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Instruction-Level Parallelism

For a computer architecture, its instruction-level parallelism (ILP) is a
measure of the number of instructions it can perform simultaneously.

ILP is usually achieved dynamically—after compile time—by the processor
itself manipulating program execution.

Circuitry (and appropriate control signals) needs to be added to the
processor to handle the execution of many instructions simultaneously and
to handle the dynamic nature of ILP.
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Achieving ILP

ILP can be achieved in many ways. Some topics we will look at:

Pipelining

Superscalar execution

VLIW – very long instruction word

Register renaming

Branch prediction
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"Pipelining” in Combinational Circuits

Break up a combinational circuit, reduce propagation delay, insert a
register to store intermediate results, increase clock frequency.
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Pipe, Pipeline, Pipelining

Unix pipe: pass data from one program to another.

ls -la | grep “foo.txt”

Data pipeline: a sequential series of processing elements (CPUs, circuits,
programs, etc.) where the output of one is passed as the input to another.
Buffer storage is needed between elements to store temporary data.

Pipelining: a technique for instruction-level parallelism where each stage
of the datapath is always kept busy. Instructions are overlapped.

Alex Brandt Chapter 4: ILP , Part 1: Pipelining Thursday March 7, 2019 6 / 30



Pipelining the RISC Datapath

Each stage is executing a different instruction.
5 stages Ô⇒ 5 instructions executed at once.
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Doing Laundry

We have 4 loads of laundry to do: A, B, C, D.

To process each load we need to:
ë Wash
ë Dry
ë Fold
ë Put-away

Each stage of doing laundry takes 30 minutes.

Could process each load sequentially or use
pipelining.

Alex Brandt Chapter 4: ILP , Part 1: Pipelining Thursday March 7, 2019 9 / 30



Doing Laundry: Sequentially

Each load of laundry is done one at a time:
ë Wash A, Dry A, Fold A, Put-away A.
ë Wash B, Dry B, Fold B, Put-away B.⋮

Takes 8 hours in total. There has to be a better way.
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Doing Laundry: Pipeline

Each stage of doing laundry must process each load sequentially.
But each load of laundry can overlap.
No dependency between drying load A and washing load B, etc.
Put-away A while Folding B while drying C while washing D.
Takes 3.5 hours in total.
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Pipelining Terms via Analogy

Pipelining: many tasks (loads of laundry)
being executed simultaneously using
different resources (washer, dryer, etc.).

Time to complete a single task (latency)
does not change.

ë Each load by itself still takes 2 hours.

Number of tasks that can be completed in
one unit of time (throughput) increases.

Potential speed up via pipelining equals the
number of stages in pipeline.

Actual speed-up never exactly equals
potential.
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Pipelining Terms via Analogy

Actual speed-up never exactly equals
potential.

Fill time: time taken to “fill” the pipeline.
Initially, not every stage is used.

Drain time: time taken to “empty” the
pipeline. Not all stages are used once the
last task begins.

Imagine a new washing machine takes only
20 minutes. This does not increase pipeline
speed.

ë Dryer still takes 30 minutes.
ë Washer must wait for dryer to finish before

laundry can move from washer to dryer.
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The RISC Datapath

IF ID EX MEM WB
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Review: Single Cycle Datapath

Clock cycle is long enough to handle critical path through datapath.
Time for data to pass through entire datapath.
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Performance of Single Cycle Datapath

Let’s assume that accessing memory takes 200ps and ALU
propagation delay is 200ps.

ë IF stage, EX stage, MEM stage.
Let’s assume accessing registers takes 100ps.

ë ID stage, WB stage.

What is the minimum clock cycle?
ë Sum of all stages since some instructions use all stages.
ë 200 + 100 + 200 + 200 + 100 = 800ps.

Instr. IF ID EX MEM WB Total
R-type 200ps 100ps 200ps - 100ps 600ps
Branch 200ps 100ps 200ps - - 500ps

sw 200ps 100ps 200ps 200ps - 700ps
lw 200ps 100ps 200ps 200ps 100ps 800ps
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Improving Performance of Datapath

Clock frequency
Parallel execution of instructions
via overlap: pipelining.
Superscalar, VLIW (to come
later).
Branch prediction (to come later).
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Review: Pipelining for Combinational Circuits

Break up a combinational circuit, reduce propagation delay, insert a
register to store intermediate results, increase clock frequency.
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Pipelining for MIPS
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Multi-Cycle Datapath

Clock cycle is long enough to handle slowest stage of the pipeline.
Time for data to pass through one (the slowest) stage of pipeline.

Example: Minimum clock cycle is 200ps.
Instr. IF ID EX MEM WB Total

R-type 200ps 100ps 200ps - 100ps 600ps
Branch 200ps 100ps 200ps - - 500ps

sw 200ps 100ps 200ps 200ps - 700ps
lw 200ps 100ps 200ps 200ps 100ps 800ps
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Pipelining for Performance

Further increase clock frequency?
Could break up datapath into more and more stages but...

ë More registers.
ë More complexity in datapath and controller design ⇒ overhead.
ë Still limited by slowest stage (memory).

Leverage the parallelism gained by pipelining.
Parallelism in execution of instructions yields fewer cycles per
instruction (CPI)

The Classic Performance Equation

CPU time = Instruction_count ×CPI × clock_cycle
or

CPU time = Instruction_count ×CPI ⇑ clock_rate
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RISC Pipeline Performance

Overlap instructions, start the next before the former completes.
Some instructions will “waste” a cycle as they flow through unused
stages.

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8
lw IFetch Dec Exec Mem WB
sw IFetch Dec Exec Mem WB
add IFetch Dec Exec Mem WB

Latency: time to complete one instruction. Does not change with
pipelining.
Throughput: number of instructions that can be completed in some
amount of time. Increases with pipelining.
Once pipeline is full CPI is 1.
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Pipeline Parallelism

time to drain pipeline

Potential speed-up via parallelism is equal to the number of stages.
5 stages Ô⇒ 5x potential speed up.
A pipeline is “full” when every stage is occupied by an instruction
(every stage does not have to necessarily be doing work).
Pipeline fill time and drain time reduce actual speed up.
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Performance: With and Without Pipelining
𝑇𝑐 = clock cycle time
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Quantifying Pipelined Speedup

If the time for each stage is the same:

Ideal Speedup = Number of Stages

If the time for each stage is not the same:

Ideal Speedup = Time between instructionsnon-pipelined
Time between instructionspipelined

Actual Speedup = Time to completenon-pipelined
Time to completepipelined
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Calculating Speedup

From previous example:
Single-cycle datapath: 800ps clock cycle.
Pipelined: 200ps clock cycle.
Uneven time for each stage. ID and WB only 100ps.
3 lw instructions.

Ideal Speedup = 800
200
= 4 Actual Speedup = 2400

1400
= 1.714

If we have 1000000 lw instructions?

Actual Speedup = 1000000 × 800
1000000 × 200 + 800

≈ 4
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Calculating Pipelined Time

Classic Performance Equation:

CPU time = Instruction_count ×CPI × clock cycle

Time for pipelined execution:

Timepipelined = Fill time + (IC × clock cycle)

Once pipeline is full, one instr. completes every cycle ⇒ CPI is 1.
ë Gives IC × 1 × clock cycle

Pipeline is only not full during fill or drain time.
Fill time = Drain time = (number of stages - 1) × clock cycle

ë Assuming number of instructions > number of stages.
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Calculating Pipelined Time

time to drain pipeline
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Summary

Pipelining is the simultaneous execution of multiple instructions each
in a different stage of the datapath.

Pipelining gives increased clock frequency by multi-cycle datapath.

Limited by the slowest stage.

Pipelining gives essentially a CPI of 1.

Speed-up must account for fill time and drain time.

All of the discussion so far assumed there is no conflicts between
instructions, hardware, circuits, etc.

ë Pipeline hazards severely impact performance and potential speed-up.
ë Chapter 4: Part 2: Pipeline hazards.
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Pros and Cons of Pipelining

Pipelining overlaps the execution of instructions to keep each stage of
the datapath busy at all times.

ë Improves throughput but not latency.
ë Might actually increase latency.

Can increase clock frequency using multi-cycle datapath.

Ideal speedup can be up to the number of stages.

Ideal speed up never reached.
ë Fill time and drain time limits speedup.
ë Must account for dependencies between results of previous instructions

and operands of future instructions.
ë Sometimes the same hardware is needed simultaneously by different

pipeline stages and different instructions (e.g. ID and WB stages).
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Categorizing Pipeline Hazards
Structural Hazards

Conflicts in hardware/circuit use.
Different stages or different instructions attempt to use same piece of
hardware at the same time.

Data Hazards
Dependencies between the result of an instruction and the input to
another instruction.
Data being used before it is finished being computed or written to
memory/registers.

Control Hazards
Ambiguity in the control flow of the program being executed.
Branch instructions—if/else, loops.
Take the branch? Don’t take the branch? Which instruction follows a
branch instruction in the pipeline?
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“Resolving” Pipeline Hazards

Not an easy task. Simplest solution: just wait or stall.
ë Any hazard can always be solved by just waiting.

But:
Ruins potential speedup.

ë Might end up being slower than a single-cycle datapath.
ë Since latency can increase in pipelining, with enough stalls becomes

slower.

Increases CPI.

Works against entire principle of pipelining.
ë Where’s the performance?

Nonetheless, sometimes it really is the only solution.
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Structural Hazards: Causes and Resolutions

Structural hazards are caused by two instructions needing to use the
same hardware at the same time.

Easiest to resolve? Just add in redundant hardware.
ë Works for combinational circuits.
ë Redundant memory would cause problems in needing to keep both

consistent.

Real structural hazards thus lie in state circuits: registers and
memory.

ë IF stage and MEM stage.
ë ID stage and WB stage.
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Structural Hazards In Memory (1/2)
Consider a unified L1 cache. Reading instructions and reading/writing
data could overlap for pipelined instructions.
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Structural Hazards In Memory (2/2)
Simple fix: separate instruction memory from data memory.

Can use a banked cache.
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Structural Hazards In Register File (1/2)

ID stage must read from registers while WB stage must write to registers.
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Structural Hazards In Register File (2/2)
In reality, reading from register file is very fast; clock cycle is long enough
to allow both ID and WB to occur within a single clock cycle.

Needs independent read and write ports.

Reg

Reg

Alex Brandt Chapter 4: ILP , Part 2: Pipeline Hazards Thursday March 14, 2019 11 / 32



Outline

1 Overview

2 Structural Hazards

3 Data Hazards

4 Control Hazards

Alex Brandt Chapter 4: ILP , Part 2: Pipeline Hazards Thursday March 14, 2019 12 / 32



Data Hazards: Causes and Resolutions

Data hazards are caused by dependencies between instruction
operands or results.

ë Read After Write (RAW) only true dependency.
ë Read After Read not a hazard.
ë Write After Read (WAR) and Wriate After Write (WAW) only a hazard

for out-of-order execution ⇒ Superscalar machines
ë Prelude to register renaming.

Can always be solved by stalling the pipeline.

Can be solved by special forwarding (also called bypass).

Most common type of hazard.
ë It’s the logical way to write programs; locality.
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Data Hazard Example 1 (1/3)
add produces a result which is then read by sub, and, or, xor.

Read After Write hazard.
xor is far enough in the future to be okay.
sub, and, or need more work.
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Data Hazard Example 1 (2/3)
Possible (but not great) solution: stall the execution.

sub structural hazard already solved.
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Data Hazard Example 1 (3/3)
Another possible solution: forwarding.

No more stalls!
ALU-ALU forwarding for add to sub and add to and.
or structural hazard already solved.
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More ALU-ALU Forwarding
Two kinds of ALU-ALU forwarding:

Instruction currently in MEM stage to ALU.
Instruction currently in WB stage to ALU.

ë Also called MEM-ALU forwarding.
Which to choose? Ô⇒ More control, more MUX.
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MEM-MEM Forwarding

For efficient memory copies (a common operation) this optimization
results in no stalls.

ë Otherwise, two stalls required.
ë Eight great ideas in computer arch.: make the common case fast.
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Load-Use Data Hazard

Load-use data hazard, a special kind of RAW hazard.
Forwarding does not help here, still going backwards in time.
A stall is required.
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Implementing a Stall: Pipeline Interlock
Pipeline Interlock—hardware detects hazard and stalls the pipeline.

Quite literally locks the flow of data between stages (locking writes to
inter-stage registers).
Essentially inserts an air bubble into pipeline.
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Implementing a Stall: NOP
NOP—a “no operation” special instruction inserted into instruction flow
by compiler.

Hazards are detected and fixed at compile-time.
Can be combined with forwarding; MEM-ALU in this case.
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Pipeline Interlock vs NOP

Interlocking requires special circuity to dynamically detect hazards
and stall the datapath.

nop requires extra effort at compile time to detect and resolve
hazards.

Inserted nop instructions bloat instruction memory.

More work at compile time for nop insertion but simpler (= faster?)
datapath and controller.

MIPS: Microprocessor without Interlocked Pipelined Stages
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Data Hazards and Code Structure
Some data hazards are “fake”.

Only caused by the order of instructions and not a true dependency.
Re-order code (if possible) so an independent instruction performed
instead of a nop.

ë Where the nop would be inserted is called the load delay slot.
ë Load delay slot can be filled with a nop or an independent instruction.

Need at least one instruction between lw and using the loaded word.

lw $t1, 0($t0) lw $t1, 0($t0)
lw $t2, 4($t0) lw $t2, 4($t0)

stall add $t3, $t1, $t2 lw $t4, 8($t0)
sw $t3, 12($t0) add $t3, $t1, $t2
lw $t4, 8($t0) sw $t3, 12($t0)

stall add $t5, $t1, $t4 add $t5, $t1, $t4
sw $t5, 16($t0) sw $t5, 16($t0)

13 cycles 11 cycles
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Control Hazards: Causes and Resolutions

Control hazards are caused by instructions which change the flow of
control.

ë Branching.
ë If statements, loops.

Sometimes called branch hazards.

Since branch condition (beq, bne) not determined until after EX
stage, cannot be certain about next instruction to fetch.
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Control Hazard Resolution: Wait

The simplest resolution is to just wait until branch condition is calculated
before fetching next instruction.
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Control Hazard Resolution: Add a Branch Comparator
Add a special circuit used to calculate branch conditions.

Now only one stall needed instead of two.
Similar to load-use hazard we now have a branch delay slot.
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Delayed Branching
The branch delay slot is the instruction immediately following a
branch. Can be a nop or a useful instruction.
In delayed branching the instruction in the branch delay slot is
always executed whther or not the branch condition holds.

ë Used in conjunction with a special branch comparator.
ë Filling the branch delay slot (and other code re-organization) is usually

handled by compiler/assembler.
ë Cannot fill slot with an instruction that influences branch condition.

Jump instructions also have a delay slot.

addi $v0, $0, 1
add $t0, $s0, $s1
add $t1, $s2, $s3
beq $t0, $t1, L⋮

L: . . .

add $t0, $s0, $s1
add $t1, $s2, $s3
beq $t0, $t1, L
addi $v0, $0, 1⋮

L: . . .
# addi executed regardless
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Control Hazard Resolution: Branch Prediction
Hardware predicts whether branch will occur of not.

If the branch condition ends up being opposite of prediction flush the
pipeline.
This flush shows a pipeline without a special branch comparator in ID
stage. Otherwise, only one instruction needs to be flushed.
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Implementing Branch Prediction
Branches have exactly two possibilities: taken or not taken.
In MIPS branches are statically predicted to never happen.
Dynamic branch prediction uses run-time information to change
prediction between taken or not taken.

ë Use branch history to predict future branches.
ë Simplest method is to use a saturated counter : increment counter if

branch actually taken, decrease counter if branch not taken.
ë Predict based on current count.
ë More advanced predictors evaluate patterns in branch history.

Random branch prediction: statistically 50% correct prediction.

A two-bit saturated counter:
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Datapath With Forwarding and Flushing
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Hazard Summary

Structural hazards caused by conflicts accessing hardware.
ë Register access fast enough to happen twice in one clock cycle.
ë Banked L1 cache for simultaneous instruction and data access.

Data hazards caused by Read After Write (RAW).
ë ALU-ALU forwarding.
ë MEM-MEM forwarding (memory copies).
ë Load-use hazard: stall (load-delay slot) and MEM-ALU forward.

Control hazards caused by branch instructions.
ë Special branch comparator in ID stage.
ë Branch delay slot; delayed branching.
ë Branch prediction and pipeline flush.

Compiler handles nop insertion to fix hazards.
Hardware handles fixing hazards with pipeline interlock.
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Introduction

In pipelining examples, assume we always start with the “basic”
datapath; the one as of the end of Lecture 11.

ë This datapath implicitly already solves the two structural hazards in
memory and register file.

ë That is, we do not consider structural hazards.

Each optimization should be explicitly added in the question or in
your answer for a possible resolution.

ë Each type of forwarding (ALU-ALU, MEM-ALU, MEM-MEM).
ë Filling the load delay slot with something other than nop.
ë Branch comparator in ID stage.
ë Delayed branching and branch delay slot.
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Example 1

lw $t0 , 0( $s1 )
addu $t0 , $t0 , $s2
subu $t4 , $t0 , $t3
add i $s1 , $s1 , −4
add $t1 , $t1 , $t2

If any dependencies exist where are they and what type are they?
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Example 1

lw $t0 , 0( $s1 )
addu $t0 , $t0 , $s2
subu $t4 , $t0 , $t3
add i $s1 , $s1 , −4
add $t1 , $t1 , $t2

If any dependencies exist where are they and what type are they?
ë Load-use (RAW) between lw and addu.
ë WAW between lw and addu.
ë RAW between addu and sub.
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Example 1

lw $t0 , 0( $s1 )
addu $t0 , $t0 , $s2
subu $t4 , $t0 , $t3
add i $s1 , $s1 , −4
add $t1 , $t1 , $t2

On the basic datapath, how many cycles does it take to execute the
code fragment (including stalls)?
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Example 1

lw $t0 , 0( $s1 )
addu $t0 , $t0 , $s2
subu $t4 , $t0 , $t3
add i $s1 , $s1 , −4
add $t1 , $t1 , $t2

On the basic datapath, how many cycles does it take to execute the
code fragment (including stalls)?

ë 2 nop between lw and addu. MEM of lw and IF of addu can overlap.
ë 2 nop between addu and sw. MEM of addu and IF of sw can overlap.
ë On 5th cycle lw completes and then one cycle per instruction after

that.
ë Including nop we get: 5 + 2 nop + 1 + 2 nop + 2 + 1 = 13.
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Example 1
lw $t0 , 0( $s1 )
addu $t0 , $t0 , $s2
subu $t4 , $t0 , $t3
add i $s1 , $s1 , −4
add $t1 , $t1 , $t2
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Example 1

lw $t0 , 0( $s1 )
addu $t0 , $t0 , $s2
subu $t4 , $t0 , $t3
add i $s1 , $s1 , −4
add $t1 , $t1 , $t2

What optimizations can be added to the datapath to reduce the
number of cycles? How many cycles are needed to execute the code
fragment after optimizations are added?
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Example 1

lw $t0 , 0( $s1 )
addu $t0 , $t0 , $s2
subu $t4 , $t0 , $t3
add i $s1 , $s1 , −4
add $t1 , $t1 , $t2

What optimizations can be added to the datapath to reduce the
number of cycles? How many cycles are needed to execute the code
fragment after optimizations are added?

ë MEM-ALU forwarding for load-use. Reduces nop count to 1.
ë ALU-ALU forwarding removes both nop between addu and sub
ë Clock cycles: 5 + 1 nop + 4 = 10.
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Example 1
lw $t0 , 0( $s1 )
addu $t0 , $t0 , $s2
subu $t4 , $t0 , $t3
add i $s1 , $s1 , −4
add $t1 , $t1 , $t2

Alex Brandt Chapter 4: ILP , Hazard Examples Thursday March 14, 2019 10 / 24



Example 1

lw $t0 , 0( $s1 )
addu $t0 , $t0 , $s2
subu $t4 , $t0 , $t3
add i $s1 , $s1 , −4
add $t1 , $t1 , $t2

Can code re-organization along with datapath optimizations be used
to further improve the number of clock cycles needed to execute the
code? If so, re-order the code and declare any additional
optimizations; what is the number of cycles needed to execute the
re-ordered code?
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Example 1
lw $t0 , 0( $s1 )
addu $t0 , $t0 , $s2
subu $t4 , $t0 , $t3
add i $s1 , $s1 , −4
add $t1 , $t1 , $t2

Can code re-organization along with datapath optimizations be used
to further improve the number of clock cycles needed to execute the
code? If so, re-order the code and declare any additional
optimizations; what is the number of cycles needed to execute the
re-ordered code?

ë Yes.
ë Move addi or add into load-delay slot.
ë 9, since we remove the nop.
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Example 1
lw $t0 , 0( $s1 )
addu $t0 , $t0 , $s2
subu $t4 , $t0 , $t3
add i $s1 , $s1 , −4
add $t1 , $t1 , $t2
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Example 2

sub $t2 , $t1 , $t3
and $t7 , $t2 , $t5
or $t8 , $t6 , $t2
add $t9 , $t2 , $t2
sw $t5 , 12( $t2 )

If any dependencies exist where are they and what type are they?
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Example 2

sub $t2 , $t1 , $t3
and $t7 , $t2 , $t5
or $t8 , $t6 , $t2
add $t9 , $t2 , $t2
sw $t5 , 12( $t2 )

If any dependencies exist where are they and what type are they?
ë RAW between sub and and.
ë RAW between sub and or.
ë RAW between sub and and.
ë RAW between sub and sw.
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Example 2

sub $t2 , $t1 , $t3
and $t7 , $t2 , $t5
or $t8 , $t6 , $t2
add $t9 , $t2 , $t2
sw $t5 , 12( $t2 )

Consider the basic datapath with ALU-ALU and MEM-ALU
forwarding added. In this code fragment where do forwards occur?
How many cycles does it take to execute the code fragment?
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Example 2

sub $t2 , $t1 , $t3
and $t7 , $t2 , $t5
or $t8 , $t6 , $t2
add $t9 , $t2 , $t2
sw $t5 , 12( $t2 )

Consider the basic datapath with ALU-ALU and MEM-ALU
forwarding added. In this code fragment where do forwards occur?
How many cycles does it take to execute the code fragment?

ë ALU-ALU from sub to and.
ë MEM-ALU from sub to or.
ë sub to and RAW solved by register file design.
ë 5 + 1 + 1 + 1 + 1 = 9
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Example 2
sub $t2 , $t1 , $t3
and $t7 , $t2 , $t5
or $t8 , $t6 , $t2
add $t9 , $t2 , $t2
sw $t5 , 12( $t2 )
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Example 3

f o r : beq $t6 , $t7 , end
add $t0 , $t0 , $t1
add i $t6 , $t6 , 1
j f o r

end : sub $t1 , $t6 , $0

Assuming the basic data path how many cycles does it take to execute
two loops within the code fragment (therefore, excluding the sub)?
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Example 3
f o r : beq $t6 , $t7 , end

add $t0 , $t0 , $t1
add i $t6 , $t6 , 1
j f o r

end : sub $t1 , $t6 , $0

Assuming the basic data path how many cycles does it take to execute
two loops within the code fragment (therefore, excluding the sub)?

ë Careful! Since a loop, RAW dependency between andi and beq.
ë Two nop follows beq for control hazard.
ë One nop follows j for control hazard.
ë First loop: 5 + 2 nop + 3 + 1 nop.
ë In the second loop beq overlaps with previous instructions.
ë Second loop: 1 + 2 nop + 3 + 1 nop.
ë Total: 18.
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Example 3
f o r : beq $t6 , $t7 , end

add $t0 , $t0 , $t1
add i $t6 , $t6 , 1
j f o r

end : sub $t1 , $t6 , $0
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Example 3

f o r : beq $t6 , $t7 , end
add $t0 , $t0 , $t1
add i $t6 , $t6 , 1
j f o r

end : sub $t1 , $t6 , $0

Using any datapath optimizations and code re-ordering, minimize the
clock cycles required to execute the loop two times. Name the
optimizations used. How many cycles does it take to execute this
optimized version?
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Example 3
f o r : beq $t6 , $t7 , end

add $t0 , $t0 , $t1
add i $t6 , $t6 , 1
j f o r

end : sub $t1 , $t6 , $0

Using any datapath optimizations and code re-ordering, minimize the
clock cycles required to execute the loop two times. Name the
optimizations used. How many cycles does it take to execute this
optimized version?

ë Special branch comparator in ID stage.
ë Careful! Cannot fill branch delay slot.
ë Using add would change code meaning.
ë Value of $t6 used again after loop so cannot use addi.
ë Cannot use jump for obvious control-flow reasons.
ë Total savings: 1 nop per branch ⇒ 16 cycles now.
ë (If using branch prediction, all nops are removed).
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Example 3
f o r : beq $t6 , $t7 , end

add $t0 , $t0 , $t1
add i $t6 , $t6 , 1
j f o r

end : sub $t1 , $t6 , $0
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Instruction-Level Parallelism (ILP)

Instruction-level parallelism involves executing multiple instructions at
the same time.

ë Instructions may simply overlap (pipelining) or,
ë Instructions may be executed completely in parallel (superscalar).

There are many techniques which are used to provide ILP or to support
ILP in achieving greater speed-up.

ë Pipelining.
ë Branch prediction.
ë Superscalar execution.
ë Very Long Instruction Word (VLIW).
ë Register renaming.
ë Loop unrolling.
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Multiple Issue Processors

A multiple issue processor issues (executes) multiple instructions
within a clock cycle. (Aims for CPI < 1)

ë VLIW Processors.
ë Static Superscalar Processors (essentially same as VLIW).
ë Dynamic Superscalar Processors.

By their nature, all multiple issue processors have multiple execution
units (ALUs) in their datapath.

Depending on the type of multiple issue processor, other circuitry may
also be duplicated or augmented.

Note: multiple issue processors are not necessarily pipelined (these
concepts are separate) but in reality pipelining is so good and multiple
issue came after so all multiple issue processors are also pipelined.
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Static Superscalar Processors

The name static implies the code scheduling is done by compiler.
Basically side-by-side datapaths simultaneously executing instructions.
Compiler handles dependencies and hazards and scheduling code so
that instructions on different datapaths don’t conflict.
Near identical to VLIW so we’ll skip the details.
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Static Superscalar Pipeline
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VLIW Processors (1/2)

VLIW processors have very long instruction words.

Essentially, multiple instructions are encoded within a single (long)
instruction memory word called an issue packet.

The instructions which can be packed together are limited. Usually
only one lw/sw, only one branch, rest arithmetic.

In this case instructions word size ≠ data memory word size.

Simplest scheme: just concatenate multiple instructions together.

Ex: Two 32-bit instrs. together in a single 64-bit instruction word.

Instr. 1 Instr. 2

32 bits 32 bits

One full instruction word
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VLIW Processors (2/2)

In a VLIW pipeline:
One IF unit fetches a single long word encoding multiple instrs.
One ID ⇒ register file must handle multiple simultaneous reads.
In EX stage, each instr. is issued to a different execution unit (ALU).

Only one data memory to
read/write from!
There is a limitation on which
kinds of instructions can be
executed simultaneously.
In the WB stage the register
file must handle multiple
writes (to different registers,
obviously).
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4-Stage VLIW (without MEM stage for simplicity)

M. Oskin et al. Exploiting ILP in page-based intelligent memory. In ACM/IEEE International
Symposium on MICRO-32, Proceedings, pages 208-218, 1999.
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A VLIW Example (1/3)

Consider a 2-issue extension of MIPS.
The first slot of the issue packet must be an R-type instruction or a
branch.
The second slot of the issue packet must be lw or sw.
If compiler cannot find an instruction, insert nop.

ë Much like load-delay slot or branch-delay slot.

Instr. 1 Instr. 2

R-type or branch lw or sw
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A VLIW Example (2/3)

loop: lw $t0, 0($s1) # $t0=array element
addu $t0, $t0, $s2 # add scalar in $s2
sw $t0, 0($s1) # store result
addi $s1, $s1, -4 # decrement pointer
bne $s1, $0, loop # branch if $s1 != 0

for (int i=n; i>0; --i) {
A[i] += s2;

}

Need to schedule code for 2-issue.
Instructions in same issue packet must be independent.
Assume perfect branch prediction.
Load-use and RAW dependencies still need to be handled.

ë But, assume all possible datapath optimizations (forwarding).
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A VLIW Example (3/3)
loop: lw $t0, 0($s1) # $t0=array element

addu $t0, $t0, $s2 # add scalar in $s2
sw $t0, 0($s1) # store result
addi $s1, $s1, -4 # decrement pointer
bne $s1, $0, loop # branch if $s1 != 0

ALU or branch Data transfer CC
loop: nop lw $t0, 0($s1) 1

addi $s1, $s1, -4 nop 2
addu $t0, $t0, $s2 nop 3
bne $s1, $0, loop sw $t0, 4($s1) 4

CPI is 4 cycles / 5 instructions = 0.8.
nops don’t count towards performance.
Sometimes when scheduling code you need to adjust offsets.
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Loop Unrolling

Compilers use loop unrolling to expose more parallelism.
Essentially, body of loop is replaced with multiple copies of itself (still
in a loop).
Avoids unnecessary branch delays, can more effectively schedule code
and fill load-use slots.
Ex: 4-time loop unrolling. Notice i += 4 in unrolled code.

int i = 0;
for (i; i < n; i++) {

A[i] += 10;
}

int i = 0;
for (i; i < n; i += 4) {

A[i] += 10;
A[i+1] += 10;
A[i+2] += 10;
A[i+3] += 10;

}
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Unrolling MIPS
loop: lw $t0, 0($s1)

addu $t0, $t0, $s2
sw $t0, 0($s1)
addi $s1, $s1, -4
bne $s1, $0, loop

for (int i=n; i>0; --i) {
A[i] += s2;

}

loop: lw $t0,0($s1) # $t0=array element
lw $t1,-4($s1) # $t1=array element
lw $t2,-8($s1) # $t2=array element
lw $t3,-12($s1)# $t3=array element
addu $t0,$t0,$s2 # add scalar in $s2
addu $t1,$t1,$s2 # add scalar in $s2
addu $t2,$t2,$s2 # add scalar in $s2
addu $t3,$t3,$s2 # add scalar in $s2
sw $t0,0($s1) # store result
sw $t1,-4($s1) # store result
sw $t2,-8($s1) # store result
sw $t3,-12($s1)# store result
addi $s1,$s1,-16 # decrement pointer
bne $s1,$0,loop # branch if $s1 != 0

Notice, loop body is not
exactly copied 4 times.
Static register renaming:
$t0 becomes $t1, $t2,
$t3 for successive loops.
Can now easily
reschedule code and fill
load-delay slots.
Much fewer branch instr.
and branch delay slots.
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Combining Loop Unrolling and VLIW
Same 2-issue extension of MIPS. First slot is ALU, second slot is data
transfer. Datapath has all forwarding and possible optimizations.
Remember:

Need one instruction between load and use.
Insert nop if no instruction possible

ALU or branch Data transfer CC
loop: addi $s1,$s1,-16 lw $t0,0($s1) 1

nop lw $t1,12($s1) #-4 2
addu $t0,$t0,$s2 lw $t2,8($s1) #-8 3
addu $t1,$t1,$s2 lw $t3,4($s1) #-12 4
addu $t2,$t2,$s2 sw $t0,16($s1) #0 5
addu $t3,$t3,$s2 sw $t1,12($s1) #-4 6
nop sw $t2,8($s1) #-8 7
bne $s1,$0,loop sw $t3,4($s1) #-12 8
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Dynamic Superscalar Processors

Dynamic in the name implies that the hardware handles code
scheduling.

Because of the dynamic nature out-of-order execution can occur.
ë Instructions are actually executed in a different order than they are

fetched.

This scheme allows for different types of execution paths which all
take a different amount of time:

ë Ex: Normal ALU, Floating point unit, Memory load/store path.

This scheme is particularly good at overcoming stalls due to cache
misses and other dependencies.

However, hardware becomes much more complex than static schemes.
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A Dynamic Superscalar Pipeline (1/2)

Fetch one instr. per cycle as normal.
“Pre-decode” instr. and add to
instruction buffer in RD (dispatch)
stage.

ë Out-of-order execution ⇒ must
wait for updated values of
operands.

Once instr. operands are ready,
dispatcher issues instr. to one of
many execution units. This is where
out-of-order execution is introduced.
Dispatch: adding instr. to buffer.
Issue: sending instr. to execution
unit.

RO/WB
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A Dynamic Superscalar Pipeline (2/2)
Before WB stage, a reorder buffer or completion stage makes sure
instructions are in-order before writing results back (a.k.a
committing).

ë Out-of-order execution means WAR and WAW dependencies matter.
Finally, instructions are retired.

A centralized reservation station is both a dispatcher and issuer.
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Pros and Cons of Dynamic Scheduling

Compiler is only so good at scheduling code. Data hazards are hard
to resolve.

ë Compiler only sees pointers but hardware sees actual memory addresses.

Dynamic scheduling overcomes unpredictable stalls (cache misses) but
requires complex circuitry.

Dynamic scheduling more aggressively overlaps instructions since
operand values are read and then queued in reservation stations.

Instructions are fetched in-order, executed out-of-order, and then
committed/retired in-order and sequentially.
Flynn’s bottleneck: can only retire as many instr. per cycle as are
fetched.

ë Superscalar machines usually augmented with fetching multiple
instructions at once.
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Comparing Multiple Issue Processors (1/2)

VLIW
Static scheduling.
In-order execution.
Single IF unit but
many EX units.
Instructions
packed together in
issue packet.

Static SS
Static scheduling.
In-order execution.
Many IF units (or
one IF fetching
multiple instr.)
and many EX
units.
Compiler explicitly
schedules each
datapath.

Dynamic SS
Dynamic scheduling.
Out-of-order exec.
Single IF unit but
many EX units.
IF unit might fetch
multiple instr. per
cycle.
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Comparing Multiple Issue Pipelines (2/2)

Tapani Ahonen, University of Tampere
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Writer After X Dependencies

Out-of-order execution causes hazards beyond RAW dependencies.
WAR dependency – write a value after it is read by a previous
instruction.
Ex: Cannot write to $t1 in until addi has read its value of $t1.

addi $t0, $t1, 2
add $t1, $t3, $0

WAW dependency – write a value after its destination has been
written to by a previous instruction. Needed to maintain consistent
values for future instructions.
Ex: If add executed before addi then value of $t1 incorrect.

addi $t1, $t4, 12
add $t1, $t3, $0
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Register Renaming

Register renaming is both a static and dynamic technique used to
help superscalar pipelines and can fix WAR and WAW dependencies.
Essentially, code is modified so that every destination is replaced with
a unique “logical” destination (sometimes called value name).

ë Reservation stations provide a hardware buffer for storing logical
destinations.

ë For dynamic renaming, hardware maintains a mapping from register
names to logical destinations to modify operands for incoming
instructions.

Ex:

add $t6, $t0, $t2
sub $t4, $t2, $t0
xor $t0, $t6, $t2
and $t2, $t2, $t6

RAW: $t6 in add and xor.
WAR: $t0 in sub and xor.
WAR: $t2 in sub and and.
WAR: $t2 in sub and and.
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Register Renaming Example

Instr. $t0 $t2 $t4 $t6 Renamed Instr.
Initially V0 V1 V2 V3 —

add $t6, $t0, $t2 V4 add V4, V0, V1
sub $t4, $t2, $t0 V5 sub V5, V1, V0
xor $t0, $t6, $t2 V6 xor V6, V4, V1
and $t2, $t2, $t6 add ??, V1, ??

Instr. $t0 $t2 $t4 $t6 Renamed Instr.
Initially V0 V1 V2 V3 —

add $t6, $t0, $t2 V4 add V4, V0, V1
sub $t4, $t2, $t0 V5 sub V5, V1, V0
xor $t0, $t6, $t2 V6 xor V6, V4, V1
and $t2, $t2, $t6 V7 add V7, V1, V4
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Register Renaming Example

Instr. $t0 $t2 $t4 $t6 Renamed Instr.
Initially V0 V1 V2 V3 —

add $t6, $t0, $t2 V4 add V4, V0, V1
sub $t4, $t2, $t0 V5 sub V5, V1, V0
xor $t0, $t6, $t2 V6 xor V6, V4, V1
and $t2, $t2, $t6 add ??, V1, ??

Instr. $t0 $t2 $t4 $t6 Renamed Instr.
Initially V0 V1 V2 V3 —

add $t6, $t0, $t2 V4 add V4, V0, V1
sub $t4, $t2, $t0 V5 sub V5, V1, V0
xor $t0, $t6, $t2 V6 xor V6, V4, V1
and $t2, $t2, $t6 V7 add V7, V1, V4
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Summary

Multiple issue processors execute multiple instructions simultaneously
for CPI < 1.

VLIW uses statically-scheduled issue packets.

Loop unrolling exposes more parallelism and removes some branching
overhead.

Dynamic superscalar processors combat against unexpected stalls
(cache misses) by allowing for out-of-order execution.

Register renaming fixes WAR and WAW dependencies.

RAW dependencies are the only true dependency and still must be
accounted for in scheduling.
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