The CPU Thursday January 10, 2019 18 / 34

Understanding Program Performance

CPU Time = Instruction_count ×CPI × clock_cycle

CPU Time = Instructions
Program

× Clock cycles
Instruction

× Seconds
Clock cycle

The performance of a program depends on the algorithm, the
language, the compiler, the architecture, and the actual hardware.

Instruction_count CPI clock_cycle
Algorithm X X
Programming language X X
Compiler X X
ISA X X X
Processor organization X X

Alex Brandt Chapter 1: CPU and Memory, Part 1: The CPU Thursday January 10, 2019 19 / 34

Check Yourself
A given application written in Java runs 15 seconds on a desktop
processor. A new Java compiler is released that requires only 0.6 as many
instructions as the old compiler. Unfortunately, it increases the CPI by 1.1.
How fast can we expect the application to run using this new compiler?
Pick the right answer from the three choices below:

a. 15×0.6
1.1 = 8.2 sec

b. 15 × 0.6 × 1.1 = 9.9 sec
c. 15×1.1

0.6 = 27.5 sec

b!
𝑇𝑖𝑚𝑒1 = 𝐼𝐶1 ×𝐶𝑃𝐼1 ×𝐶𝐶1

𝑇𝑖𝑚𝑒2 = 𝐼𝐶2 ×𝐶𝑃𝐼2 ×𝐶𝐶2= (𝐼𝐶1 × 0.6) × (𝐶𝑃𝐼1 × 1.1) ×𝐶𝐶1= 𝑇𝑖𝑚𝑒1 × 0.6 × 1.1= 15 × 0.6 × 1.1 = 9.9

Alex Brandt Chapter 1: CPU and Memory, Part 1: The CPU Thursday January 10, 2019 20 / 34

Check Yourself
A given application written in Java runs 15 seconds on a desktop
processor. A new Java compiler is released that requires only 0.6 as many
instructions as the old compiler. Unfortunately, it increases the CPI by 1.1.
How fast can we expect the application to run using this new compiler?
Pick the right answer from the three choices below:

a. 15×0.6
1.1 = 8.2 sec

b. 15 × 0.6 × 1.1 = 9.9 sec
c. 15×1.1

0.6 = 27.5 sec

b!
𝑇𝑖𝑚𝑒1 = 𝐼𝐶1 ×𝐶𝑃𝐼1 ×𝐶𝐶1

𝑇𝑖𝑚𝑒2 = 𝐼𝐶2 ×𝐶𝑃𝐼2 ×𝐶𝐶2= (𝐼𝐶1 × 0.6) × (𝐶𝑃𝐼1 × 1.1) ×𝐶𝐶1= 𝑇𝑖𝑚𝑒1 × 0.6 × 1.1= 15 × 0.6 × 1.1 = 9.9

Alex Brandt Chapter 1: CPU and Memory, Part 1: The CPU Thursday January 10, 2019 20 / 34

Outline

1 The Basics

2 Clock Cycles per Instruction (CPI)

3 Power, Trends, Limitations

4 Benchmarks and Profiling

Alex Brandt Chapter 1: CPU and Memory, Part 1: The CPU Thursday January 10, 2019 21 / 34

CPU Power Usage

Depending on an architect’s design goals they may want to look at metrics
different from latency, throughput, time, or clock frequency.

Power Usage Ô⇒ Temperature
Power Usage Ô⇒ Battery Life

Ultrabooks are so (not) hot right now

Alex Brandt Chapter 1: CPU and Memory, Part 1: The CPU Thursday January 10, 2019 22 / 34

Power Trends

Complementary metal oxide semiconductor (CMOS) integrated circuits,
the technology which implements the physical circuity inside modern
CPUs, has a (simplified) power equation:

Power = Capacitive load × Voltage2 × Frequency switched(×30) (5𝑉 → 1𝑉) (×1000)
Alex Brandt Chapter 1: CPU and Memory, Part 1: The CPU Thursday January 10, 2019 23 / 34

Reducing Power

Suppose a new CPU has
ë 85% of capacitive load of old CPU
ë 15% voltage and 15% frequency reduction

Pnew
Pold

= Cold × 0.85 × (Vold × 0.85)2 × Fold × 0.85
Cold ×V2

old × Fold
= 0.854 = 0.52

The Power Wall
ë Decreasing transistor size Ô⇒ more transistors per chip Ô⇒ greater

power density
ë Required input voltage may decrease but more transistors use more

power.
ë Reducing voltage further very difficulty.
ë Removing extra heat very difficult.

Alex Brandt Chapter 1: CPU and Memory, Part 1: The CPU Thursday January 10, 2019 24 / 34

CPU Performance: Relative Performance vs VAX-11

Alex Brandt Chapter 1: CPU and Memory, Part 1: The CPU Thursday January 10, 2019 25 / 34

Multi-Processors to the Rescue

Moore’s Law failing? Great idea #4: Performance via Parallelism.

Multi-core processors!
ë More than one processor per chip
ë Huge benefits to OS and multiple processes.

Within a single process requires explicit parallel programming
ë Compared with instruction level parallelism:

- Hardware executes multiple instructions at once (pipelining/multi-issue)
- Hidden from the programmer

ë Hard to do:
- Programming for performance
- Thread management, Load Balancing
- Optimizing communication and synchronization

Alex Brandt Chapter 1: CPU and Memory, Part 1: The CPU Thursday January 10, 2019 26 / 34

Outline

1 The Basics

2 Clock Cycles per Instruction (CPI)

3 Power, Trends, Limitations

4 Benchmarks and Profiling

Alex Brandt Chapter 1: CPU and Memory, Part 1: The CPU Thursday January 10, 2019 27 / 34

SPEC CPU Benchmark

Programs used to measure performance
ë Supposedly typical of actual workload

Standard Performance Evaluation Corp (SPEC)
ë Develops benchmarks for CPU, I/O, Web, ...

SPEC CPU2006
ë Elapsed time to execute a selection of programs

- Negligible I/O, so focuses on CPU performance
ë Normalize relative to reference machine
ë Summarize as geometric mean of performance ratios

- CINT2006 (integer) and CFP2006 (floating-point)

𝑛

⟨⧸︂⧸︂⟩ 𝑛∏
𝑖=1 Execution time ratio𝑖

Alex Brandt Chapter 1: CPU and Memory, Part 1: The CPU Thursday January 10, 2019 28 / 34

CINT2006 for Intel Core i7 920

Alex Brandt Chapter 1: CPU and Memory, Part 1: The CPU Thursday January 10, 2019 29 / 34

Profiling Tools
Many profiling tools

ë gprof (static instrumentation)
ë cachegrind, Dtrace (dynamic instrumentation)
ë perf (performance counters)

perf in linux-tools, based on event sampling
ë Keep a list of where “interesting events” (cycle, cache miss, etc)

happen
ë CPU Feature: Counters for hundreds of events

- Performance: Cache misses, branch misses, instructions per cycle, ...
ë Intel®64 and IA-32 Architectures Software Developer’s Manual:

Appendix A lists all counters http:
//www.intel.com/products/processor/manuals/index.html

ë perf user guide:
https://perf.wiki.kernel.org/index.php/Tutorial

Alex Brandt Chapter 1: CPU and Memory, Part 1: The CPU Thursday January 10, 2019 30 / 34

Exercise 1
void copymatrix1(int** src,

int** dst, int n) {
int i,j;
for (i = 0; i < n; i++)

for (j = 0; j < n; j++)
dst[i][j] = src[i][j];

}

void copymatrix2(int** src,
int** dst, int n) {

int i,j;
for (j = 0; j < n; j++)

for (i = 0; i < n; i++)
dst[i][j] = src[i][j];

}

copymatrix1 vs copymatrix2
ë What do they do?
ë What is the difference?
ë Which one performs better? Why?

perf stat -e cycles -e cache-misses ./copymatrix1
perf stat -e cycles -e cache-misses ./copymatrix2

ë What does the output like?
ë How to interpret it?
ë Which program performs better?

Alex Brandt Chapter 1: CPU and Memory, Part 1: The CPU Thursday January 10, 2019 31 / 34

Exercise 1: Results

Alex Brandt Chapter 1: CPU and Memory, Part 1: The CPU Thursday January 10, 2019 32 / 34

Exercise 2
void lower1 (char* s) {

int i;
for (i = 0; i < strlen(s); i++)

if (s[i]>=’A’ && s[i]<=’Z’)
s[i] -= ’A’-’a’;

}

void lower2 (char* s) {
int i;
int n = strlen(s);
for (i = 0; i < n; i++)

if (s[i]>=’A’ && s[i]<=’Z’)
s[i] -= ’A’-’a’;

}

lower1 vs lower2
ë What do they do?
ë What is the difference?
ë Which one performs better? Why?

perf stat -e cycles -e cache-misses ./lower1
perf stat -e cycles -e cache-misses ./lower2

ë What does the output like?
ë How to interpret it?
ë Which program performs better?

Alex Brandt Chapter 1: CPU and Memory, Part 1: The CPU Thursday January 10, 2019 33 / 34

Exercise 2: Results

Alex Brandt Chapter 1: CPU and Memory, Part 1: The CPU Thursday January 10, 2019 34 / 34

CS3350B Computer Organization
Chapter 1: CPU and Memory

Part 2: The Memory Hierarchy

Alex Brandt

Department of Computer Science
University of Western Ontario, Canada

Tuesday January 15, 2019

Alex Brandt Chapter 1: CPU and Memory, Part 2: The Memory Hierarchy Tuesday January 15, 2019 1 / 52

Recap: CPU Time

CPU Time = Instruction_count ×CPI × clock_cycle

Instruction_count CPI clock_cycle
Algorithm X X
Programming language X X
Compiler X X
ISA X X X
Processor organization X X

From a programmer’s point of view CPU performance depends on:
CPU Frequency
The type of instructions performed
Memory access time

Alex Brandt Chapter 1: CPU and Memory, Part 2: The Memory Hierarchy Tuesday January 15, 2019 2 / 52

Recap: Processor-Memory Gap

The Processor-Memory Gap is a key contributor to the Memory Wall –
the point where a program’s performance is totally determined by memory
speed. Faster processors will not make programs run faster!

Alex Brandt Chapter 1: CPU and Memory, Part 2: The Memory Hierarchy Tuesday January 15, 2019 3 / 52

Recap: Memory Wall Example

void copymatrix1(int** src,
int** dst, int n) {

int i,j;
for (i = 0; i < n; i++)

for (j = 0; j < n; j++)
dst[i][j] = src[i][j];

}

void copymatrix2(int** src,
int** dst, int n) {

int i,j;
for (j = 0; j < n; j++)

for (i = 0; i < n; i++)
dst[i][j] = src[i][j];

}

Cache misses are the reason for the performance drop.

Alex Brandt Chapter 1: CPU and Memory, Part 2: The Memory Hierarchy Tuesday January 15, 2019 4 / 52

Outline

1 History, Trends, and Basics

2 The Principle of Locality

3 The Cache Hierarchy

4 Cache and Memory Performance

5 Locality and Cache

Alex Brandt Chapter 1: CPU and Memory, Part 2: The Memory Hierarchy Tuesday January 15, 2019 5 / 52

Von Neumann Architecture

A simple shared memory for both instructions and data.
From a software’s point of view this model is still very much true.
Hardware takes care of all of the sophistication.

Alex Brandt Chapter 1: CPU and Memory, Part 2: The Memory Hierarchy Tuesday January 15, 2019 6 / 52

Before the Hierarchy

In the 1950s, 60s, and 70s, software development was mostly
mathematical and scientific.

The heyday of FORTRAN.
Computing resources were very limited.

ë As late as the 1980s memory was only 64 megabytes.
Algorithm development focused on minimizing amount of memory a
program used in order to solve larger problems.

ë Sparse mathematics, linear algebra, symbolic computations.
ë Minimizing storage of numerical types: char/INT1 (1 byte),

short/INT2 (2 bytes), int/INT4 (4 bytes), . . .

Alex Brandt Chapter 1: CPU and Memory, Part 2: The Memory Hierarchy Tuesday January 15, 2019 7 / 52

Current Memory Resources

Historically, programmers where concerned with how much memory
was used.

ë Speeds of processor and memory were about the same.
ë Memory access time was roughly same as arithmetic time.

Today, we are for more concerned with how memory is used.

Memory size is no longer limiting factor:
ë Simple laptops Ô⇒ up to 64 gigabytes.
ë Compute clusters Ô⇒ hundreds of gigabytes per processor.

Memory Wall (memory speed) is now the limiting factor.

Memory Hierarchy introduced to tackle Memory Wall and limit the
effects of the Processor-Memory Gap.

Alex Brandt Chapter 1: CPU and Memory, Part 2: The Memory Hierarchy Tuesday January 15, 2019 8 / 52

The Memory Wall

Processor vs DRAM speed disparity continues to grow
Notice log scale!

Hennessy & Patterson, Computer Architecture: A Quantitative Approach

Alex Brandt Chapter 1: CPU and Memory, Part 2: The Memory Hierarchy Tuesday January 15, 2019 9 / 52

Components of a Computer: Memory

At first, cache was a single, simple entity. Around the 1990s multi-level
caches began.

Alex Brandt Chapter 1: CPU and Memory, Part 2: The Memory Hierarchy Tuesday January 15, 2019 10 / 52

Memory Hierarchy

Alex Brandt Chapter 1: CPU and Memory, Part 2: The Memory Hierarchy Tuesday January 15, 2019 11 / 52

But Why a Hierarchy?

Enduring properties of hardware and software:
Fast storage technologies (SRAM) cost more per byte.
Fast storage technologies take up more physical space per byte.
Gap between CPU and main memory (DRAM) speed is widening.
Principle of Locality.

Whole sections of memory are copied from lower levels of hierarchy to
higher levels.

Assuming locality, this transfer is done infrequently and computations
can occur continuously by only referencing data high in the hierarchy.

Alex Brandt Chapter 1: CPU and Memory, Part 2: The Memory Hierarchy Tuesday January 15, 2019 12 / 52

Outline

1 History, Trends, and Basics

2 The Principle of Locality

3 The Cache Hierarchy

4 Cache and Memory Performance

5 Locality and Cache

Alex Brandt Chapter 1: CPU and Memory, Part 2: The Memory Hierarchy Tuesday January 15, 2019 13 / 52

The Principle of Locality

“Programs tend to reuse data and instructions they have recently used.”
ë Hennessy and Patterson, Computer Architecture.

During a short time range, a program is likely to access only a relatively
small portion of:

available address space,
available program code.

This principle is a driving factor in computer architecture and design.
Always in an effort to improve performance.
Locality directs hardware design. If your program breaks this principle
then it will not use the hardware properly.

Alex Brandt Chapter 1: CPU and Memory, Part 2: The Memory Hierarchy Tuesday January 15, 2019 14 / 52

Locality in Time and Space

Temporal Locality
Recently accessed items are likely to be accessed again in the near
future.

Spatial Locality
Recently accessed items are likely to have their adjacent (or near-by)
items accessed in the near future.

Note: items can mean data memory addresses or instructions.

Alex Brandt Chapter 1: CPU and Memory, Part 2: The Memory Hierarchy Tuesday January 15, 2019 15 / 52

Locality in Instructions

Appreciating locality for instructions is more difficult than for memory
addresses. What programming constructs lead to locality for instructions?

Temporal?

ë Loops
ë Repeated calls to the same method

Spatial?

ë Loops
ë Repeated calls to the same method
ë Sequential operation, no unconditional jumps!

Unless inlined, method calls can act like unconditional jumps.

Note: Continually using the same type of instruction is not locality. It
must be the exact same instruction after compilation. (Same instruction
type and operands).

Alex Brandt Chapter 1: CPU and Memory, Part 2: The Memory Hierarchy Tuesday January 15, 2019 16 / 52

Locality in Instructions

Appreciating locality for instructions is more difficult than for memory
addresses. What programming constructs lead to locality for instructions?

Temporal?
ë Loops

ë Repeated calls to the same method

Spatial?

ë Loops
ë Repeated calls to the same method
ë Sequential operation, no unconditional jumps!

Unless inlined, method calls can act like unconditional jumps.

Note: Continually using the same type of instruction is not locality. It
must be the exact same instruction after compilation. (Same instruction
type and operands).

Alex Brandt Chapter 1: CPU and Memory, Part 2: The Memory Hierarchy Tuesday January 15, 2019 16 / 52

Locality in Instructions

Appreciating locality for instructions is more difficult than for memory
addresses. What programming constructs lead to locality for instructions?

Temporal?
ë Loops
ë Repeated calls to the same method

Spatial?

ë Loops
ë Repeated calls to the same method
ë Sequential operation, no unconditional jumps!

Unless inlined, method calls can act like unconditional jumps.

Note: Continually using the same type of instruction is not locality. It
must be the exact same instruction after compilation. (Same instruction
type and operands).

Alex Brandt Chapter 1: CPU and Memory, Part 2: The Memory Hierarchy Tuesday January 15, 2019 16 / 52

Locality in Instructions

Appreciating locality for instructions is more difficult than for memory
addresses. What programming constructs lead to locality for instructions?

Temporal?
ë Loops
ë Repeated calls to the same method

Spatial?
ë Loops

ë Repeated calls to the same method
ë Sequential operation, no unconditional jumps!

Unless inlined, method calls can act like unconditional jumps.

Note: Continually using the same type of instruction is not locality. It
must be the exact same instruction after compilation. (Same instruction
type and operands).

Alex Brandt Chapter 1: CPU and Memory, Part 2: The Memory Hierarchy Tuesday January 15, 2019 16 / 52

Locality in Instructions

Appreciating locality for instructions is more difficult than for memory
addresses. What programming constructs lead to locality for instructions?

Temporal?
ë Loops
ë Repeated calls to the same method

Spatial?
ë Loops
ë Repeated calls to the same method

ë Sequential operation, no unconditional jumps!

Unless inlined, method calls can act like unconditional jumps.

Note: Continually using the same type of instruction is not locality. It
must be the exact same instruction after compilation. (Same instruction
type and operands).

Alex Brandt Chapter 1: CPU and Memory, Part 2: The Memory Hierarchy Tuesday January 15, 2019 16 / 52

Locality in Instructions

Appreciating locality for instructions is more difficult than for memory
addresses. What programming constructs lead to locality for instructions?

Temporal?
ë Loops
ë Repeated calls to the same method

Spatial?
ë Loops
ë Repeated calls to the same method
ë Sequential operation, no unconditional jumps!

Unless inlined, method calls can act like unconditional jumps.

Note: Continually using the same type of instruction is not locality. It
must be the exact same instruction after compilation. (Same instruction
type and operands).

Alex Brandt Chapter 1: CPU and Memory, Part 2: The Memory Hierarchy Tuesday January 15, 2019 16 / 52

Locality in Instructions

Appreciating locality for instructions is more difficult than for memory
addresses. What programming constructs lead to locality for instructions?

Temporal?
ë Loops
ë Repeated calls to the same method

Spatial?
ë Loops
ë Repeated calls to the same method
ë Sequential operation, no unconditional jumps!

Unless inlined, method calls can act like unconditional jumps.

Note: Continually using the same type of instruction is not locality. It
must be the exact same instruction after compilation. (Same instruction
type and operands).

Alex Brandt Chapter 1: CPU and Memory, Part 2: The Memory Hierarchy Tuesday January 15, 2019 16 / 52

Locality in Data

Data locality easier to understand:
Repeated access to the same variable.
Sequential access to an array.
Initializing a variable just before it is used.
Re-use previous variables that are finished being useful instead of
initializing new ones.

ë When a new variable is created, it must be loaded into cache. Why not
re-use existing variables?

Prime Example: Stride-1 access pattern
int arr[n];
for (int i = 0; i < n; ++i) {

printf("%d", arr[i]);
}

Alex Brandt Chapter 1: CPU and Memory, Part 2: The Memory Hierarchy Tuesday January 15, 2019 17 / 52

Aside: Layout of C Arrays in Memory

C arrays allocated in row-major order.
ë Each row in contiguous memory locations.
ë a[i][j] ⇐⇒ a[i * ncols + j]

⎨⎝⎝⎝⎝⎝⎪
0 1 2
3 4 5
6 7 8

⎬⎠⎠⎠⎠⎠⎮
Ô⇒)︀0, 1, 2, 3, 4, 5, 6, 7, 8⌈︀

FORTRAN, Matlab arrays allocated in column-major order.
ë Each column in contiguous memory locations.

⎨⎝⎝⎝⎝⎝⎪
1 2 3
4 5 6
7 8 9

⎬⎠⎠⎠⎠⎠⎮
Ô⇒)︀1, 4, 7, 2, 5, 8, 3, 6, 9⌈︀

Alex Brandt Chapter 1: CPU and Memory, Part 2: The Memory Hierarchy Tuesday January 15, 2019 18 / 52

Locality Exercises: Warm-up

Does this function in C have good locality? If yes, which type?

int sumArray(int* a, int n) {
int sum = 0;
for (i=0; i<n; i++)

sum += a[i];
return sum;

}

stride-1 access to a Ô⇒ spatial locality
temporal locality in access to sum, i, n

Note: Temporal locality in reference to the pointer a but not the array
elements. a[i] is just syntactic sugar.

ë a[i] ⇐⇒ *(a + i)

Alex Brandt Chapter 1: CPU and Memory, Part 2: The Memory Hierarchy Tuesday January 15, 2019 19 / 52

Locality Exercises: Warm-up

Does this function in C have good locality? If yes, which type?

int sumArray(int* a, int n) {
int sum = 0;
for (i=0; i<n; i++)

sum += a[i];
return sum;

}

stride-1 access to a Ô⇒ spatial locality

temporal locality in access to sum, i, n

Note: Temporal locality in reference to the pointer a but not the array
elements. a[i] is just syntactic sugar.

ë a[i] ⇐⇒ *(a + i)

Alex Brandt Chapter 1: CPU and Memory, Part 2: The Memory Hierarchy Tuesday January 15, 2019 19 / 52

Locality Exercises: Warm-up

Does this function in C have good locality? If yes, which type?

int sumArray(int* a, int n) {
int sum = 0;
for (i=0; i<n; i++)

sum += a[i];
return sum;

}

stride-1 access to a Ô⇒ spatial locality
temporal locality in access to sum, i, n

Note: Temporal locality in reference to the pointer a but not the array
elements. a[i] is just syntactic sugar.

ë a[i] ⇐⇒ *(a + i)

Alex Brandt Chapter 1: CPU and Memory, Part 2: The Memory Hierarchy Tuesday January 15, 2019 19 / 52

Locality Exercises: Warm-up

Does this function in C have good locality? If yes, which type?

int sumArray(int* a, int n) {
int sum = 0;
for (i=0; i<n; i++)

sum += a[i];
return sum;

}

stride-1 access to a Ô⇒ spatial locality
temporal locality in access to sum, i, n

Note: Temporal locality in reference to the pointer a but not the array
elements. a[i] is just syntactic sugar.

ë a[i] ⇐⇒ *(a + i)

Alex Brandt Chapter 1: CPU and Memory, Part 2: The Memory Hierarchy Tuesday January 15, 2019 19 / 52

Locality Exercise 1

Where is locality present in this C function? For each specify the type of
locality.

int sumarray(int[][] a, int M, int N) {
int i, j, sum = 0;

for (i = 0; i < M; i++)
for (j = 0; j < N; j++)

sum += a[i][j];
return sum;

}

Spatial locality in access to a, row-major order in C.
Temporal locality in access to sum, i, j, N.

Alex Brandt Chapter 1: CPU and Memory, Part 2: The Memory Hierarchy Tuesday January 15, 2019 20 / 52

Locality Exercise 1

Where is locality present in this C function? For each specify the type of
locality.

int sumarray(int[][] a, int M, int N) {
int i, j, sum = 0;

for (i = 0; i < M; i++)
for (j = 0; j < N; j++)

sum += a[i][j];
return sum;

}

Spatial locality in access to a, row-major order in C.

Temporal locality in access to sum, i, j, N.

Alex Brandt Chapter 1: CPU and Memory, Part 2: The Memory Hierarchy Tuesday January 15, 2019 20 / 52

Locality Exercise 1

Where is locality present in this C function? For each specify the type of
locality.

int sumarray(int[][] a, int M, int N) {
int i, j, sum = 0;

for (i = 0; i < M; i++)
for (j = 0; j < N; j++)

sum += a[i][j];
return sum;

}

Spatial locality in access to a, row-major order in C.
Temporal locality in access to sum, i, j, N.

Alex Brandt Chapter 1: CPU and Memory, Part 2: The Memory Hierarchy Tuesday January 15, 2019 20 / 52

Locality Exercise 2

Where is locality present in this C function? For each specify the type of
locality.

int sumarray(int[][] a, int M, int N) {
int i, j, sum = 0;

for (j = 0; j < N; j++)
for (i = 0; i < M; i++)

sum += a[i][j];
return sum;

}

Temporal locality in access to sum, i, j, M.
No spacial locality in access to a.
If M small possibility for temporal locality in N.

Alex Brandt Chapter 1: CPU and Memory, Part 2: The Memory Hierarchy Tuesday January 15, 2019 21 / 52

Locality Exercise 2

Where is locality present in this C function? For each specify the type of
locality.

int sumarray(int[][] a, int M, int N) {
int i, j, sum = 0;

for (j = 0; j < N; j++)
for (i = 0; i < M; i++)

sum += a[i][j];
return sum;

}

Temporal locality in access to sum, i, j, M.

No spacial locality in access to a.
If M small possibility for temporal locality in N.

Alex Brandt Chapter 1: CPU and Memory, Part 2: The Memory Hierarchy Tuesday January 15, 2019 21 / 52

Locality Exercise 2

Where is locality present in this C function? For each specify the type of
locality.

int sumarray(int[][] a, int M, int N) {
int i, j, sum = 0;

for (j = 0; j < N; j++)
for (i = 0; i < M; i++)

sum += a[i][j];
return sum;

}

Temporal locality in access to sum, i, j, M.
No spacial locality in access to a.

If M small possibility for temporal locality in N.

Alex Brandt Chapter 1: CPU and Memory, Part 2: The Memory Hierarchy Tuesday January 15, 2019 21 / 52

Locality Exercise 2

Where is locality present in this C function? For each specify the type of
locality.

int sumarray(int[][] a, int M, int N) {
int i, j, sum = 0;

for (j = 0; j < N; j++)
for (i = 0; i < M; i++)

sum += a[i][j];
return sum;

}

Temporal locality in access to sum, i, j, M.
No spacial locality in access to a.
If M small possibility for temporal locality in N.

Alex Brandt Chapter 1: CPU and Memory, Part 2: The Memory Hierarchy Tuesday January 15, 2019 21 / 52

Locality Exercise 3

Does this C function have good spatial locality? If not, permute the loops
so that spatial locality is achieved by stride-1 access.

int sumarray3d(int[][][] a, int N) {
int i, j, k, sum = 0;

for (j = 0; j < N; i++)
for (i = 0; i < N; j++)

for (k = 0; k < N; k++)
sum += a[k][i][j];

return sum;
}

Alex Brandt Chapter 1: CPU and Memory, Part 2: The Memory Hierarchy Tuesday January 15, 2019 22 / 52

Outline

1 History, Trends, and Basics

2 The Principle of Locality

3 The Cache Hierarchy

4 Cache and Memory Performance

5 Locality and Cache

Alex Brandt Chapter 1: CPU and Memory, Part 2: The Memory Hierarchy Tuesday January 15, 2019 23 / 52

Characteristics of the Memory Hierarchy

CPU looks first for data in L1, then in L2, ..., then in main memory.
Modern computers usually have three levels of cache before main
memory.

Alex Brandt Chapter 1: CPU and Memory, Part 2: The Memory Hierarchy Tuesday January 15, 2019 24 / 52

Photo of a CPU: Nehalem (First-Generation i7) Die

Alex Brandt Chapter 1: CPU and Memory, Part 2: The Memory Hierarchy Tuesday January 15, 2019 25 / 52

Core Area Breakdown
32KB I$ per core
32KB D$ per core
512KB L2$ per core
Share one 2-24MB L3$

Alex Brandt Chapter 1: CPU and Memory, Part 2: The Memory Hierarchy Tuesday January 15, 2019 26 / 52

What is a Cache?

Cache: A small and fast (usually SRAM) storage device that acts as a
staging area between the CPU and the larger and slower main memory.

Fundamental idea of a memory hierarchy:
ë For each 𝑘, the fast and small device at level 𝑘 serves as cache for the

larger and slower device at level 𝑘 + 1.
ë The data in cache at level 𝑘 is always a subset of the data available at

level 𝑘 + 1.

Why do memory hierarchies work?
Programs tend to access data at level 𝑘 more often than they access
data at level 𝑘 + 1 (locality!)
Storage at level 𝑘 + 1 can be slower, larger, and cheaper per byte.
Net effect: Large pool of memory that costs as little as the cheap
storage near the bottom, but that serves data to programs at ≈ rate
of the fast storage near the top.

Alex Brandt Chapter 1: CPU and Memory, Part 2: The Memory Hierarchy Tuesday January 15, 2019 27 / 52

Caching in a Memory Hierarchy

Each level of memory is partitioned
into blocks of consecutive bytes.
Each block within a level of cache is
the same size.
The smaller, faster, more expensive
storage-device at level 𝑘 caches a
subset of the data from level 𝑘 + 1
If block-size is same between two
levels of cache, the subset of data is
actually a subset of blocks.
Data is copied between levels in
block-sized transfer units.

Alex Brandt Chapter 1: CPU and Memory, Part 2: The Memory Hierarchy Tuesday January 15, 2019 28 / 52

Cache Hits and Cache Misses
The processor requests a memory address
contained in a block 𝑏.

Cache hit (at level 𝑘)
The Program finds 𝑏 in the cache at
level 𝑘. e.g., block 14

Cache miss (at level 𝑘)
𝑏 is not at level 𝑘, so the level 𝑘 cache
must fetch it from level 𝑘 + 1.
e.g., block 12
If level 𝑘 cache is full, then some block
must be replaced (evicted) by the
newly requested block. Which one is
the “victim”?

Alex Brandt Chapter 1: CPU and Memory, Part 2: The Memory Hierarchy Tuesday January 15, 2019 29 / 52

Cache Policies
Which one is the “victim”?

Placement (mapping) policy: where can
the new block go?

ë Each block has its (one or more) slot that it
fits into.

ë If all slots it fits into are full, overwrite
whatever is in that slot.

ë e.g., 𝑏 mod 4, a “mod-4 mapping”

Replacement policy: which block should be
evicted? Replace a block based on some
policy:

ë LRU (least recently used).
ë FIFO (first in, first out).

Alex Brandt Chapter 1: CPU and Memory, Part 2: The Memory Hierarchy Tuesday January 15, 2019 30 / 52

Cache Misses Explained (1/2)

Cold (compulsory) Miss (at level 𝑘)
ë A cold miss occurs at level 𝑘 for a block 𝑏 when this block is missing

for the first time at level 𝑘 cache (i.e. it is the first request for block 𝑏).
ë Cold misses always occur.

Capacity Miss (at level 𝑘)
ë Occurs when the set of active blocks (that is, the data set with which

the program is actively working on) is larger than the size of the cache
at level 𝑘.

ë Can occur under a mapping policy or a replacement policy.
ë Essentially a special kind of Conflict Miss when the cache happens to

be full.

Alex Brandt Chapter 1: CPU and Memory, Part 2: The Memory Hierarchy Tuesday January 15, 2019 31 / 52

Cache Misses Explained (2/2)

Conflict Miss (at level 𝑘)
ë Under a mapping policy caches limit the positions a block can be

placed to a small subset (sometimes a singleton) of the total available
positions.

ë Conflict misses occur at level 𝑘 when multiple data items from level
𝑘 + 1 all map to the same position at level 𝑘

ë e.g. Using a mod-4 mapping policy, the blocks 13 and 25 both map to
index 1.

ë Note: thrashing can occur if two blocks are fighting for the same slot.
ë e.g. Requesting blocks 0, 8, 0, 8, 0, 8, ... would cause a miss every

time under a mod-4 mapping.

Alex Brandt Chapter 1: CPU and Memory, Part 2: The Memory Hierarchy Tuesday January 15, 2019 32 / 52

Multiple Cache Levels

Caveat: While cache levels are numbered 1, 2, etc. it is common to call a
cache at level 𝑘 + 1 a lower level cache with respect to a cache at level 𝑘.
Alex Brandt Chapter 1: CPU and Memory, Part 2: The Memory Hierarchy Tuesday January 15, 2019 33 / 52

Outline

1 History, Trends, and Basics

2 The Principle of Locality

3 The Cache Hierarchy

4 Cache and Memory Performance

5 Locality and Cache

Alex Brandt Chapter 1: CPU and Memory, Part 2: The Memory Hierarchy Tuesday January 15, 2019 34 / 52

CPU Time with Caching
Simplified CPU Time:

CPU Time = Instruction_count ×CPI × clock_cycle

ë Here, CPI is CPIideal.

CPU Time with Memory:

CPU time = IC ×CPI ×CC= IC × (CPIideal +Average memory stall cycles)︁⌊︂]︂⌊︂)︂
CPIstall

) ×CC

Average memory stall cycles = access_count × miss_rate × miss_penalty

Note: It is generally assumed that cache hit time is included as part of CPI
for load/store instructions.

Alex Brandt Chapter 1: CPU and Memory, Part 2: The Memory Hierarchy Tuesday January 15, 2019 35 / 52

Quantifying Cache Hits and Misses

Hit Rate: The percentage of memory accesses which are found in a
given level of the memory hierarchy.
Hit Time: The time to retrieve data during memory access at a
given level of the memory hierarchy, consisting of:

Time to determine hit/miss + Time to access/transmit the block.

Miss Rate: The percentage of memory accesses which are not found
in a given level of the memory hierarchy, that is, 1 - (Hit Rate).
Miss Penalty: The time required to search and retrieve the requested
block from a lower (and slower) level of cache.

Time to determine hit/miss
+ Time to access the block in the lower level
+ Time to transmit that block back to the current level
+ Time to insert the block in that level
+ Time to pass the block to the requester

Hit Time ≪ Miss Penalty
Alex Brandt Chapter 1: CPU and Memory, Part 2: The Memory Hierarchy Tuesday January 15, 2019 36 / 52

Impacts of Cache Performance
CPIstall = CPIideal +Average memory stall cycles

Avg. mem. stall cycles = access_count ×miss_rate ×miss_penalty

The relative cost for a cache miss increases as processor performance
increases (↑ clock rate, ↓ CPI).

ë Cache miss penalty, CPIstall measured in clock cycles.
ë The lower the CPIideal the more pronounced the effect of cache miss.

For a fixed CPU (and main memory), cannot change miss_penalty.
Stall cycles mainly affected by program and compiler:

ë number of memory accesses
ë miss_rate: locality!

This calculation assumes an idealized cache: one level of cache
between CPU and main memory.

Alex Brandt Chapter 1: CPU and Memory, Part 2: The Memory Hierarchy Tuesday January 15, 2019 37 / 52

CPI Example (1/2)

A program running on a particular processor has a CPIideal of 2, a 100
cycle miss penalty, 36% load/store instr’s, and a 4% miss rate. What is
the average memory stall cycles? What is CPIstall?

Memory-stall cycles = 36% × 4% × 100 = 1.44
So CPIstall = 2 + 1.44 = 3.44

What if the previous miss rate is broken down as a 2% instruction-cache
miss rate and 4% data-cache miss rate?

Memory-stall cycles = 1 × 2% × 100 + 36% × 4% × 100 = 3.44
So CPIstall = 2 + 3.44 = 5.44

Alex Brandt Chapter 1: CPU and Memory, Part 2: The Memory Hierarchy Tuesday January 15, 2019 38 / 52

CPI Example (1/2)

A program running on a particular processor has a CPIideal of 2, a 100
cycle miss penalty, 36% load/store instr’s, and a 4% miss rate. What is
the average memory stall cycles? What is CPIstall?

Memory-stall cycles = 36% × 4% × 100 = 1.44
So CPIstall = 2 + 1.44 = 3.44

What if the previous miss rate is broken down as a 2% instruction-cache
miss rate and 4% data-cache miss rate?

Memory-stall cycles = 1 × 2% × 100 + 36% × 4% × 100 = 3.44
So CPIstall = 2 + 3.44 = 5.44

Alex Brandt Chapter 1: CPU and Memory, Part 2: The Memory Hierarchy Tuesday January 15, 2019 38 / 52

CPI Example (1/2)

A program running on a particular processor has a CPIideal of 2, a 100
cycle miss penalty, 36% load/store instr’s, and a 4% miss rate. What is
the average memory stall cycles? What is CPIstall?

Memory-stall cycles = 36% × 4% × 100 = 1.44
So CPIstall = 2 + 1.44 = 3.44

What if the previous miss rate is broken down as a 2% instruction-cache
miss rate and 4% data-cache miss rate?

Memory-stall cycles = 1 × 2% × 100 + 36% × 4% × 100 = 3.44
So CPIstall = 2 + 3.44 = 5.44

Alex Brandt Chapter 1: CPU and Memory, Part 2: The Memory Hierarchy Tuesday January 15, 2019 38 / 52

CPI Example (1/2)

A program running on a particular processor has a CPIideal of 2, a 100
cycle miss penalty, 36% load/store instr’s, and a 4% miss rate. What is
the average memory stall cycles? What is CPIstall?

Memory-stall cycles = 36% × 4% × 100 = 1.44
So CPIstall = 2 + 1.44 = 3.44

What if the previous miss rate is broken down as a 2% instruction-cache
miss rate and 4% data-cache miss rate?

Memory-stall cycles = 1 × 2% × 100 + 36% × 4% × 100 = 3.44
So CPIstall = 2 + 3.44 = 5.44

Alex Brandt Chapter 1: CPU and Memory, Part 2: The Memory Hierarchy Tuesday January 15, 2019 38 / 52

CPI Example (2/2)

A program running on a particular processor has a CPIideal of 2, a 100
cycle miss penalty, 36% load/store instr’s, and a 4% miss rate. What is
the average memory stall cycles? What is CPIstall?

What if the CPIideal is reduced to 1?

What if the data-cache miss rate went up by 1%? (Instruction-cache miss
rate still 2%)

Memory-stall cycles = 1 × 2% × 100 + 36% × 5% × 100 = 3.80
So CPIstall = 2 + 3.80 = 5.80

Alex Brandt Chapter 1: CPU and Memory, Part 2: The Memory Hierarchy Tuesday January 15, 2019 39 / 52

CPI Example (2/2)

A program running on a particular processor has a CPIideal of 2, a 100
cycle miss penalty, 36% load/store instr’s, and a 4% miss rate. What is
the average memory stall cycles? What is CPIstall?

What if the CPIideal is reduced to 1?

What if the data-cache miss rate went up by 1%? (Instruction-cache miss
rate still 2%)

Memory-stall cycles = 1 × 2% × 100 + 36% × 5% × 100 = 3.80
So CPIstall = 2 + 3.80 = 5.80

Alex Brandt Chapter 1: CPU and Memory, Part 2: The Memory Hierarchy Tuesday January 15, 2019 39 / 52

Aside: Banked and Unified Caches

Banked Cache: A cache that is divided into two
sections: one for instructions and one for data.

ë L1 cache usually banked.
ë Allows CPU to easily (and simultaneously)

access both instructions and data.
ë Remember this when we talk about

pipelining later.

Unified Cache: A cache where instructions and
data are stored together and likely intermixed.

Alex Brandt Chapter 1: CPU and Memory, Part 2: The Memory Hierarchy Tuesday January 15, 2019 40 / 52

Another Memory Performance Metric: AMAT

Cache Miss Rate: number of cache misses
total number of cache references (accesses)

ë Miss rate + Hit rate = 1.0 (100%)

Miss Penalty: the access time of a memory level one below the given
memory level, where a requested block is missing.

Average Memory Access Time (AMAT) is the average time to access
memory considering both hits and misses.

AMAT = Time for a Hit + Miss Rate × Miss Penalty

Note: In contrast to CPIstall this is measured in time.

Alex Brandt Chapter 1: CPU and Memory, Part 2: The Memory Hierarchy Tuesday January 15, 2019 41 / 52

Simple AMAT Example

What is the AMAT for a processor with a 200 ps clock, a miss penalty of
50 clock cycles, a miss rate of 0.02 misses per instruction and a cache
access time of 1 clock cycle?

AMAT = Time for a Hit + Miss Rate × Miss Penalty

= 1 + 0.02 * 50 = 2 clock cycles, or 2 * 200 = 400 ps

Alex Brandt Chapter 1: CPU and Memory, Part 2: The Memory Hierarchy Tuesday January 15, 2019 42 / 52

Simple AMAT Example

What is the AMAT for a processor with a 200 ps clock, a miss penalty of
50 clock cycles, a miss rate of 0.02 misses per instruction and a cache
access time of 1 clock cycle?

AMAT = Time for a Hit + Miss Rate × Miss Penalty

= 1 + 0.02 * 50 = 2 clock cycles, or 2 * 200 = 400 ps

Alex Brandt Chapter 1: CPU and Memory, Part 2: The Memory Hierarchy Tuesday January 15, 2019 42 / 52

Simple AMAT Example

What is the AMAT for a processor with a 200 ps clock, a miss penalty of
50 clock cycles, a miss rate of 0.02 misses per instruction and a cache
access time of 1 clock cycle?

AMAT = Time for a Hit + Miss Rate × Miss Penalty
= 1 + 0.02 * 50 = 2 clock cycles, or 2 * 200 = 400 ps

Alex Brandt Chapter 1: CPU and Memory, Part 2: The Memory Hierarchy Tuesday January 15, 2019 42 / 52

Multiple Cache Levels (again)

Alex Brandt Chapter 1: CPU and Memory, Part 2: The Memory Hierarchy Tuesday January 15, 2019 43 / 52

AMAT & Multiple Cache Levels

Given the memory hierarchy, speed at each level differs. Must calculate
miss penalty on a per level basis.

Miss penalties defined per cache level:

L1 Miss Penalty = L2 Hit Time + L2 Miss Rate × L2 Miss Penalty
L2 Miss Penalty = L3 Hit Time + L3 Miss Rate × L3 Miss Penalty
L3 Miss Penalty = Main Memory Hit Time (usually)

New AMAT:

AMAT = L1 Hit Time + L1 Miss Rate ∗ L1 Miss Penalty,
L1 Miss Penalty = L2 Hit Time + L2 Miss Rate ∗ L2 Miss Penalty,

⋮
Alex Brandt Chapter 1: CPU and Memory, Part 2: The Memory Hierarchy Tuesday January 15, 2019 44 / 52

New AMAT Example

Calculate AMAT given:
200 ps clock cycle,
1 cycle L1 hit time, 2% L1 miss rate,
5 cycle L2 hit time, 5% L2 miss rate,
100 cycle main memory access time.

Without L2 cache:

AMAT = 1 + .02 × 100 = 3 cycles, 3 × 200 = 600 ps

With L2 cache:

AMAT = 1+ .02× (5 + .05 × 100) = 1.2 cycles, 1.2× 200 = 240 ps

Alex Brandt Chapter 1: CPU and Memory, Part 2: The Memory Hierarchy Tuesday January 15, 2019 45 / 52

New AMAT Example

Calculate AMAT given:
200 ps clock cycle,
1 cycle L1 hit time, 2% L1 miss rate,
5 cycle L2 hit time, 5% L2 miss rate,
100 cycle main memory access time.

Without L2 cache:

AMAT = 1 + .02 × 100 = 3 cycles, 3 × 200 = 600 ps

With L2 cache:

AMAT = 1+ .02× (5 + .05 × 100) = 1.2 cycles, 1.2× 200 = 240 ps

Alex Brandt Chapter 1: CPU and Memory, Part 2: The Memory Hierarchy Tuesday January 15, 2019 45 / 52

New AMAT Example

Calculate AMAT given:
200 ps clock cycle,
1 cycle L1 hit time, 2% L1 miss rate,
5 cycle L2 hit time, 5% L2 miss rate,
100 cycle main memory access time.

Without L2 cache:

AMAT = 1 + .02 × 100 = 3 cycles, 3 × 200 = 600 ps

With L2 cache:

AMAT = 1+ .02× (5 + .05 × 100) = 1.2 cycles, 1.2× 200 = 240 ps

Alex Brandt Chapter 1: CPU and Memory, Part 2: The Memory Hierarchy Tuesday January 15, 2019 45 / 52

Cache Memories & Relative Speeds
“Cache” Type What Cached Where Cached Latency Managed By

(cycles)
Registers 4/8-byte word CPU registers 0.5 Compiler
TLB Address On-Chip TLB 0.5 Hardware

translations
L1 cache 32-byte block On-Chip L1 1 Hardware
L2 cache 32-byte block On/Off-Chip L2 10 Hardware
Buffer cache Parts of files Main memory 100 OS
Virtual Memory (Paging) 4-KB page NVMe 100,000 Hardware+

HDD 1,000,000 OS
Network buffer Parts of files Local disk 10,000,000 AFS/NFS
cache client
Web cache Web pages Remote server 1,000,000,000 Web proxy

disks server

The TLB (Translation lookaside buffer) “address-translation cache” caches virtual
memory/physical memory mappings.
The Andrew File System (AFS) and Network File System (NFS) are distributed file
system protocols

Alex Brandt Chapter 1: CPU and Memory, Part 2: The Memory Hierarchy Tuesday January 15, 2019 46 / 52

Outline

1 History, Trends, and Basics

2 The Principle of Locality

3 The Cache Hierarchy

4 Cache and Memory Performance

5 Locality and Cache

Alex Brandt Chapter 1: CPU and Memory, Part 2: The Memory Hierarchy Tuesday January 15, 2019 47 / 52

Advanced Temporal Locality

int sumarray(int[][] a, int M, int N) {
int i, j, sum = 0;

for (i = 0; i < M; i++)
for (j = 0; j < N; j++)

sum += a[i][j];
return sum;

}

Recall: Temporal locality of M depends on size of N?

Depending on size of cache and on size of N, locality is possible.
ë If sizeof(int) × (N + 6) ≤ cache size then M still in cache!
ë Assumes LRU cache policy and data-specific cache.

Alex Brandt Chapter 1: CPU and Memory, Part 2: The Memory Hierarchy Tuesday January 15, 2019 48 / 52

Advanced Spatial Locality
In a row-major language:

Stepping through columns in one row:
for (i = 0; i < N; i++)

sum += a[0][i];
ë Accesses successive elements of size 𝑘 bytes
ë If block size (B) > 𝑘 bytes, exploit spatial locality

Cold miss rate = 𝑘 bytes / B.
ë Typically 𝑘 = 4 or 8 (32/64 bits) and 𝐵 = 8 𝑘 or 𝐵 = 16 𝑘.

Stepping through rows in one column:
for (i = 0; i < n; i++)

sum += a[i][0];
ë Accesses distant elements (assuming number of columns in a is large).
ë No spatial locality!
ë Cold miss rate = 1 (i.e. 100%)

Alex Brandt Chapter 1: CPU and Memory, Part 2: The Memory Hierarchy Tuesday January 15, 2019 49 / 52

Advanced Spatial Locality Example

Calculate the number of cache hits and cache misses given:
A row-major programming language with a having INT4 elements,
Cache capacity of 4 Kilobytes, cache block is 32 bytes,
All local variables are stored in registers, not cache.

int i, sum = 0, N = 16384;
for (i = 0; i < N; i++)

sum += a[i];

Stride-1 access to a.
Since cache block is 32 bytes, each block holds 32/4 = 8 ints.
One cold miss for each block.
(1/8) × 16384 = 2048 cache misses.
16384 - 2048 cache misses = 14336 cache hits.

Alex Brandt Chapter 1: CPU and Memory, Part 2: The Memory Hierarchy Tuesday January 15, 2019 50 / 52

Advanced Spatial Locality Example

Calculate the number of cache hits and cache misses given:
A row-major programming language with a having INT4 elements,
Cache capacity of 4 Kilobytes, cache block is 32 bytes,
All local variables are stored in registers, not cache.

int i, sum = 0, N = 16384;
for (i = 0; i < N; i++)

sum += a[i];

Stride-1 access to a.
Since cache block is 32 bytes, each block holds 32/4 = 8 ints.
One cold miss for each block.
(1/8) × 16384 = 2048 cache misses.
16384 - 2048 cache misses = 14336 cache hits.

Alex Brandt Chapter 1: CPU and Memory, Part 2: The Memory Hierarchy Tuesday January 15, 2019 50 / 52

Summary

We want a large, cheap, fast memory
ë Unreasonable in size/cost for everything to be SRAM (L1).

Solution: Memory Hierarchy
ë Successively lower levels contain “most used” data from next higher

level.
ë Exploits temporal & spatial locality of programs.
ë Great Idea #3: Do the common case fast, worry less about the

exceptions (RISC design principle).
Challenges to programmer:

ë Develop cache friendly (efficient) programs.

Alex Brandt Chapter 1: CPU and Memory, Part 2: The Memory Hierarchy Tuesday January 15, 2019 51 / 52

Extra Reading

Being able to look at code and have a qualitative sense of its locality is a
key skill for programmers.

Some projects driven by data locality (and other features):
BLAS http://www.netlib.org/blas/
FFTW, by Matteo Frigo and Steven G. Johnson
http://www.fftw.org/
M. Frigo, C. Leiserson, H. Prokop, and S. Ramachandran,
Cache-Oblivious Algorithms, 1999.

Wikipedia is surprisingly well written on some of these topics.
https://en.wikipedia.org/wiki/CPU_cache
https://en.wikipedia.org/wiki/Cache_hierarchy
https://en.wikipedia.org/wiki/Cache-oblivious_algorithm

Alex Brandt Chapter 1: CPU and Memory, Part 2: The Memory Hierarchy Tuesday January 15, 2019 52 / 52

CS3350B Computer Organization
Chapter 1: CPU and Memory

Part 3: Cache Implementations

Alex Brandt

Department of Computer Science
University of Western Ontario, Canada

Thursday January 17, 2019

Alex Brandt Chapter 1: CPU and Memory, Part 3: Cache Implementations Thursday January 17, 2019 1 / 37

Outline

1 The Basics

2 Cache Organization Schemes

3 Handling Cache Hits & Misses

4 Cache Design & Improvements

Alex Brandt Chapter 1: CPU and Memory, Part 3: Cache Implementations Thursday January 17, 2019 2 / 37

How is the Hierarchy Managed?

Recall: CPU ← Registers ← L1 ← . . . ← Main Memory ← Disk

Registers ↔ Cache Memory:
ë The compiler (sometimes with the programmer’s help) decides which

values are stored in which registers.
Caches ↔ Main Memory:

ë The cache controller (thus the hardware) handles cache memory
movement.

Main Memory ↔ Disk:
ë The operating system (which controls the virtual memory).
ë the TLB (thus the hardware) which assists the virtual-to-physical

address mapping.
ë The programmer (who organizes the data into files), if data comes

from file.

Alex Brandt Chapter 1: CPU and Memory, Part 3: Cache Implementations Thursday January 17, 2019 3 / 37

Cache Design Questions

Q1 How best to organize the memory blocks (a.k.a lines) inside the
cache?

Q2 To which block (line) of the cache does a given (main) memory
address map?

ë Note: since the cache is a subset of the main memory, multiple
memory addresses can map to the same cache location.

Q3 How do we know if a block of the main memory currently has a copy
in cache?

Q4 How do we quickly find a particular copy of main memory (memory
address contents) in the cache?

Alex Brandt Chapter 1: CPU and Memory, Part 3: Cache Implementations Thursday January 17, 2019 4 / 37

General Organization of a Cache Memory (1/2)
Cache is an array of 𝑅 = 2𝑠 sets
Each set contains 𝑁 ≥ 1 lines
Each cache line (block) holds 𝐵 = 2𝑏 bytes of data

Alex Brandt Chapter 1: CPU and Memory, Part 3: Cache Implementations Thursday January 17, 2019 5 / 37

General Organization of a Cache Memory (2/2)
Cache size = bytes per line × lines per set × number of sets

𝐶 = 𝐵 × 𝑁 × 𝑅
Everything is a power of 2.

Alex Brandt Chapter 1: CPU and Memory, Part 3: Cache Implementations Thursday January 17, 2019 6 / 37

Memory-Cache Mapping (Addressing Cache Memories)

The data word at the 𝑚-bit address
A is in the cache if the tag bits in one
of the <valid> lines in set <set
index> match <tag>
The word contents begin at offset
<block offset> bytes from the
beginning of the block

Address Mapping:
block address = <tag> || <set index>
set# = (block address) mod 𝑅

ë just take the “s bits” as set index.

Note: Main memory address space and
cache size/implementation highly coupled. 𝑏 = log2(𝐵), 𝑅 = 𝐶⇑(𝐵 ∗𝑁)

𝑠 = log2(𝑅), 𝑡 = 𝑚 − 𝑠 − 𝑏

Alex Brandt Chapter 1: CPU and Memory, Part 3: Cache Implementations Thursday January 17, 2019 7 / 37

Outline

1 The Basics

2 Cache Organization Schemes

3 Handling Cache Hits & Misses

4 Cache Design & Improvements

Alex Brandt Chapter 1: CPU and Memory, Part 3: Cache Implementations Thursday January 17, 2019 8 / 37

Types of Cache Organization
Direct-Mapped

N = 1
ë One line per set.
ë Each memory address is mapped to exactly one line in the cache.

𝑏 = log2(𝐵), 𝑅 = 𝐶⇑𝐵, 𝑠 = log2(𝑅), 𝑡 (tag size) = 𝑚 − 𝑠 − 𝑏.
Fully Associative

R = 1 (allow a memory address to be mapped to any cache block).
Tag is whole address except block offset.
𝑏 = log2(𝐵), 𝑁 = 𝐶⇑𝐵, 𝑠 = 0, 𝑡 = 𝑚 − 𝑏.

N-way set associative
𝑁 is typically 2, 4, 8, or 16.
A memory block maps to a specific set but can and can be placed in
any way of that set (so there are 𝑁 choices of mapping).
𝑏 = log2(𝐵), 𝑅 = 𝐶⇑(𝐵 ×𝑁), 𝑠 = log2(𝑅), 𝑡 = 𝑚 − 𝑠 − 𝑏.

Alex Brandt Chapter 1: CPU and Memory, Part 3: Cache Implementations Thursday January 17, 2019 9 / 37

Direct-Mapped Cache Example
Direct-Mapped Ô⇒ 𝑁 = 1. Let 𝐵 = 1, 𝑅 = 4.
Therefore we have a 2-bit set index. Assume a 2-bit tag Ô⇒ 𝑚 = 4.
Start with an empty cache – blanks are considered invalid.

Consider the sequence of memory address accesses:
0 1 2 3 4 3 4 15

0000 0001 0010 0011 0100 0011 0100 1111

8 requests, 2 hits, 6 misses = 25% hit rate

Alex Brandt Chapter 1: CPU and Memory, Part 3: Cache Implementations Thursday January 17, 2019 10 / 37

Why Middle Bits For Set Index?
Consider a 4-line direct-mapped cache;
sets are indexed as 00, 01, 10, 11:

High-Order Bit Indexing
ë Adjacent memory lines would

map to same cache entry
ë Poor use of locality

Middle-Order Bit Indexing
ë Consecutive memory lines map

to different cache lines
ë Can hold 𝐶-bytes of contiguous

memory in cache at one time
In this example (0000x, 0001x, . . .) with an 𝑚-bit address, x must be 𝑚 − 4 bits.

Alex Brandt Chapter 1: CPU and Memory, Part 3: Cache Implementations Thursday January 17, 2019 11 / 37

Direct-Mapped Cache Circuit Logic
One word (4 byte) cache lines (𝐵 = 4).
Notice byte offset related to, but not exactly, block offset.
210 = 1024 sets Ô⇒ 10 bits for set index.

Alex Brandt Chapter 1: CPU and Memory, Part 3: Cache Implementations Thursday January 17, 2019 12 / 37

Direct-Mapped Cache Example 2: (𝐵 > 1)
Let the cache line hold two words = bytes (𝐵 = 2).
Direct-Mapped Ô⇒ 𝑁 = 1. 𝑅 = 2.
Therefore 1-bit set index. Assume a 2-bit tag again.
Start with an empty cache – blanks are considered invalid.

Consider the sequence of memory address accesses:
0 1 2 3 4 3 4 15

0000 0001 0010 0011 0100 0011 0100 1111

8 requests, 4 hits, 4 misses = 50% hit rate!

Alex Brandt Chapter 1: CPU and Memory, Part 3: Cache Implementations Thursday January 17, 2019 13 / 37

Direct-Mapped Cache Circuit Logic 2

Four data words/block (𝐵 = 16).
28 = 256 sets Ô⇒ 8 bits for set index.

Alex Brandt Chapter 1: CPU and Memory, Part 3: Cache Implementations Thursday January 17, 2019 14 / 37

Block Size & Cache Performance

Miss rate goes up if the block size becomes a significant fraction of
the cache size.

ë For a fixed cache size, ↑ block size Ô⇒ ↓ number of blocks.
ë Increases number of capacity misses.

Alex Brandt Chapter 1: CPU and Memory, Part 3: Cache Implementations Thursday January 17, 2019 15 / 37

Direct-Mapped Cache Worst-Case
Direct-Mapped Ô⇒ 𝑁 = 1. Let 𝐵 = 1, 𝑅 = 4.
Consider the sequence of memory addresses accesses:

0 = (0000), 4 = (0100), 0, 4, 0, 4, 0, 4, . . .

8 requests, 8 misses = 100% miss rate!
Thrasing!

ë conflict misses – two addresses map into the same cache block

Alex Brandt Chapter 1: CPU and Memory, Part 3: Cache Implementations Thursday January 17, 2019 16 / 37

Thrashing Fix with Set Associativity

2-way associative cache Ô⇒ 𝑁 = 2. Let 𝐵 = 1, 𝑅 = 2 now.
Consider the sequence of memory addresses accesses:

0 = (0000), 4 = (0100), 0, 4, 0, 4, 0, 4, . . .

8 requests, 2 misses = 75% hit rate

Solves thrashing of direct-mapped cache caused by conflict misses
ë Now two memory locations that map to the same block can co-exist.

Alex Brandt Chapter 1: CPU and Memory, Part 3: Cache Implementations Thursday January 17, 2019 17 / 37

Four-way Set Associative Cache Circuit Logic
28 = 256 sets each with four ways (each with one block of one word)

Alex Brandt Chapter 1: CPU and Memory, Part 3: Cache Implementations Thursday January 17, 2019 18 / 37

Set Associativity Costs Extra
When a miss occurs, which way do we pick for replacement?

Least Recently Used (LRU): the block replaced is the one that has
been unused for the longest time.

ë Hardware must keep track of when each way was last used relative to
the other blocks in the set.

ë For 2-way set associative, takes one bit per set.
ë Set the bit when a block is referenced (and reset the other way’s bit).

First In First Out (FIFO)
ë Can be implemented as a circular buffer or counter.

𝑁 -way set associative cache costs:
𝑁 comparators for LRU policy (delay and physical area on chip).
MUX delay (selecting the proper way) before data is available.
In a direct mapped cache, the cache block is available before the
hit/miss decision/

ë Impossible to assume a hit and recover later in set associative caches.

Alex Brandt Chapter 1: CPU and Memory, Part 3: Cache Implementations Thursday January 17, 2019 19 / 37

Range of Set Associative Caches
For a fixed size cache (and fixed size of cache lines) each doubling in
associativity (ways):

Doubles number of blocks per set,
Halves number of sets,
Decreases size of set-index by 1 bit,
Increases size of tag by 1 bit.

Alex Brandt Chapter 1: CPU and Memory, Part 3: Cache Implementations Thursday January 17, 2019 20 / 37

Benefits of Set Associative Caches
The choice between direct mapped (1-way) and set associative depends on
the cost of a miss versus the cost of implementation.

ë Largest gains are in going from direct mapped to 2-way (>20%
reduction in miss rate).

Alex Brandt Chapter 1: CPU and Memory, Part 3: Cache Implementations Thursday January 17, 2019 21 / 37

Cache Structure in Different Processors
What do we know so far?

Intel Nehalem AMD Barcelona
L1 cache size & 32KB for each per core; 64KB for each per core;
organization 64B blocks; Split I$ and D$ 64B blocks; Split I$ and D$
L1 associativity 4-way (I), 8-way (D) set 2-way set assoc.; LRU

assoc.; ∼LRU replacement replacement
L1 write policy write-back, write-allocate write-back, write-allocate
L2 cache size & 256KB per core; 512KB per core;
organization 64B blocks; Unified 64B blocks; Unified
L2 associativity 8-way set assoc.; ∼LRU 16-way set assoc.; ∼LRU
L2 write policy write-back, write-allocate write-back, write-allocate
L3 cache size & 8192KB (8MB) shared by 2048KB (2MB) shared by
organization cores; 64B blocks; Unified by cores; 64B blocks; Unified
L3 associativity 16-way set assoc. 32-way set assoc.; evict block

shared by fewest cores
L3 write policy write-back, write-allocate write-back, write-allocate

Alex Brandt Chapter 1: CPU and Memory, Part 3: Cache Implementations Thursday January 17, 2019 22 / 37

Outline

1 The Basics

2 Cache Organization Schemes

3 Handling Cache Hits & Misses

4 Cache Design & Improvements

Alex Brandt Chapter 1: CPU and Memory, Part 3: Cache Implementations Thursday January 17, 2019 23 / 37

Handling Cache Hits
Read Hits (Instructions and Data)

This is what we want! Ô⇒ Do nothing special.

Write Hits (Data only) has two policies:
Write-through: Require the cache and backing memory to always be
consistent.

ë When writing to a cache, also pass the value to the next lower level
cache (or main memory) to update its copy.

ë In naïve implementation this is very slow. Speed of cache writes limited
by the speed of the next lower level.

ë Use a write buffer between levels and stall only if buffer is full.
Write-back: Allow cache and memory to be inconsistent

ë Write data into the cache block, this becomes a dirty block.
ë Only update the next lower level when a dirty block is evicted.
ë Requires two cycles – one to check for evict/dirty and another to

actually do write – or again use a write buffer and use only one cycle.

Alex Brandt Chapter 1: CPU and Memory, Part 3: Cache Implementations Thursday January 17, 2019 24 / 37

Handling Cache Misses

Read Misses (Instruction and Data)
Stall the execution, fetch block from the next lower level of memory,
write (“install”) it into cache, pass it to next higher level of memory
(or the processor), and let processor resume.

Write Misses (Data only) stall execution and perform one of two policies:
Write allocate:

ë Fetch the block from the next level in the memory hierarchy,
ë Install it in the cache and write the updated word into the new block
ë Installing block and writing the updated word can be done

simultaneously.
No-Write Allocate: Skip fetching/installing block into cache, write
directly into lower level of memory (or a write buffer).

then let the processor resume.

Alex Brandt Chapter 1: CPU and Memory, Part 3: Cache Implementations Thursday January 17, 2019 25 / 37

Dealing With Cache Misses with Hardware Design

Compulsory Misses:
Caused by cold starts, process migrations or very first references.
Reduce impact by

increasing block size. But this causes increased
miss penalty and could increase miss rate.

Capacity Misses:
Caused by the cache becoming full; it cannot hold all blocks
referenced by the program.
Reduce impact by

increasing cache size. But this may increase access
time.

Conflict Misses:
Caused by multiple addresses mapping to the same cache block.
Reduce impact by

increase associativity or increasing cache/block size
and/or increase associativity (may increase access time)

ë Larger cache Ô⇒ more sets Ô⇒ fewer addresses map to same loc.

Alex Brandt Chapter 1: CPU and Memory, Part 3: Cache Implementations Thursday January 17, 2019 26 / 37

Dealing With Cache Misses with Hardware Design

Compulsory Misses:
Caused by cold starts, process migrations or very first references.
Reduce impact by increasing block size. But this causes increased
miss penalty and could increase miss rate.

Capacity Misses:
Caused by the cache becoming full; it cannot hold all blocks
referenced by the program.
Reduce impact by increasing cache size. But this may increase access
time.

Conflict Misses:
Caused by multiple addresses mapping to the same cache block.
Reduce impact by increase associativity or increasing cache/block size
and/or increase associativity (may increase access time)

ë Larger cache Ô⇒ more sets Ô⇒ fewer addresses map to same loc.

Alex Brandt Chapter 1: CPU and Memory, Part 3: Cache Implementations Thursday January 17, 2019 26 / 37

Outline

1 The Basics

2 Cache Organization Schemes

3 Handling Cache Hits & Misses

4 Cache Design & Improvements

Alex Brandt Chapter 1: CPU and Memory, Part 3: Cache Implementations Thursday January 17, 2019 27 / 37

Reducing effects of Cache Miss
Reducing Cache Miss Rate Ô⇒ increase cache size

With increasing technology (especially transistor size and density)
there is more room for larger caches.

Reducing Cache Miss Penalty Ô⇒ use more levels of cache
L1 cache around for a long time.
L2 cache first appeared with Intel’s Celeron processors with only
128KB (1999).
L3 was first seen in 2003 but prohibitively expensive. Became
standard with Intel’s Nehalem in 2008.

Recall: New AMAT Example
1 cycle L1 hit time, 2% L1 miss rate, 5 cycle L2 hit time, 5% L2 miss
rate,100 cycle main memory access time

Without L2 cache: AMAT = 1 + .02*100 = 3
With L2 cache: AMAT = 1 + .02*(5 + .05*100) = 1.2

Alex Brandt Chapter 1: CPU and Memory, Part 3: Cache Implementations Thursday January 17, 2019 28 / 37

Intel Pentium Memory Hierarchy

Alex Brandt Chapter 1: CPU and Memory, Part 3: Cache Implementations Thursday January 17, 2019 29 / 37

Multilevel Cache Design
Design considerations for L1 and L2 caches are very different:

Primary cache should focus on minimizing hit time in support of
faster processor clock.

ë Smaller capacity with smaller block sizes.
Secondary cache(s) should focus on reducing miss penalty by
reducing miss rate to main memory.

ë Larger capacity with larger block sizes.
ë Higher levels of associativity.

The miss penalty of the L1 cache is significantly reduced by the
presence of an L2 cache.

ë L1 cache can be smaller and faster (but results in higher miss rate).
Hit time is less important for L2 cache than miss rate.

ë But, L2 hit time determines L1’s miss penalty.
ë Presence of L3 cache greatly improves the situation, allowing L2 miss

rate to be slightly less important.
It’s all a balancing act.
Alex Brandt Chapter 1: CPU and Memory, Part 3: Cache Implementations Thursday January 17, 2019 30 / 37

Improving Cache Performance (1/2)

AMAT = Time for a Hit + Miss Rate * Miss Penalty

(1) Reduce the time to hit in the cache.
ë Smaller cache size, smaller block size.
ë Direct-Mapped
ë For writes, two possible strategies:

- No-Write Allocate: no “hit” on cache, just write to write buffer.
Makes subsequent reads tricky.

- Write Allocate: avoid 2 cycles using write buffer to write to lower cache.

(2) Reduce the miss rate.
ë Larger cache, Larger block size (16 - 64 bytes typical).
ë More flexible placement (increase associativity).
ë Use a victim-cache – a small buffer holding most recently discarded

blocks.

Alex Brandt Chapter 1: CPU and Memory, Part 3: Cache Implementations Thursday January 17, 2019 31 / 37

Improving Cache Performance (2/2)

AMAT = Time for a Hit + Miss Rate * Miss Penalty

(3) Reduce the miss penalty
ë Smaller blocks.
ë Use a write-buffer.
ë Check the write-buffer (or the victim-cache) on a read miss: luck!
ë Pre-fetch critical word first, then rest of cache block.
ë Use multiple cache levels.
ë Faster backing store (= main memory).
ë Improved memory bandwidth – amount and speed of memory

transfer between levels (e.g. wider buses).

Alex Brandt Chapter 1: CPU and Memory, Part 3: Cache Implementations Thursday January 17, 2019 32 / 37

The Cache Design Space

It’s all a balancing act.

Several interacting dimensions
ë cache size
ë block size
ë associativity
ë replacement policy
ë write-through vs write-back
ë write allocation

The optimal choice is a compromise
ë depends on access characteristics

(what the program is doing).
ë depends on technology / cost.

Simplicity often wins.

Alex Brandt Chapter 1: CPU and Memory, Part 3: Cache Implementations Thursday January 17, 2019 33 / 37

Memory Hierarchy: Critical Aspects
The Principle of Locality:

Program likely to access a relatively small portion of the address
space at any instant of time.

ë Temporal locality: Locality in Time.
ë Spatial locality: Locality in Space.

Three major types of cache misses:
Compulsory/Cold Misses: Sad facts of life. The first reference to
an address/block.
Conflict misses: Increase cache size and/or associativity. Thrashing!
Capacity misses: It turns out size does matter :(

Cache Design Space
Total size, Block size, Associativity (& Replacement policy).
Write-hit policy: write-through, write-back
Write-miss policy: (no)-write-allocate. Use write buffers.

Alex Brandt Chapter 1: CPU and Memory, Part 3: Cache Implementations Thursday January 17, 2019 34 / 37

Questions to Consider

Q1 Where can an entry be placed or found in cache?
ë Cache Organization, Direct-Mapping, Associativity.

Q2 Which entry should be replaced on a miss?
ë Replacement Policies: LRU, FIFO.

Q3 What happens on a write?
ë Write hit/miss strategies: write-through, write-back, write-allocate.

Typical Example: Given list of memory references describe the cache’s
state after each reference.

Alex Brandt Chapter 1: CPU and Memory, Part 3: Cache Implementations Thursday January 17, 2019 35 / 37

Q1: Where can an entry be placed?

of sets Entries per set
Direct mapped # of cache lines 1
Set associative (# of cache lines) / Associativity

associativity (typically 2 to 16)
Fully associative 1 # of entries

Location method # of comparisons
Direct mapped Index 1
Set associative Index the set; Degree of

compare set’s tags associativity
Fully associative Compare all entries’ tags # of entries

Alex Brandt Chapter 1: CPU and Memory, Part 3: Cache Implementations Thursday January 17, 2019 36 / 37

Q2: Which entry should be replaced on a miss?

Easy for direct mapped - only one choice.
Set associative or fully associative:

ë Random
ë LRU (Least Recently Used)
ë FIFO (First In First Out)

For 2-way set associative LRU is easy and ideal.
Comparisons required for LRU can be too costly for high levels of
associativity (> 4-way).

Alex Brandt Chapter 1: CPU and Memory, Part 3: Cache Implementations Thursday January 17, 2019 37 / 37

