CS3350B Computer Organization Chapter 2: Synchronous Circuits Prelude

Alex Brandt
Department of Computer Science
University of Western Ontario, Canada

Thursday January 24, 2019

Outline

1 Everything on a Computer is a Number

Radix Representations

Radix is the base number in some numbering system. In a radix r representation digits $\left(d_{i}\right)$ are from the set $\{0,1, \ldots, r-1\}$

$$
x=d_{n-1} \times r^{n-1}+d_{n-2} \times r^{n-2}+\cdots+d_{1} \times r^{1}+d_{0} \times r^{0}
$$

- $r=10 \Longrightarrow$ decimal, $\{0,1,2,3,4,5,6,7,8,9\}$
- $r=2 \Longrightarrow$ binary, $\{0,1\}$
- $r=8 \Longrightarrow$ octal, $\{0,1,2,3,4,5,6,7\}$

■ $r=16 \Longrightarrow$ hexadecimal, $\{0,1,2,3,4,5,6,7,8,9, a, b, c, d, e, f\}$

Refresh: Decimal to Binary
$(13)_{10}=\left(1 \times 10^{1}\right)+\left(3 \times 10^{0}\right)$
$(1101)_{2}=\left(1 \times 2^{3}\right)+\left(1 \times 2^{2}\right)+\left(0 \times 2^{1}\right)+\left(1 \times 2^{0}\right)=8+4+0+1=(13)_{10}$

Unsigned Binary Integers

Unsigned Integers \Longrightarrow the normal representation
An n-bit number:

$$
x=x_{n-1} 2^{n-1}+x_{n-2} 2^{n-2}+\cdots+x_{1} 2^{1}+x_{0} 2^{0}
$$

- Has a factor up to 2^{n-1}.
- Has a range: 0 to $\left(2^{n}-1\right)$
- Example

$$
\begin{aligned}
& 00000000000000000000000000001011_{2} \\
= & 0+\cdots+1 \times 2^{3}+0 \times 2^{2}+1 \times 2^{1}+1 \times 2^{0} \\
= & 0+\cdots+8+0+2+1=11_{10}
\end{aligned}
$$

■ Using 32 bits: 0 to $+4,294,967,295$

Signed Binary Integers (1/2)

How to encode a negative sign?
One's Compliment: Invert unsigned representation to get negative.

- Get value by inverting all bits then multiply by -1 .
- Leading bit decides if negative or not.
- All positive numbers have the same representation as unsigned.

In one's compliment:

- $(0101)_{2}=(0101)_{2}=5$
- $(1101)_{2}=-1 \times(0010)_{2}=-2$
- $(0000)_{2}=(0000)_{2}=0$
- (1111) $)_{2}=-1 \times(0000)_{2}=-0$????

One's compliment is rarely used:

- Signed zero.
- Weird borrowing required in arithmetic.

Signed Binary Integers (2/2)

How to encode a negative sign?
Two's Compliment: Invert all the bits with respect to 2^{n}
■ Same as treating leading bit as negative in expansion.

- Leading bit decides if negative or not.
- All positive numbers have the same representation as unsigned.

In two's compliment:

- $(0101)_{2}=(0101)_{2}=5$
- $(1101)_{2}=-1 \times 2^{3}+(0101)_{2}=-8+5=-3$
- $(0000)_{2}=(0000)_{2}=0$
- $(1111)_{2}=-1 \times 2^{3}+(0111)_{2}=-1$

Two's Compliment

Advantages:

- Arithmetic is the same whether positive or negative:

$$
\begin{aligned}
(0101)_{2} & =5 \\
+(1101)_{2} & =-3 \\
\hline(0010)_{2} & =2 \quad \text { (Throw away carry bit) }
\end{aligned}
$$

- No signed 0 .
- One extra value represented with same number of bits.

For an n-bit number:

- Range of values is -2^{n-1} to $2^{n-1}-1$

Same Bits Different Numbers

It is important to realize that the same bit pattern can represent different numbers.

$$
\begin{aligned}
(10011010)_{2} & \Longrightarrow(154)_{10} \quad \text { interpretted as unsigned } \\
& \Longrightarrow(-102)_{10} \quad \text { interpretted as two's compliment }
\end{aligned}
$$

Can be disastrous in programming!

```
unsigned int a = (1 << 31); // a = 2147483648
int b = a; // b = -2147483648
```


Signed Negation

In two's compliment, bit-wise complement then add 1.

$$
\begin{aligned}
6=(0110)_{2} & =\left(0 \times 2^{3}\right)+\left(1 \times 2^{2}\right)+\left(1 \times 2^{1}\right)+\left(0 \times 2^{0}\right) \\
\Downarrow & \text { compliment } \\
(1001)_{2} & =\left(-1 \times 2^{3}\right)+\left(0 \times 2^{2}\right)+\left(0 \times 2^{1}\right)+\left(1 \times 2^{0}\right)=-8+1 \\
\Downarrow & \text { add one } \\
(1001)_{2}+(0001)_{2} & =(1010)_{2}=-8+0+4+0=-6
\end{aligned}
$$

Also works in reverse! (from negative to positive)
\hookrightarrow Still, compliment then add 1 .

$$
\hookrightarrow-6=(1010)_{2} \Rightarrow(0101)_{2}+1 \Rightarrow(0110)_{2}=6
$$

Signed Extension

Signed Extension:

■ Represent a number using more bits but keep numerical value.
■ Very easy in two's compliment!
■ Copy the signed bit to the left until desired number of bits.

Examples: 8-bit to 16-bit
■ 2: $00000010 \Rightarrow 0000000000000010$
■ -2: $11111110 \Rightarrow 1111111111111110$
■-10: $11110110 \Rightarrow 1111111111110110$

Note: Truncation (representing a number using less bits) is tricky and you must know what you're doing.

Logical Shift

Logical Shift:

- Shift the bits left or right a specified number of times.
- Fills the vacancies with 0s on shift left and shift right.
- Throw away any bits that flow out.
- << (shift left) and >> (shift right) in C (unsigned).

Examples (in 8 bits):

- $2 \ll 3=(00000010) \ll 3=(00010000)=16$.
- $8 \gg 2=(00001000) \gg 2=(00000010)=2$.
- $-4 \gg 1=(11111100) \gg 1=(01111110)=126$.
\hookrightarrow This last one is ambiguous if it is logical or arithmetic shift. In high-level programming languages the right shift operator is usually an arithmetic shift...

Arithmetic Shift

Arithmetic Shift:

- Shift the bits left or right a specified number of times.
- Fills the vacancies with 0 s on shift left.
- Fills the vacancies with 1 s on shift right if number is negative.
- Fills the vacancies with 0 s on shift right if number is positive.

■ Throw away any bits that flow out.

- << (shift left) and >> (shift right) in C (signed).

Examples (in 8 bits):

- $2 \ll 3=(00000010) \ll 3=(00010000)=16$.
- $8 \gg 2=(00001000) \gg 2=(00000010)=2$.
- $-4 \gg 1=(11111100) \gg 1=(11111110)=-2$.

CS3350B Computer Organization Chapter 2: Synchronous Circuits
 Part 1: Gates, Switches, and Boolean Algebra

Alex Brandt
Department of Computer Science
University of Western Ontario, Canada

Tuesday January 29, 2019

Outline

1 Introduction

2 Logic Gates

3 Boolean Algebra

Layers of Abstraction

After looking at high-level CPU and Memory we will now go down to the lowest level (that we care about).

Circuit Design vs Digital (Logic) Design
\hookrightarrow Design of individual circuits vs Using circuits to implement some logic.

Circuit Design

Why do we care?

- Appreciate the limitations of hardware.
- Understand why some things are fast and some things are slow.
- Need circuit design to understand logic design.

■ Need logic design to understand CPU Datapath.

If you are ever working with:

- Assembly, ISAs,
- Embedded Systems and circuits,
- Specialized computer/logic systems, you will need circuit and logic design.

Digital Circuits

Everything is digital: represented by discrete, individual values.
\hookrightarrow No gray areas or ambiguity.

Must convert an analog - continuously variable - signal to digital.

For us, the analog signal is electricity (voltage).
\rightarrow "High" voltage $\Rightarrow 1$
\rightarrow "Low" voltage $\Rightarrow 0$

Physicality of Circuits

In the end, everything is a switch.

"Input" \Rightarrow A
"Output" \Rightarrow Z

If A is $0 /$ false then switch is open. If A is $1 /$ true then switch is closed.

This circuit implements:

$$
A \equiv \mathbf{Z}
$$

Transistors: Electrically Controlled Switches

MOS-FET: Metal-Oxide-Semiconductor Field-Effect Transistor

- Has a source (S), a drain (D), and a gate (G).
- Applying voltage to G allows current to flow between S and D.
- In reality, transistors, logic gates, SRAM, use CMOS
(Complimentary-MOS). But we don't care about transistors really...

n-channel
opens when voltage at G is low, closes when voltage at G is high

p-channel closes when voltage at G is low, opens when voltage at G is high

Flipping a transistor is much faster than moving a physical switch. \hookrightarrow Speed of switching a transistor directly related to speed of a CPU

Outline

1 Introduction

2 Logic Gates

3 Boolean Algebra

Logic as Circuits

Propositional Logic: A set of propositions (truth values) combined by some logical connectives.

- Truth values \equiv Binary digital signal

■ Logical connectives \equiv Logic gates

Logic Gate: A circuit implementing some logical expression/function.
The basics: AND (\wedge), OR (\vee), NOT (\neg).

Arity of a function/gate is the number of inputs.

Gates as Switches

- Both A and B must be true/1 to get the circuit to complete.

- Either A or B can be true/1 to get the circuit to complete.

Logic Gates In Detail: AND

$A \longrightarrow C$

Truth Table for AND

$$
\begin{aligned}
& A \wedge B \equiv C \\
& A \cdot B \equiv C
\end{aligned}
$$

A	B	$A \wedge B \equiv C$
0	0	0
0	1	0
1	0	0
1	1	1

Logic Gates In Detail: OR

Truth Table for OR

$A \vee B \equiv C$
$A+B \equiv C$

A	B	$A \vee B \equiv C$
0	0	0
0	1	1
1	0	1
1	1	1

Logic Gates In Detail: NOT

Truth Table for NOT

$$
\neg \mathrm{A} \equiv \mathrm{C}
$$

$$
\overline{\mathrm{A}} \equiv \mathrm{C}
$$

More Interesting Logic Gates: NAND

Truth Table for NAND

$$
\begin{gathered}
\neg(\mathrm{A} \wedge \mathrm{~B}) \equiv \mathrm{C} \\
\overline{\mathrm{~A} \cdot \mathrm{~B}} \equiv \mathrm{C} \\
A \mid B
\end{gathered}
$$

A	B	$\overline{\mathrm{A} \cdot \mathrm{B}} \equiv \mathrm{C}$
0	0	1
0	1	1
1	0	1
1	1	0

More Interesting Logic Gates: NOR

More Interesting Logic Gates: XOR (Exclusive OR)

Truth Table for XOR

Outline

1 Introduction

2 Logic Gates

3 Boolean Algebra

The Algebra of Logic Gates

Due to the equivalence of truth values and binary digital signals, Boolean Algebra is heavily used discussing circuitry.

Associativity:

$$
\begin{array}{r}
(A+B)+C \equiv A+(B+C) \\
(A \cdot B) \cdot C \equiv A \cdot(B \cdot C)
\end{array}
$$

Commutativity:

$$
\begin{array}{r}
A+B \equiv B+A \\
A \cdot B \equiv B \cdot A
\end{array}
$$

Distributivity:

$$
\begin{array}{r}
A+(B \cdot C) \equiv(A+B) \cdot(A+C) \\
A \cdot(B+C) \equiv(A \cdot B)+(A \cdot C)
\end{array}
$$

Identity:

$$
\begin{aligned}
A+0 & \equiv A \\
A \cdot 1 & \equiv A
\end{aligned}
$$

Annihilation:

$$
\begin{aligned}
A+1 & \equiv 1 \\
A \cdot 0 & \equiv 0
\end{aligned}
$$

Idempotence:

$$
\begin{aligned}
A+A & \equiv A \\
A \cdot A & \equiv A
\end{aligned}
$$

Boolean Algebra: More Interesting Laws

Absorption:

$$
\begin{aligned}
A \cdot(A+B) & \equiv A \\
A+(A \cdot B) & \equiv A
\end{aligned}
$$

De Morgan's Laws:

Double Negation

$$
\overline{\bar{A}} \equiv A
$$

$$
\begin{aligned}
& \overline{A+B} \equiv \bar{A} \cdot \bar{B} \\
& \overline{A \cdot B} \equiv \bar{A}+\bar{B}
\end{aligned}
$$

Complementation:
Look familiar?
\hookrightarrow Definitions of NOR and NAND.

$$
\begin{array}{r}
A+\bar{A} \equiv 1 \\
A \cdot \bar{A} \equiv 0
\end{array}
$$

Proving De Morgan's Laws

Proof by Exhaustion:

\hookrightarrow The easiest way to prove something is to write out each expression's truth table.

$$
\overline{A+B} \equiv \bar{A} \cdot \bar{B}
$$

A	B	$\mathrm{A}+\mathrm{B}$	$\overline{A+B}$
0	0	0	1
0	1	1	0
1	0	1	0
1	1	1	0

A	B	\bar{A}	\bar{B}	$\bar{A} \cdot \bar{B}$
0	0	1	1	1
0	1	1	0	0
1	0	0	1	0
1	1	0	0	0

Simplifying Expressions with Boolean Algebra (1/2)

$$
\overline{x y z}+\overline{x y} z
$$

$$
\begin{aligned}
\overline{x y z}+\overline{x y} z & \equiv \overline{x y}(\bar{z}+z) \\
& \equiv \overline{x y}(1) \\
& \equiv \overline{x y}
\end{aligned}
$$

Complementation of z Identity with $\overline{x y}$

x	y	z	$\overline{x y z}$	$\overline{x y} z$	$\overline{x y z}+\overline{x y} z$
0	0	0	1	0	1
0	0	1	0	1	1
0	1	0	0	0	0
0	1	1	0	0	0
1	0	0	0	0	0
1	0	1	0	0	0
1	1	0	0	0	0
1	1	1	0	0	0

Simplifying Expressions with Boolean Algebra (2/2)

Sometimes a truth table is too challenging...
\hookrightarrow For v variables a truth table has 2^{v} rows.

$$
\overline{(\bar{x}+\bar{z})}(a b c d+x z) \Longrightarrow 6 \text { variables, } 64 \text { rows }
$$

Instead we can simplify using the laws of Boolean algebra:

$$
\begin{aligned}
\overline{(\bar{x}+\bar{z})}(a b c d+x z) & \equiv \overline{\overline{x z}}(a b c d+x z) \\
& \equiv x z(a b c d+x z) \\
& \equiv x z
\end{aligned}
$$

$$
\equiv x z(a b c d+x z) \quad \text { Double negation of } x \text { and } z
$$

Absorption

Simplifying Expressions for Simplified Circuits

$$
y=((a b)+a)+c
$$

$$
\begin{array}{rlr}
y & \equiv(a b+a)+c & \\
& \equiv a(b+1)+c & \text { Factor } a \\
& \equiv a(1)+c & \text { Annihilaltion } \\
& \equiv a+c & \text { Identity }
\end{array}
$$

Canonical Forms

Different standard or canonical forms.

- Conjunctive Normal Form (CNF) \Rightarrow AND of ORs
\bigsqcup "Product-of-sums"
■ Disjunctive Normal Form (DNF) \Rightarrow ORs of ANDs
\hookrightarrow "Sum-of-products"

$$
\text { CNF } \quad(a+b) \cdot(\bar{a}+b) \cdot(\bar{a}+\bar{b})
$$

DNF $a b+\bar{a} b+\bar{a} \bar{b}$

■ Every variable should appear in every sub-expression.
\hookrightarrow Products for DNF, Sums for CNF.
\hookrightarrow Some authors call this "Full DNF" or "Full CNF".
■ Every boolean expression can be converted to a canonical form.

- DNF more useful and practical \Rightarrow truth tables.

Truth Tables and Disjunctive Normal Forms

We can get a DNF expression directly from a truth table.

- a, b, c are inputs, f is output.
- Create one product term for every entry in the table with $f \equiv 1$.
- Put \bar{x} in product if x is false in that row.
- Put x in product if x is true in that row.
- OR all products together.

a	b	c	f	
0	0	0	1	
0	0	1	0	
0	1	0	1	
0	1	1	0	
1	0	0	1	
1	0	1	0	
1	1	0	0	
1	1	1	1	
$a b c$				
$a b \bar{c}+a \overline{b c}+a b c$				

Functional Completeness

Functional Completeness - A set of functions (operators) which can adequately describe every operation and outcome in an algebra.

- For Boolean algebra the classical set of operators: $\{+, \cdot, \neg\}$ is functionally complete but not minimal.
- Thanks to De Morgan's Law we only need one of AND or OR.
- The sets $\{+, \neg\}$ and $\{\cdot, \neg\}$ are both functionally complete and minimal.
\hookrightarrow minimal - removing any one of the operators would make the set functionally incomplete.
- NAND alone is functionally complete; so is NOR alone.

NAND is Functionally Complete

NAND alone is functionally complete.

- NAND \equiv |
- To prove functional completeness simply show that the operators of the set can mimic the functionality of the set $\{+, \cdot, \neg\}$.

$$
\neg X \equiv X \mid X
$$

X	\bar{X}	$X \cdot X$	$\overline{X \cdot X}$
0	1	0	1
1	0	1	0

X	Y	$A \equiv X \mid Y$	$A \mid A$
0	0	1	0
0	1	1	0
1	0	1	0
1	1	0	1

$X \cdot Y \equiv \overline{X \mid Y} \equiv(X \mid Y) \mid(X \mid Y)$
$X+Y \equiv \overline{\overline{X+Y}} \equiv \overline{\bar{X} \cdot \bar{Y}} \equiv(X \mid X) \mid(Y \mid Y)$

X	Y	\bar{X}	\bar{Y}	$\bar{X} \mid \bar{Y}$
0	0	1	1	0
0	1	1	0	1
1	0	0	1	1
1	1	0	0	1

Summary

Boolean algebra can simplify circuits.

- Remove variables that the output does not depend on.

■ Simplifies expression, removing needless gates.
■ Space and time complexity improved!

Truth tables, canonical forms, functional completeness.

Help generating truth tables:
■ http://turner.faculty.swau.edu/mathematics/ materialslibrary/truth/

CS3350B Computer Organization Chapter 2: Synchronous Circuits Part 2: Stateless Circuits

Alex Brandt
Department of Computer Science
University of Western Ontario, Canada

Tuesday February 05, 2019

Outline

1 Combinational Circuits

2 Adders and Subtractors

3 MUX and DEMUX

4 Arithmetic Logic Units

Stateless Circuits are Combinational Circuits

- Stateless \Rightarrow No memory.

■ Combinational \Rightarrow Output is a combination of the inputs alone.

Combinational circuits are formed from a combination of logic gates and other combinational cirtcuits.
\hookrightarrow Modular Design,
\longrightarrow Reuse,
\hookrightarrow Simple to add new components.

Sometimes, these are called functional blocks, they implement functions.

Increasing Arity

Arity: the number of inputs to a gate, function, etc.
How can we build an n-way add from simple 2 -input and gates?
\hookrightarrow Simply chain together $n-1$ 2-way gates.
Example: 5-way AND

Works for AND, OR, XOR. Doesn't work for NAND, NOR.

Block Diagrams

A block diagram or schematic diagram can use used to express the high-level specification of a circuit.

■ How many inputs, how many bits for each input?

- How many outputs, how many bits for each output?
- What does the circuit do? Formula or truth table.

$$
F \equiv \overline{a b c}+a b c
$$

a	b	c	F
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

From Blocks to Gates $(1 / 2)$

a	b	c	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

1 Generate truth table.
2 Get canonical form:

$$
F \equiv \bar{a} b c+a \bar{b} c+a b \bar{c}+a b c
$$

3 Simplify if possible:

$$
\begin{aligned}
& \bar{a} b c+a \bar{b} c+a b \bar{c}+a b c \\
& \equiv \bar{a} b c+a \bar{b} c+a b \bar{c}+a b c+a b c+a b c \\
& \equiv \bar{a} b c+a b c+a \bar{b} c+a b c+a b \bar{c}+a b c \\
& \equiv b c+a c+a b
\end{aligned}
$$

From Blocks to Gates $(2 / 2)$

a	b	c	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

3 Simplify if possible:

$$
F \equiv b c+a c+a b
$$

4 Draw your circuit from simplified formula.

This is called a majority circuit. Output is true iff majority of inputs are true.

Outline

1 Combinational Circuits

2 Adders and Subtractors

3 MUX and DEMUX

4 Arithmetic Logic Units

1 Bit Adder

Adder interprets bits as a binary number and does addition.

$$
\begin{aligned}
& s=a d d(a, b) \\
& c=\text { carry (overflow) bit }
\end{aligned}
$$

1 Bit Full Adder

Full Adder does addition of 3 inputs: a, b, and carry ${ }_{i n}$.
\hookrightarrow Previous adder was a half adder.

$$
\begin{aligned}
& s=X O R\left(a, b, c_{i n}\right) \\
& c=a b+\left(X O R(a, b) \cdot c_{i n}\right)
\end{aligned}
$$

1 Bit Full Adder using Half Adders

A full adder can be built from half adders.
\hookrightarrow Modular design, reuse, simplified view.

n-Bit Full Adder

n-bit adder: Add n bits with carry.
\hookrightarrow Just like long addition done by hand.
\hookrightarrow Combine n full adders, adding bit by bit, carrying the carry from lowest-ordered bit to highest-ordered bit.
\hookrightarrow Final carry bit is c_{n}.

Addition Overflow (1/2)

Overflow occurs when arithmetic results in a number strictly larger than can fit in the predetermined number of bits.

- For unsigned integers, overflow is detected by c_{n} being 1.
- For signed (i.e. twos-compliment) integers, overflow more interesting.

Example: Addition in 4 bits.

```
    1000 (carry bits)
    1101
+ 0110
    10011 }=>\quad\mp@subsup{c}{n}{}\mathrm{ is 1. Overflow?
```


Addition Overflow (1/2)

Overflow occurs when arithmetic results in a number strictly larger than can fit in the predetermined number of bits.

■ For unsigned integers, overflow is detected by c_{n} being 1.

- For signed (i.e. twos-compliment) integers, overflow more interesting.

Example: Addition in 4 bits.

1000			
1101	(carry bits)		
+0110			
10011		\quad	
:---:			

Addition Overflow (2/2)

In twos-compliment when is there overflow?

- Most significant bit encodes a negative number in two's compliment.
- If both operands are positive and $c_{n-1} \equiv 1$ then we have overflow.
- If one positive and one negative, overflow impossible.
\hookrightarrow Their sum is always closer to zero than either of the operands.
■ If both operands are negative and $c_{n} \equiv 1$ then we have overflow.

1000 (Overflow	1000	1000
0101	+1000	1101
+0110	$10000 \Rightarrow$ Overflow	+ 0110
1011		10011 (No overflow

Overflow in two's compliment: c_{n} XOR c_{n-1}.

n-bit Subtractor (1/2)

n-bit subtractor: Subtract two n-bit numbers.

- We want $s=a-b$.
- Start with an n-bit adder.
- XOR b with a control signal for subtraction.
\bigsqcup signal is 1 for subtraction, 0 for addition.
XOR works as conditional inverter.
$\hookrightarrow A$ XOR $B \equiv C \Longrightarrow$ if (B) then $\bar{A} \equiv C$ else $A \equiv C$.

A	B	$A \oplus B \equiv C$
0	0	0
0	1	1
1	0	1
1	1	0

n-bit Subtractor (2/2)

Control signal SUB acts as c_{0}.
\hookrightarrow Recall: signed negation. Invert and add one.
\hookrightarrow XOR does invert.

Outline

1 Combinational Circuits

2 Adders and Subtractors

3 MUX and DEMUX

4 Arithmetic Logic Units

Multiplexer

A multiplexer "mux" conditionally chooses among its inputs to set value of output.

- Uses control signal to control which input is chosen.
- Still no state, output depending only on inputs: input bits and control signal.

2-way multiplexer

Notice actual value of a and b have no effect on decision.
$\hookrightarrow 0$ and 1 in multiplexer is not the value of a or b but the "index".

2-way Multiplexer

How to encode this "if-then" behaviour without actual conditionals?

$$
\begin{aligned}
c & \equiv M U X(a, b, s) \\
& \equiv \bar{s} a(b+\bar{b})+s b(a+\bar{a}) \\
& \equiv \bar{s} a+s b
\end{aligned}
$$

Note: $X \cdot(Y+\bar{Y})$ encodes " X independent of what the value of Y is".

4-way Multiplexer

$$
\begin{aligned}
& e \equiv M U X(a, b, c, d, S) \\
& \equiv \overline{s_{1} s_{0}} a+\overline{s_{1}} s_{0} b \\
& +s_{1} \overline{s_{0}} c+s_{1} s_{0} d
\end{aligned}
$$

The index of each input is now 0 through 3.

- Need 2 bits to choose among 4 inputs.
- Control signal's bit-width is now 2.

Big Data Multiplexer

Bit-width of input and output must match, but bit-width of control signal only determined by number of inputs to choose from.

Demultiplexer

Demultiplexer "demux" conditionally chooses among its outputs.
\hookrightarrow Opposite of MUX.
\hookrightarrow Un-selected outputs are set to 0 .

Outline

1 Combinational Circuits

2 Adders and Subtractors

3 MUX and DEMUX

4 Arithmetic Logic Units

Arithmetic Logic Unit

- An ALU is a black-box type circuit which can do many different arithmetic or logic operations on its inputs.
\hookrightarrow Not many at one time, but selectively acts as many.

■ Depending on the implementation can do addition, subtraction, multiplication, division, logical AND, logical OR, shifting, etc.

■ Use a control signal to choose which operation to perform.

■ Essentially a big collection of MUX and combinational blocks for each operation.

Simple ALU Circuit

Optimizing ALU

Remember, every additional gate increases delay and space. Instead, optimize via the normal four step process:

1 Generate a truth table,
2 Get canonical from from truth table,
3 Simplify expression,
4 Make circuit.

Another option: programmable logic array.

Programmable Logic Array

A programmable logic array (PLA) directly implements a truth table/canonical disjunctive normal form.

- Each AND row is a truth table row.
- Each OR column is one output bit.
- Each \oplus is a programmable (i.e. optional) join of the input to the circuit.

output

CS3350B Computer Organization Chapter 2: Synchronous Circuits Part 3: State Circuits

Alex Brandt
Department of Computer Science
University of Western Ontario, Canada

Thursday February 07, 2019

Outline

1 Digital Signals

2 The Clock

3 Flip-Flops and Registers

4 Finite State Machines

Digital Signals

We digitalize an analog (voltage) signal to encode binary.
■ "High" voltage $\Rightarrow 1$.
■ "Low" voltage $\Rightarrow 0$.

Transmitting Digital Signals

For our purposes:

- Transmission is continuous. There's always something on the wire.
- Transmission/switching is effectively instantaneous.

Grouping Signals To Encode Many Bits

Signals and Circuits

Unfortunately for us, combinational circuits cause propagation delay.

- The more complex the circuit the longer the delay.
- Every gate adds some delay.

Dealing with Delay

Problems with propagation delay:
■ Inputs transmit (change) instantaneously, but output does not.

- When can the next circuit read the output and ensure it is getting the correct value?

Synchronize the circuits via a clock.

Outline

1 Digital Signals

2 The Clock

3 Flip-Flops and Registers

4 Finite State Machines

The Clock Signal

The clock is a digital signal which has a precise timing for switching between $1 / 0$.

Synchronous circuits use the clock to sync their executions, decide when to read inputs/outputs.
\hookrightarrow Heartbeat of a synchronous system.

How to Synchronize

Circuits usually synchronize to the rising edge of the clock.
\hookrightarrow The transition from 0 to 1 .
\hookrightarrow Depending on the system, can instead sync on the falling edge.

Clock Multipliers

We know that CPU and memory operate at difference speeds. So how do they synchronize?

■ One central clock used.
■ Central clock is as slow as the slowest component.

- Faster components use a clock multiplier.

A clock multiplier multiplies the central clock frequency so that a component has many internal cycles for a single clock cycle of the entire system.

Note: this is simply a technicality of implementation. Generally, we still discuss speeds based on frequency the CPU experiences. Our old metrics still work as they always have.

Outline

1 Digital Signals

3 Flip-Flops and Registers

4 Finite State Machines

Circuits that Remember

Sometimes values on a wire (i.e. a bit) cannot be maintained indefinitely on that wire. Values must change.

- Computer memory is circuits which remember.
- Circuits implement memory but are also used within other circuits to hold state.
\hookrightarrow Modular design.

Flip-flop: a circuit which implements a single bit of memory.
\hookrightarrow All flip-flops based on a simple design: inputs, combined with current state, give next state.
\hookrightarrow Essentially, the implementation of static RAM (SRAM).
Register: a storage for multiple bits of memory.

Edge-Triggered Flip-Flop

A flip-flop which looks at its input on the edge of clock.
\hookrightarrow Rising edge or positive edge (usually), or
\hookrightarrow Falling edge or negative edge.

This is a delay flip-flop

D Flip-Flop

Delay flip-flop: takes input and, with some delay, sets output equal to the input.
\hookrightarrow Simplest (conceptually) flip-flop.
\hookrightarrow Requires constant updating to maintain state.
\hookrightarrow Grabs input on rising edge and outputs that until next clock cycle.
\hookrightarrow Current state does not affect next state.

D	Q	$\mathrm{Q}_{\text {next }}$
0	-	0
1	-	1

Flip-flops usually produce next state and negation of next state simultaneously.

T Flip-Flop

Toggle flip-flop: if input is 1 , toggle current state.
\hookrightarrow Uses current state to determine next state.
$\hookrightarrow T \equiv 0 \Rightarrow$ "Hold". Next state is same as current.
$\sqcup T \equiv 1 \Rightarrow$ "Toggle". Next state is opposite of current.

T	Q	$\mathrm{Q}_{\text {next }}$
0	0	0
0	1	1
1	0	1
1	1	0

SR Flip-Flop

Set-Reset flip-flop
\hookrightarrow Two inputs, S (set), R (reset), synchronized by a clock.
$\sqcup S \equiv 1 \Rightarrow$ "Set". Next state is 1 .
$\sqcup R \equiv 1 \Rightarrow$ "Reset". Next state is 0 .
$\hookrightarrow S \equiv 0 \wedge R \equiv 0 \Rightarrow$ "Hold".

S	R	Q	$\mathrm{Q}_{\text {next }}$
0	0	-	Q
0	1	-	0
1	0	-	1
1	1	-	-

Can not have both S and R set to $1 \ldots$

SR Technicalities

$$
S \equiv R \equiv E \equiv 1 \Longrightarrow \overline{1+\bar{Q}} \equiv 0 \equiv \overline{1+Q} \Longrightarrow Q \equiv \bar{Q} ? ? ?
$$

We get undefined behaviour. This is weird and can destabilize the system.

JK Flip-Flop

JK flip-flop

\hookrightarrow Two inputs, J (set), K (reset), synchronized by a clock.
\hookrightarrow Same as SR except with toggle.
$\hookrightarrow J \equiv 1 \wedge K \equiv 1 \Rightarrow$ "Toggle".

J	K	Q	$\mathrm{Q}_{\text {next }}$
0	0	-	Q
0	1	-	0
1	0	-	1
1	1	-	\bar{Q}

Registers

A register is just a collection of flip-flops.

- Technically, this is a shift register.
- n-bits $\Longrightarrow n$ flip-flops.
- Clock pulse connected to all flip-flops.
- Can be encoded using any type of flip-flop.

This example is a parallel in, parallel out register.

PIPO Registers

Parallel In, Parallel Out Register: All inputs bits come in in parallel, and output bits get output in parallel.

- Most common.
- Input/output of each flip-flop is independent.
- Can be encoded using any type of flip-flop.

SIPO Registers

Serial In, Parallel Out Register: One input bit at a time, output all bits at once.

■ Input bit moves through chain of flip-flops.

- Transitions at each clock.

- This example uses D flip-flops.
- Sometimes it is useful to clear the entire register without waiting n cycles for n bits of data to shift out.
- Additional control signals can be used to set all flip-flops to $1(S)$ or all flip-flops to $0(R)$.

SISO/PISO Registers

Serial In, Serial Out Register: A linear chain of flip-flops.
■ Output of one flip-flop is the input of the next.
■ One input bit and one output bit.
■ Kind of like a conveyor belt of bits.

Parallel In, Serial Out Register: A linear chain of flip-flops + control circuits.

- Data loaded in parallel: n flip-flops load n bits at once.
- Data output in serial: Acts as SISO for output.
\hookrightarrow Output one bit at a time.
\hookrightarrow Bits are shifted one over on each output.
■ Requires clock and additional write/shift control signal.

Timing a Flip-Flop

All gates/circuits introduce propagation delay.
For flip-flops this propagation delay is called clk-to-q delay.

Timing a Flip-Flop: Data Stability

Input to a flip-flop must have a stable value around the rising edge of the clock.
\hookrightarrow Before the rising edge: setup time.
\hookrightarrow After the rising edge: hold time.

Despite how it's shown here, hold time is less than clk-to-q delay.

Putting it all Together: Accumulator

An accumulator: continually adds input value to its stored value.

■ This doesn't work.

- Would spin once per circuit's propagation delay, not once per input.

■ Need clock to synchronize reading from input.

Clocked Accumulator

- Insert register to store output.
- Only need to clock the register, not the combinational circuit.
- Clock on register determines when output of circuit actually gets stored.

Timing the Accumulator

Clock must be slow enough to include:

- Adder delay,
- Clk-to-q,
- Setup time.

Synchronous Circuits: Clock Frequency

(Max Clock Freq.)
Min. Clock Period $=$ Combinational Circuit Propagation Delay

$$
\begin{aligned}
& + \text { Setup Time } \\
& + \text { Clk-To-Q }
\end{aligned}
$$

Pipeline for Performance (1/2)

Delay of adder and shifter is very long.

- Forces clock cycle to be very long.
- Slows down other circuits in this synchronous system.

Pipeline for Performance (2/2)

- Split add and shift into two different tasks.
- Insert register between to store results temporarily.
- Increase clock frequency.

General Synchronous Systems

- All systems follow a general pattern:
- A chain of logic circuit blocks, separated by registers, controlled by a single clock.
- Foreshadowing for MIPS pipeline.

Outline

1 Digital Signals

3 Flip-Flops and Registers

4 Finite State Machines

Finite State Machines: Introduction

We know FSMs from logic, formal languages, complexity.

■ Each state of the machine is a node.

- Inputs trigger change of state and an output.
- This is a Mealy machine: outputs occur on transitions.
- Moore machines are equivalent.
\hookrightarrow Output is based on current state.

Finite State Machines: As Circuits

FSMs have three components: state, input, output.
■ Just like synchronous circuit.

- Registers, input bits, output bits.
- Clock controls when inputs read \Rightarrow transitions.

■ PS: present state, NS: next state.

Finite State Machines: Implementing The Logic

Next state and output is always just some Boolean combination of input and output. Use our normal 4-step process:

1. Build a truth table,
2. Get canonical form,
3. Simplify,
4. Draw circuit.

PS	In	NS	Out	
00	0	01	0	
00	1	01	1	
01	-	10	0	\Longleftrightarrow FSM state diagram
10	0	10	1	
10	1	11	1	
11	0	10	0	
11	1	11	1	

FSMs are Synchronous Systems are FSMs

■ Essentially every synchronous system can be modelled by an FSM.
\hookrightarrow Would become absurdly large in most circumstances.

- A valid design strategy for integrated circuits and specialized hardware includes:

1 Turn problem into FSM.
2 Turn FSM into truth table.
3 Turn truth table into circuit.
■ Full Example: An elevator-controlling circuit.
\hookrightarrow https://www.cs.princeton.edu/courses/archive/spr06/ cos116/FSM_Tutorial.pdf

