
CS3350B Computer Organization
Chapter 4: Instruction-Level Parallelism

Part 1: Pipelining

Alex Brandt

Department of Computer Science
University of Western Ontario, Canada

Thursday March 7, 2019

Alex Brandt Chapter 4: ILP , Part 1: Pipelining Thursday March 7, 2019 1 / 30

Outline

1 Overview

2 Pipelining: An Analogy

3 Pipelining For Performance

Alex Brandt Chapter 4: ILP , Part 1: Pipelining Thursday March 7, 2019 2 / 30

Instruction-Level Parallelism

For a computer architecture, its instruction-level parallelism (ILP) is a
measure of the number of instructions it can perform simultaneously.

ILP is usually achieved dynamically—after compile time—by the processor
itself manipulating program execution.

Circuitry (and appropriate control signals) needs to be added to the
processor to handle the execution of many instructions simultaneously and
to handle the dynamic nature of ILP.

Alex Brandt Chapter 4: ILP , Part 1: Pipelining Thursday March 7, 2019 3 / 30

Achieving ILP

ILP can be achieved in many ways. Some topics we will look at:

Pipelining

Superscalar execution

VLIW – very long instruction word

Register renaming

Branch prediction

Alex Brandt Chapter 4: ILP , Part 1: Pipelining Thursday March 7, 2019 4 / 30

"Pipelining” in Combinational Circuits

Break up a combinational circuit, reduce propagation delay, insert a
register to store intermediate results, increase clock frequency.

Alex Brandt Chapter 4: ILP , Part 1: Pipelining Thursday March 7, 2019 5 / 30

Pipe, Pipeline, Pipelining

Unix pipe: pass data from one program to another.

ls -la | grep “foo.txt”

Data pipeline: a sequential series of processing elements (CPUs, circuits,
programs, etc.) where the output of one is passed as the input to another.
Buffer storage is needed between elements to store temporary data.

Pipelining: a technique for instruction-level parallelism where each stage
of the datapath is always kept busy. Instructions are overlapped.

Alex Brandt Chapter 4: ILP , Part 1: Pipelining Thursday March 7, 2019 6 / 30

Pipelining the RISC Datapath

Each stage is executing a different instruction.
5 stages Ô⇒ 5 instructions executed at once.

Alex Brandt Chapter 4: ILP , Part 1: Pipelining Thursday March 7, 2019 7 / 30

Outline

1 Overview

2 Pipelining: An Analogy

3 Pipelining For Performance

Alex Brandt Chapter 4: ILP , Part 1: Pipelining Thursday March 7, 2019 8 / 30

Doing Laundry

We have 4 loads of laundry to do: A, B, C, D.

To process each load we need to:
ë Wash
ë Dry
ë Fold
ë Put-away

Each stage of doing laundry takes 30 minutes.

Could process each load sequentially or use
pipelining.

Alex Brandt Chapter 4: ILP , Part 1: Pipelining Thursday March 7, 2019 9 / 30

Doing Laundry: Sequentially

Each load of laundry is done one at a time:
ë Wash A, Dry A, Fold A, Put-away A.
ë Wash B, Dry B, Fold B, Put-away B.⋮

Takes 8 hours in total. There has to be a better way.

Alex Brandt Chapter 4: ILP , Part 1: Pipelining Thursday March 7, 2019 10 / 30

Doing Laundry: Pipeline

Each stage of doing laundry must process each load sequentially.
But each load of laundry can overlap.
No dependency between drying load A and washing load B, etc.
Put-away A while Folding B while drying C while washing D.
Takes 3.5 hours in total.

Alex Brandt Chapter 4: ILP , Part 1: Pipelining Thursday March 7, 2019 11 / 30

Pipelining Terms via Analogy

Pipelining: many tasks (loads of laundry)
being executed simultaneously using
different resources (washer, dryer, etc.).

Time to complete a single task (latency)
does not change.

ë Each load by itself still takes 2 hours.

Number of tasks that can be completed in
one unit of time (throughput) increases.

Potential speed up via pipelining equals the
number of stages in pipeline.

Actual speed-up never exactly equals
potential.

Alex Brandt Chapter 4: ILP , Part 1: Pipelining Thursday March 7, 2019 12 / 30

Pipelining Terms via Analogy

Actual speed-up never exactly equals
potential.

Fill time: time taken to “fill” the pipeline.
Initially, not every stage is used.

Drain time: time taken to “empty” the
pipeline. Not all stages are used once the
last task begins.

Imagine a new washing machine takes only
20 minutes. This does not increase pipeline
speed.

ë Dryer still takes 30 minutes.
ë Washer must wait for dryer to finish before

laundry can move from washer to dryer.

Alex Brandt Chapter 4: ILP , Part 1: Pipelining Thursday March 7, 2019 13 / 30

Outline

1 Overview

2 Pipelining: An Analogy

3 Pipelining For Performance

Alex Brandt Chapter 4: ILP , Part 1: Pipelining Thursday March 7, 2019 14 / 30

The RISC Datapath

IF ID EX MEM WB

Alex Brandt Chapter 4: ILP , Part 1: Pipelining Thursday March 7, 2019 15 / 30

Review: Single Cycle Datapath

Clock cycle is long enough to handle critical path through datapath.
Time for data to pass through entire datapath.

Alex Brandt Chapter 4: ILP , Part 1: Pipelining Thursday March 7, 2019 16 / 30

Performance of Single Cycle Datapath

Let’s assume that accessing memory takes 200ps and ALU
propagation delay is 200ps.

ë IF stage, EX stage, MEM stage.
Let’s assume accessing registers takes 100ps.

ë ID stage, WB stage.

What is the minimum clock cycle?
ë Sum of all stages since some instructions use all stages.
ë 200 + 100 + 200 + 200 + 100 = 800ps.

Instr. IF ID EX MEM WB Total
R-type 200ps 100ps 200ps - 100ps 600ps
Branch 200ps 100ps 200ps - - 500ps

sw 200ps 100ps 200ps 200ps - 700ps
lw 200ps 100ps 200ps 200ps 100ps 800ps

Alex Brandt Chapter 4: ILP , Part 1: Pipelining Thursday March 7, 2019 17 / 30

Improving Performance of Datapath

Clock frequency
Parallel execution of instructions
via overlap: pipelining.
Superscalar, VLIW (to come
later).
Branch prediction (to come later).

Alex Brandt Chapter 4: ILP , Part 1: Pipelining Thursday March 7, 2019 18 / 30

Review: Pipelining for Combinational Circuits

Break up a combinational circuit, reduce propagation delay, insert a
register to store intermediate results, increase clock frequency.

Alex Brandt Chapter 4: ILP , Part 1: Pipelining Thursday March 7, 2019 19 / 30

Pipelining for MIPS

Alex Brandt Chapter 4: ILP , Part 1: Pipelining Thursday March 7, 2019 20 / 30

Multi-Cycle Datapath

Clock cycle is long enough to handle slowest stage of the pipeline.
Time for data to pass through one (the slowest) stage of pipeline.

Example: Minimum clock cycle is 200ps.
Instr. IF ID EX MEM WB Total

R-type 200ps 100ps 200ps - 100ps 600ps
Branch 200ps 100ps 200ps - - 500ps

sw 200ps 100ps 200ps 200ps - 700ps
lw 200ps 100ps 200ps 200ps 100ps 800ps

Alex Brandt Chapter 4: ILP , Part 1: Pipelining Thursday March 7, 2019 21 / 30

Pipelining for Performance

Further increase clock frequency?
Could break up datapath into more and more stages but...

ë More registers.
ë More complexity in datapath and controller design ⇒ overhead.
ë Still limited by slowest stage (memory).

Leverage the parallelism gained by pipelining.
Parallelism in execution of instructions yields fewer cycles per
instruction (CPI)

The Classic Performance Equation

CPU time = Instruction_count ×CPI × clock_cycle
or

CPU time = Instruction_count ×CPI ⇑ clock_rate

Alex Brandt Chapter 4: ILP , Part 1: Pipelining Thursday March 7, 2019 22 / 30

RISC Pipeline Performance

Overlap instructions, start the next before the former completes.
Some instructions will “waste” a cycle as they flow through unused
stages.

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8
lw IFetch Dec Exec Mem WB
sw IFetch Dec Exec Mem WB
add IFetch Dec Exec Mem WB

Latency: time to complete one instruction. Does not change with
pipelining.
Throughput: number of instructions that can be completed in some
amount of time. Increases with pipelining.
Once pipeline is full CPI is 1.

Alex Brandt Chapter 4: ILP , Part 1: Pipelining Thursday March 7, 2019 23 / 30

Pipeline Parallelism

time to drain pipeline

Potential speed-up via parallelism is equal to the number of stages.
5 stages Ô⇒ 5x potential speed up.
A pipeline is “full” when every stage is occupied by an instruction
(every stage does not have to necessarily be doing work).
Pipeline fill time and drain time reduce actual speed up.

Alex Brandt Chapter 4: ILP , Part 1: Pipelining Thursday March 7, 2019 24 / 30

Performance: With and Without Pipelining
𝑇𝑐 = clock cycle time

Alex Brandt Chapter 4: ILP , Part 1: Pipelining Thursday March 7, 2019 25 / 30

Quantifying Pipelined Speedup

If the time for each stage is the same:

Ideal Speedup = Number of Stages

If the time for each stage is not the same:

Ideal Speedup = Time between instructionsnon-pipelined
Time between instructionspipelined

Actual Speedup = Time to completenon-pipelined
Time to completepipelined

Alex Brandt Chapter 4: ILP , Part 1: Pipelining Thursday March 7, 2019 26 / 30

Calculating Speedup

From previous example:
Single-cycle datapath: 800ps clock cycle.
Pipelined: 200ps clock cycle.
Uneven time for each stage. ID and WB only 100ps.
3 lw instructions.

Ideal Speedup = 800
200
= 4 Actual Speedup = 2400

1400
= 1.714

If we have 1000000 lw instructions?

Actual Speedup = 1000000 × 800
1000000 × 200 + 800

≈ 4

Alex Brandt Chapter 4: ILP , Part 1: Pipelining Thursday March 7, 2019 27 / 30

Calculating Pipelined Time

Classic Performance Equation:

CPU time = Instruction_count ×CPI × clock cycle

Time for pipelined execution:

Timepipelined = Fill time + (IC × clock cycle)

Once pipeline is full, one instr. completes every cycle ⇒ CPI is 1.
ë Gives IC × 1 × clock cycle

Pipeline is only not full during fill or drain time.
Fill time = Drain time = (number of stages - 1) × clock cycle

ë Assuming number of instructions > number of stages.

Alex Brandt Chapter 4: ILP , Part 1: Pipelining Thursday March 7, 2019 28 / 30

Calculating Pipelined Time

time to drain pipeline

Alex Brandt Chapter 4: ILP , Part 1: Pipelining Thursday March 7, 2019 29 / 30

Summary

Pipelining is the simultaneous execution of multiple instructions each
in a different stage of the datapath.

Pipelining gives increased clock frequency by multi-cycle datapath.

Limited by the slowest stage.

Pipelining gives essentially a CPI of 1.

Speed-up must account for fill time and drain time.

All of the discussion so far assumed there is no conflicts between
instructions, hardware, circuits, etc.

ë Pipeline hazards severely impact performance and potential speed-up.
ë Chapter 4: Part 2: Pipeline hazards.

Alex Brandt Chapter 4: ILP , Part 1: Pipelining Thursday March 7, 2019 30 / 30

CS3350B Computer Organization
Chapter 4: Instruction-Level Parallelism

Part 2: Pipeline Hazards

Alex Brandt

Department of Computer Science
University of Western Ontario, Canada

Thursday March 14, 2019

Alex Brandt Chapter 4: ILP , Part 2: Pipeline Hazards Thursday March 14, 2019 1 / 32

Outline

1 Overview

2 Structural Hazards

3 Data Hazards

4 Control Hazards

Alex Brandt Chapter 4: ILP , Part 2: Pipeline Hazards Thursday March 14, 2019 2 / 32

Pros and Cons of Pipelining

Pipelining overlaps the execution of instructions to keep each stage of
the datapath busy at all times.

ë Improves throughput but not latency.
ë Might actually increase latency.

Can increase clock frequency using multi-cycle datapath.

Ideal speedup can be up to the number of stages.

Ideal speed up never reached.
ë Fill time and drain time limits speedup.
ë Must account for dependencies between results of previous instructions

and operands of future instructions.
ë Sometimes the same hardware is needed simultaneously by different

pipeline stages and different instructions (e.g. ID and WB stages).

Alex Brandt Chapter 4: ILP , Part 2: Pipeline Hazards Thursday March 14, 2019 3 / 32

Categorizing Pipeline Hazards
Structural Hazards

Conflicts in hardware/circuit use.
Different stages or different instructions attempt to use same piece of
hardware at the same time.

Data Hazards
Dependencies between the result of an instruction and the input to
another instruction.
Data being used before it is finished being computed or written to
memory/registers.

Control Hazards
Ambiguity in the control flow of the program being executed.
Branch instructions—if/else, loops.
Take the branch? Don’t take the branch? Which instruction follows a
branch instruction in the pipeline?

Alex Brandt Chapter 4: ILP , Part 2: Pipeline Hazards Thursday March 14, 2019 4 / 32

“Resolving” Pipeline Hazards

Not an easy task. Simplest solution: just wait or stall.
ë Any hazard can always be solved by just waiting.

But:
Ruins potential speedup.

ë Might end up being slower than a single-cycle datapath.
ë Since latency can increase in pipelining, with enough stalls becomes

slower.

Increases CPI.

Works against entire principle of pipelining.
ë Where’s the performance?

Nonetheless, sometimes it really is the only solution.

Alex Brandt Chapter 4: ILP , Part 2: Pipeline Hazards Thursday March 14, 2019 5 / 32

Outline

1 Overview

2 Structural Hazards

3 Data Hazards

4 Control Hazards

Alex Brandt Chapter 4: ILP , Part 2: Pipeline Hazards Thursday March 14, 2019 6 / 32

Structural Hazards: Causes and Resolutions

Structural hazards are caused by two instructions needing to use the
same hardware at the same time.

Easiest to resolve? Just add in redundant hardware.
ë Works for combinational circuits.
ë Redundant memory would cause problems in needing to keep both

consistent.

Real structural hazards thus lie in state circuits: registers and
memory.

ë IF stage and MEM stage.
ë ID stage and WB stage.

Alex Brandt Chapter 4: ILP , Part 2: Pipeline Hazards Thursday March 14, 2019 7 / 32

Structural Hazards In Memory (1/2)
Consider a unified L1 cache. Reading instructions and reading/writing
data could overlap for pipelined instructions.

Alex Brandt Chapter 4: ILP , Part 2: Pipeline Hazards Thursday March 14, 2019 8 / 32

Structural Hazards In Memory (2/2)
Simple fix: separate instruction memory from data memory.

Can use a banked cache.

Alex Brandt Chapter 4: ILP , Part 2: Pipeline Hazards Thursday March 14, 2019 9 / 32

Structural Hazards In Register File (1/2)

ID stage must read from registers while WB stage must write to registers.

Alex Brandt Chapter 4: ILP , Part 2: Pipeline Hazards Thursday March 14, 2019 10 / 32

Structural Hazards In Register File (2/2)
In reality, reading from register file is very fast; clock cycle is long enough
to allow both ID and WB to occur within a single clock cycle.

Needs independent read and write ports.

Reg

Reg

Alex Brandt Chapter 4: ILP , Part 2: Pipeline Hazards Thursday March 14, 2019 11 / 32

Outline

1 Overview

2 Structural Hazards

3 Data Hazards

4 Control Hazards

Alex Brandt Chapter 4: ILP , Part 2: Pipeline Hazards Thursday March 14, 2019 12 / 32

Data Hazards: Causes and Resolutions

Data hazards are caused by dependencies between instruction
operands or results.

ë Read After Write (RAW) only true dependency.
ë Read After Read not a hazard.
ë Write After Read (WAR) and Wriate After Write (WAW) only a hazard

for out-of-order execution ⇒ Superscalar machines
ë Prelude to register renaming.

Can always be solved by stalling the pipeline.

Can be solved by special forwarding (also called bypass).

Most common type of hazard.
ë It’s the logical way to write programs; locality.

Alex Brandt Chapter 4: ILP , Part 2: Pipeline Hazards Thursday March 14, 2019 13 / 32

Data Hazard Example 1 (1/3)
add produces a result which is then read by sub, and, or, xor.

Read After Write hazard.
xor is far enough in the future to be okay.
sub, and, or need more work.

Alex Brandt Chapter 4: ILP , Part 2: Pipeline Hazards Thursday March 14, 2019 14 / 32

Data Hazard Example 1 (2/3)
Possible (but not great) solution: stall the execution.

sub structural hazard already solved.

Alex Brandt Chapter 4: ILP , Part 2: Pipeline Hazards Thursday March 14, 2019 15 / 32

Data Hazard Example 1 (3/3)
Another possible solution: forwarding.

No more stalls!
ALU-ALU forwarding for add to sub and add to and.
or structural hazard already solved.

Alex Brandt Chapter 4: ILP , Part 2: Pipeline Hazards Thursday March 14, 2019 16 / 32

More ALU-ALU Forwarding
Two kinds of ALU-ALU forwarding:

Instruction currently in MEM stage to ALU.
Instruction currently in WB stage to ALU.

ë Also called MEM-ALU forwarding.
Which to choose? Ô⇒ More control, more MUX.

Alex Brandt Chapter 4: ILP , Part 2: Pipeline Hazards Thursday March 14, 2019 17 / 32

MEM-MEM Forwarding

For efficient memory copies (a common operation) this optimization
results in no stalls.

ë Otherwise, two stalls required.
ë Eight great ideas in computer arch.: make the common case fast.

Alex Brandt Chapter 4: ILP , Part 2: Pipeline Hazards Thursday March 14, 2019 18 / 32

Load-Use Data Hazard

Load-use data hazard, a special kind of RAW hazard.
Forwarding does not help here, still going backwards in time.
A stall is required.

Alex Brandt Chapter 4: ILP , Part 2: Pipeline Hazards Thursday March 14, 2019 19 / 32

Implementing a Stall: Pipeline Interlock
Pipeline Interlock—hardware detects hazard and stalls the pipeline.

Quite literally locks the flow of data between stages (locking writes to
inter-stage registers).
Essentially inserts an air bubble into pipeline.

Alex Brandt Chapter 4: ILP , Part 2: Pipeline Hazards Thursday March 14, 2019 20 / 32

Implementing a Stall: NOP
NOP—a “no operation” special instruction inserted into instruction flow
by compiler.

Hazards are detected and fixed at compile-time.
Can be combined with forwarding; MEM-ALU in this case.

Alex Brandt Chapter 4: ILP , Part 2: Pipeline Hazards Thursday March 14, 2019 21 / 32

Pipeline Interlock vs NOP

Interlocking requires special circuity to dynamically detect hazards
and stall the datapath.

nop requires extra effort at compile time to detect and resolve
hazards.

Inserted nop instructions bloat instruction memory.

More work at compile time for nop insertion but simpler (= faster?)
datapath and controller.

MIPS: Microprocessor without Interlocked Pipelined Stages

Alex Brandt Chapter 4: ILP , Part 2: Pipeline Hazards Thursday March 14, 2019 22 / 32

Data Hazards and Code Structure
Some data hazards are “fake”.

Only caused by the order of instructions and not a true dependency.
Re-order code (if possible) so an independent instruction performed
instead of a nop.

ë Where the nop would be inserted is called the load delay slot.
ë Load delay slot can be filled with a nop or an independent instruction.

Need at least one instruction between lw and using the loaded word.

lw $t1, 0($t0) lw $t1, 0($t0)
lw $t2, 4($t0) lw $t2, 4($t0)

stall add $t3, $t1, $t2 lw $t4, 8($t0)
sw $t3, 12($t0) add $t3, $t1, $t2
lw $t4, 8($t0) sw $t3, 12($t0)

stall add $t5, $t1, $t4 add $t5, $t1, $t4
sw $t5, 16($t0) sw $t5, 16($t0)

13 cycles 11 cycles

Alex Brandt Chapter 4: ILP , Part 2: Pipeline Hazards Thursday March 14, 2019 23 / 32

Outline

1 Overview

2 Structural Hazards

3 Data Hazards

4 Control Hazards

Alex Brandt Chapter 4: ILP , Part 2: Pipeline Hazards Thursday March 14, 2019 24 / 32

Control Hazards: Causes and Resolutions

Control hazards are caused by instructions which change the flow of
control.

ë Branching.
ë If statements, loops.

Sometimes called branch hazards.

Since branch condition (beq, bne) not determined until after EX
stage, cannot be certain about next instruction to fetch.

Alex Brandt Chapter 4: ILP , Part 2: Pipeline Hazards Thursday March 14, 2019 25 / 32

Control Hazard Resolution: Wait

The simplest resolution is to just wait until branch condition is calculated
before fetching next instruction.

Alex Brandt Chapter 4: ILP , Part 2: Pipeline Hazards Thursday March 14, 2019 26 / 32

Control Hazard Resolution: Add a Branch Comparator
Add a special circuit used to calculate branch conditions.

Now only one stall needed instead of two.
Similar to load-use hazard we now have a branch delay slot.

Alex Brandt Chapter 4: ILP , Part 2: Pipeline Hazards Thursday March 14, 2019 27 / 32

Delayed Branching
The branch delay slot is the instruction immediately following a
branch. Can be a nop or a useful instruction.
In delayed branching the instruction in the branch delay slot is
always executed whther or not the branch condition holds.

ë Used in conjunction with a special branch comparator.
ë Filling the branch delay slot (and other code re-organization) is usually

handled by compiler/assembler.
ë Cannot fill slot with an instruction that influences branch condition.

Jump instructions also have a delay slot.

addi $v0, $0, 1
add $t0, $s0, $s1
add $t1, $s2, $s3
beq $t0, $t1, L⋮

L: . . .

add $t0, $s0, $s1
add $t1, $s2, $s3
beq $t0, $t1, L
addi $v0, $0, 1⋮

L: . . .
addi executed regardless

Alex Brandt Chapter 4: ILP , Part 2: Pipeline Hazards Thursday March 14, 2019 28 / 32

Control Hazard Resolution: Branch Prediction
Hardware predicts whether branch will occur of not.

If the branch condition ends up being opposite of prediction flush the
pipeline.
This flush shows a pipeline without a special branch comparator in ID
stage. Otherwise, only one instruction needs to be flushed.

Alex Brandt Chapter 4: ILP , Part 2: Pipeline Hazards Thursday March 14, 2019 29 / 32

Implementing Branch Prediction
Branches have exactly two possibilities: taken or not taken.
In MIPS branches are statically predicted to never happen.
Dynamic branch prediction uses run-time information to change
prediction between taken or not taken.

ë Use branch history to predict future branches.
ë Simplest method is to use a saturated counter : increment counter if

branch actually taken, decrease counter if branch not taken.
ë Predict based on current count.
ë More advanced predictors evaluate patterns in branch history.

Random branch prediction: statistically 50% correct prediction.

A two-bit saturated counter:

Alex Brandt Chapter 4: ILP , Part 2: Pipeline Hazards Thursday March 14, 2019 30 / 32

Datapath With Forwarding and Flushing

Alex Brandt Chapter 4: ILP , Part 2: Pipeline Hazards Thursday March 14, 2019 31 / 32

Hazard Summary

Structural hazards caused by conflicts accessing hardware.
ë Register access fast enough to happen twice in one clock cycle.
ë Banked L1 cache for simultaneous instruction and data access.

Data hazards caused by Read After Write (RAW).
ë ALU-ALU forwarding.
ë MEM-MEM forwarding (memory copies).
ë Load-use hazard: stall (load-delay slot) and MEM-ALU forward.

Control hazards caused by branch instructions.
ë Special branch comparator in ID stage.
ë Branch delay slot; delayed branching.
ë Branch prediction and pipeline flush.

Compiler handles nop insertion to fix hazards.
Hardware handles fixing hazards with pipeline interlock.

Alex Brandt Chapter 4: ILP , Part 2: Pipeline Hazards Thursday March 14, 2019 32 / 32

CS3350B Computer Organization
Chapter 4: Instruction-Level Parallelism

Hazard Examples

Alex Brandt

Department of Computer Science
University of Western Ontario, Canada

Thursday March 14, 2019

Alex Brandt Chapter 4: ILP , Hazard Examples Thursday March 14, 2019 1 / 24

Introduction

In pipelining examples, assume we always start with the “basic”
datapath; the one as of the end of Lecture 11.

ë This datapath implicitly already solves the two structural hazards in
memory and register file.

ë That is, we do not consider structural hazards.

Each optimization should be explicitly added in the question or in
your answer for a possible resolution.

ë Each type of forwarding (ALU-ALU, MEM-ALU, MEM-MEM).
ë Filling the load delay slot with something other than nop.
ë Branch comparator in ID stage.
ë Delayed branching and branch delay slot.

Alex Brandt Chapter 4: ILP , Hazard Examples Thursday March 14, 2019 2 / 24

Example 1

lw $t0 , 0($s1)
addu $t0 , $t0 , $s2
subu $t4 , $t0 , $t3
add i $s1 , $s1 , −4
add $t1 , $t1 , $t2

If any dependencies exist where are they and what type are they?

Alex Brandt Chapter 4: ILP , Hazard Examples Thursday March 14, 2019 3 / 24

Example 1

lw $t0 , 0($s1)
addu $t0 , $t0 , $s2
subu $t4 , $t0 , $t3
add i $s1 , $s1 , −4
add $t1 , $t1 , $t2

If any dependencies exist where are they and what type are they?
ë Load-use (RAW) between lw and addu.
ë WAW between lw and addu.
ë RAW between addu and sub.

Alex Brandt Chapter 4: ILP , Hazard Examples Thursday March 14, 2019 4 / 24

Example 1

lw $t0 , 0($s1)
addu $t0 , $t0 , $s2
subu $t4 , $t0 , $t3
add i $s1 , $s1 , −4
add $t1 , $t1 , $t2

On the basic datapath, how many cycles does it take to execute the
code fragment (including stalls)?

Alex Brandt Chapter 4: ILP , Hazard Examples Thursday March 14, 2019 5 / 24

Example 1

lw $t0 , 0($s1)
addu $t0 , $t0 , $s2
subu $t4 , $t0 , $t3
add i $s1 , $s1 , −4
add $t1 , $t1 , $t2

On the basic datapath, how many cycles does it take to execute the
code fragment (including stalls)?

ë 2 nop between lw and addu. MEM of lw and IF of addu can overlap.
ë 2 nop between addu and sw. MEM of addu and IF of sw can overlap.
ë On 5th cycle lw completes and then one cycle per instruction after

that.
ë Including nop we get: 5 + 2 nop + 1 + 2 nop + 2 + 1 = 13.

Alex Brandt Chapter 4: ILP , Hazard Examples Thursday March 14, 2019 6 / 24

Example 1
lw $t0 , 0($s1)
addu $t0 , $t0 , $s2
subu $t4 , $t0 , $t3
add i $s1 , $s1 , −4
add $t1 , $t1 , $t2

Alex Brandt Chapter 4: ILP , Hazard Examples Thursday March 14, 2019 7 / 24

Example 1

lw $t0 , 0($s1)
addu $t0 , $t0 , $s2
subu $t4 , $t0 , $t3
add i $s1 , $s1 , −4
add $t1 , $t1 , $t2

What optimizations can be added to the datapath to reduce the
number of cycles? How many cycles are needed to execute the code
fragment after optimizations are added?

Alex Brandt Chapter 4: ILP , Hazard Examples Thursday March 14, 2019 8 / 24

Example 1

lw $t0 , 0($s1)
addu $t0 , $t0 , $s2
subu $t4 , $t0 , $t3
add i $s1 , $s1 , −4
add $t1 , $t1 , $t2

What optimizations can be added to the datapath to reduce the
number of cycles? How many cycles are needed to execute the code
fragment after optimizations are added?

ë MEM-ALU forwarding for load-use. Reduces nop count to 1.
ë ALU-ALU forwarding removes both nop between addu and sub
ë Clock cycles: 5 + 1 nop + 4 = 10.

Alex Brandt Chapter 4: ILP , Hazard Examples Thursday March 14, 2019 9 / 24

Example 1
lw $t0 , 0($s1)
addu $t0 , $t0 , $s2
subu $t4 , $t0 , $t3
add i $s1 , $s1 , −4
add $t1 , $t1 , $t2

Alex Brandt Chapter 4: ILP , Hazard Examples Thursday March 14, 2019 10 / 24

Example 1

lw $t0 , 0($s1)
addu $t0 , $t0 , $s2
subu $t4 , $t0 , $t3
add i $s1 , $s1 , −4
add $t1 , $t1 , $t2

Can code re-organization along with datapath optimizations be used
to further improve the number of clock cycles needed to execute the
code? If so, re-order the code and declare any additional
optimizations; what is the number of cycles needed to execute the
re-ordered code?

Alex Brandt Chapter 4: ILP , Hazard Examples Thursday March 14, 2019 11 / 24

Example 1
lw $t0 , 0($s1)
addu $t0 , $t0 , $s2
subu $t4 , $t0 , $t3
add i $s1 , $s1 , −4
add $t1 , $t1 , $t2

Can code re-organization along with datapath optimizations be used
to further improve the number of clock cycles needed to execute the
code? If so, re-order the code and declare any additional
optimizations; what is the number of cycles needed to execute the
re-ordered code?

ë Yes.
ë Move addi or add into load-delay slot.
ë 9, since we remove the nop.

Alex Brandt Chapter 4: ILP , Hazard Examples Thursday March 14, 2019 12 / 24

Example 1
lw $t0 , 0($s1)
addu $t0 , $t0 , $s2
subu $t4 , $t0 , $t3
add i $s1 , $s1 , −4
add $t1 , $t1 , $t2

Alex Brandt Chapter 4: ILP , Hazard Examples Thursday March 14, 2019 13 / 24

Example 2

sub $t2 , $t1 , $t3
and $t7 , $t2 , $t5
or $t8 , $t6 , $t2
add $t9 , $t2 , $t2
sw $t5 , 12($t2)

If any dependencies exist where are they and what type are they?

Alex Brandt Chapter 4: ILP , Hazard Examples Thursday March 14, 2019 14 / 24

Example 2

sub $t2 , $t1 , $t3
and $t7 , $t2 , $t5
or $t8 , $t6 , $t2
add $t9 , $t2 , $t2
sw $t5 , 12($t2)

If any dependencies exist where are they and what type are they?
ë RAW between sub and and.
ë RAW between sub and or.
ë RAW between sub and and.
ë RAW between sub and sw.

Alex Brandt Chapter 4: ILP , Hazard Examples Thursday March 14, 2019 15 / 24

Example 2

sub $t2 , $t1 , $t3
and $t7 , $t2 , $t5
or $t8 , $t6 , $t2
add $t9 , $t2 , $t2
sw $t5 , 12($t2)

Consider the basic datapath with ALU-ALU and MEM-ALU
forwarding added. In this code fragment where do forwards occur?
How many cycles does it take to execute the code fragment?

Alex Brandt Chapter 4: ILP , Hazard Examples Thursday March 14, 2019 16 / 24

Example 2

sub $t2 , $t1 , $t3
and $t7 , $t2 , $t5
or $t8 , $t6 , $t2
add $t9 , $t2 , $t2
sw $t5 , 12($t2)

Consider the basic datapath with ALU-ALU and MEM-ALU
forwarding added. In this code fragment where do forwards occur?
How many cycles does it take to execute the code fragment?

ë ALU-ALU from sub to and.
ë MEM-ALU from sub to or.
ë sub to and RAW solved by register file design.
ë 5 + 1 + 1 + 1 + 1 = 9

Alex Brandt Chapter 4: ILP , Hazard Examples Thursday March 14, 2019 17 / 24

Example 2
sub $t2 , $t1 , $t3
and $t7 , $t2 , $t5
or $t8 , $t6 , $t2
add $t9 , $t2 , $t2
sw $t5 , 12($t2)

Alex Brandt Chapter 4: ILP , Hazard Examples Thursday March 14, 2019 18 / 24

Example 3

f o r : beq $t6 , $t7 , end
add $t0 , $t0 , $t1
add i $t6 , $t6 , 1
j f o r

end : sub $t1 , $t6 , $0

Assuming the basic data path how many cycles does it take to execute
two loops within the code fragment (therefore, excluding the sub)?

Alex Brandt Chapter 4: ILP , Hazard Examples Thursday March 14, 2019 19 / 24

Example 3
f o r : beq $t6 , $t7 , end

add $t0 , $t0 , $t1
add i $t6 , $t6 , 1
j f o r

end : sub $t1 , $t6 , $0

Assuming the basic data path how many cycles does it take to execute
two loops within the code fragment (therefore, excluding the sub)?

ë Careful! Since a loop, RAW dependency between andi and beq.
ë Two nop follows beq for control hazard.
ë One nop follows j for control hazard.
ë First loop: 5 + 2 nop + 3 + 1 nop.
ë In the second loop beq overlaps with previous instructions.
ë Second loop: 1 + 2 nop + 3 + 1 nop.
ë Total: 18.

Alex Brandt Chapter 4: ILP , Hazard Examples Thursday March 14, 2019 20 / 24

Example 3
f o r : beq $t6 , $t7 , end

add $t0 , $t0 , $t1
add i $t6 , $t6 , 1
j f o r

end : sub $t1 , $t6 , $0

Alex Brandt Chapter 4: ILP , Hazard Examples Thursday March 14, 2019 21 / 24

Example 3

f o r : beq $t6 , $t7 , end
add $t0 , $t0 , $t1
add i $t6 , $t6 , 1
j f o r

end : sub $t1 , $t6 , $0

Using any datapath optimizations and code re-ordering, minimize the
clock cycles required to execute the loop two times. Name the
optimizations used. How many cycles does it take to execute this
optimized version?

Alex Brandt Chapter 4: ILP , Hazard Examples Thursday March 14, 2019 22 / 24

Example 3
f o r : beq $t6 , $t7 , end

add $t0 , $t0 , $t1
add i $t6 , $t6 , 1
j f o r

end : sub $t1 , $t6 , $0

Using any datapath optimizations and code re-ordering, minimize the
clock cycles required to execute the loop two times. Name the
optimizations used. How many cycles does it take to execute this
optimized version?

ë Special branch comparator in ID stage.
ë Careful! Cannot fill branch delay slot.
ë Using add would change code meaning.
ë Value of $t6 used again after loop so cannot use addi.
ë Cannot use jump for obvious control-flow reasons.
ë Total savings: 1 nop per branch ⇒ 16 cycles now.
ë (If using branch prediction, all nops are removed).

Alex Brandt Chapter 4: ILP , Hazard Examples Thursday March 14, 2019 23 / 24

Example 3
f o r : beq $t6 , $t7 , end

add $t0 , $t0 , $t1
add i $t6 , $t6 , 1
j f o r

end : sub $t1 , $t6 , $0

Alex Brandt Chapter 4: ILP , Hazard Examples Thursday March 14, 2019 24 / 24

CS3350B Computer Organization
Chapter 4: Instruction-Level Parallelism

Part 3: Beyond Pipelining

Alex Brandt

Department of Computer Science
University of Western Ontario, Canada

Tuesday March 19, 2019

Alex Brandt Chapter 4: ILP , Part 3: Beyond Pipelining Tuesday March 19, 2019 1 / 29

Outline

1 Introduction

2 VLIW

3 Loop Unrolling

4 Dynamic Superscalar Processors

5 Register Renaming

Alex Brandt Chapter 4: ILP , Part 3: Beyond Pipelining Tuesday March 19, 2019 2 / 29

Instruction-Level Parallelism (ILP)

Instruction-level parallelism involves executing multiple instructions at
the same time.

ë Instructions may simply overlap (pipelining) or,
ë Instructions may be executed completely in parallel (superscalar).

There are many techniques which are used to provide ILP or to support
ILP in achieving greater speed-up.

ë Pipelining.
ë Branch prediction.
ë Superscalar execution.
ë Very Long Instruction Word (VLIW).
ë Register renaming.
ë Loop unrolling.

Alex Brandt Chapter 4: ILP , Part 3: Beyond Pipelining Tuesday March 19, 2019 3 / 29

Multiple Issue Processors

A multiple issue processor issues (executes) multiple instructions
within a clock cycle. (Aims for CPI < 1)

ë VLIW Processors.
ë Static Superscalar Processors (essentially same as VLIW).
ë Dynamic Superscalar Processors.

By their nature, all multiple issue processors have multiple execution
units (ALUs) in their datapath.

Depending on the type of multiple issue processor, other circuitry may
also be duplicated or augmented.

Note: multiple issue processors are not necessarily pipelined (these
concepts are separate) but in reality pipelining is so good and multiple
issue came after so all multiple issue processors are also pipelined.

Alex Brandt Chapter 4: ILP , Part 3: Beyond Pipelining Tuesday March 19, 2019 4 / 29

Static Superscalar Processors

The name static implies the code scheduling is done by compiler.
Basically side-by-side datapaths simultaneously executing instructions.
Compiler handles dependencies and hazards and scheduling code so
that instructions on different datapaths don’t conflict.
Near identical to VLIW so we’ll skip the details.

Alex Brandt Chapter 4: ILP , Part 3: Beyond Pipelining Tuesday March 19, 2019 5 / 29

Static Superscalar Pipeline

Alex Brandt Chapter 4: ILP , Part 3: Beyond Pipelining Tuesday March 19, 2019 6 / 29

Outline

1 Introduction

2 VLIW

3 Loop Unrolling

4 Dynamic Superscalar Processors

5 Register Renaming

Alex Brandt Chapter 4: ILP , Part 3: Beyond Pipelining Tuesday March 19, 2019 7 / 29

VLIW Processors (1/2)

VLIW processors have very long instruction words.

Essentially, multiple instructions are encoded within a single (long)
instruction memory word called an issue packet.

The instructions which can be packed together are limited. Usually
only one lw/sw, only one branch, rest arithmetic.

In this case instructions word size ≠ data memory word size.

Simplest scheme: just concatenate multiple instructions together.

Ex: Two 32-bit instrs. together in a single 64-bit instruction word.

Instr. 1 Instr. 2

32 bits 32 bits

One full instruction word

Alex Brandt Chapter 4: ILP , Part 3: Beyond Pipelining Tuesday March 19, 2019 8 / 29

VLIW Processors (2/2)

In a VLIW pipeline:
One IF unit fetches a single long word encoding multiple instrs.
One ID ⇒ register file must handle multiple simultaneous reads.
In EX stage, each instr. is issued to a different execution unit (ALU).

Only one data memory to
read/write from!
There is a limitation on which
kinds of instructions can be
executed simultaneously.
In the WB stage the register
file must handle multiple
writes (to different registers,
obviously).

Alex Brandt Chapter 4: ILP , Part 3: Beyond Pipelining Tuesday March 19, 2019 9 / 29

4-Stage VLIW (without MEM stage for simplicity)

M. Oskin et al. Exploiting ILP in page-based intelligent memory. In ACM/IEEE International
Symposium on MICRO-32, Proceedings, pages 208-218, 1999.
Alex Brandt Chapter 4: ILP , Part 3: Beyond Pipelining Tuesday March 19, 2019 10 / 29

A VLIW Example (1/3)

Consider a 2-issue extension of MIPS.
The first slot of the issue packet must be an R-type instruction or a
branch.
The second slot of the issue packet must be lw or sw.
If compiler cannot find an instruction, insert nop.

ë Much like load-delay slot or branch-delay slot.

Instr. 1 Instr. 2

R-type or branch lw or sw

Alex Brandt Chapter 4: ILP , Part 3: Beyond Pipelining Tuesday March 19, 2019 11 / 29

A VLIW Example (2/3)

loop: lw $t0, 0($s1) # $t0=array element
addu $t0, $t0, $s2 # add scalar in $s2
sw $t0, 0($s1) # store result
addi $s1, $s1, -4 # decrement pointer
bne $s1, $0, loop # branch if $s1 != 0

for (int i=n; i>0; --i) {
A[i] += s2;

}

Need to schedule code for 2-issue.
Instructions in same issue packet must be independent.
Assume perfect branch prediction.
Load-use and RAW dependencies still need to be handled.

ë But, assume all possible datapath optimizations (forwarding).

Alex Brandt Chapter 4: ILP , Part 3: Beyond Pipelining Tuesday March 19, 2019 12 / 29

A VLIW Example (3/3)
loop: lw $t0, 0($s1) # $t0=array element

addu $t0, $t0, $s2 # add scalar in $s2
sw $t0, 0($s1) # store result
addi $s1, $s1, -4 # decrement pointer
bne $s1, $0, loop # branch if $s1 != 0

ALU or branch Data transfer CC
loop: nop lw $t0, 0($s1) 1

addi $s1, $s1, -4 nop 2
addu $t0, $t0, $s2 nop 3
bne $s1, $0, loop sw $t0, 4($s1) 4

CPI is 4 cycles / 5 instructions = 0.8.
nops don’t count towards performance.
Sometimes when scheduling code you need to adjust offsets.

Alex Brandt Chapter 4: ILP , Part 3: Beyond Pipelining Tuesday March 19, 2019 13 / 29

Outline

1 Introduction

2 VLIW

3 Loop Unrolling

4 Dynamic Superscalar Processors

5 Register Renaming

Alex Brandt Chapter 4: ILP , Part 3: Beyond Pipelining Tuesday March 19, 2019 14 / 29

Loop Unrolling

Compilers use loop unrolling to expose more parallelism.
Essentially, body of loop is replaced with multiple copies of itself (still
in a loop).
Avoids unnecessary branch delays, can more effectively schedule code
and fill load-use slots.
Ex: 4-time loop unrolling. Notice i += 4 in unrolled code.

int i = 0;
for (i; i < n; i++) {

A[i] += 10;
}

int i = 0;
for (i; i < n; i += 4) {

A[i] += 10;
A[i+1] += 10;
A[i+2] += 10;
A[i+3] += 10;

}

Alex Brandt Chapter 4: ILP , Part 3: Beyond Pipelining Tuesday March 19, 2019 15 / 29

Unrolling MIPS
loop: lw $t0, 0($s1)

addu $t0, $t0, $s2
sw $t0, 0($s1)
addi $s1, $s1, -4
bne $s1, $0, loop

for (int i=n; i>0; --i) {
A[i] += s2;

}

loop: lw $t0,0($s1) # $t0=array element
lw $t1,-4($s1) # $t1=array element
lw $t2,-8($s1) # $t2=array element
lw $t3,-12($s1)# $t3=array element
addu $t0,$t0,$s2 # add scalar in $s2
addu $t1,$t1,$s2 # add scalar in $s2
addu $t2,$t2,$s2 # add scalar in $s2
addu $t3,$t3,$s2 # add scalar in $s2
sw $t0,0($s1) # store result
sw $t1,-4($s1) # store result
sw $t2,-8($s1) # store result
sw $t3,-12($s1)# store result
addi $s1,$s1,-16 # decrement pointer
bne $s1,$0,loop # branch if $s1 != 0

Notice, loop body is not
exactly copied 4 times.
Static register renaming:
$t0 becomes $t1, $t2,
$t3 for successive loops.
Can now easily
reschedule code and fill
load-delay slots.
Much fewer branch instr.
and branch delay slots.

Alex Brandt Chapter 4: ILP , Part 3: Beyond Pipelining Tuesday March 19, 2019 16 / 29

Combining Loop Unrolling and VLIW
Same 2-issue extension of MIPS. First slot is ALU, second slot is data
transfer. Datapath has all forwarding and possible optimizations.
Remember:

Need one instruction between load and use.
Insert nop if no instruction possible

ALU or branch Data transfer CC
loop: addi $s1,$s1,-16 lw $t0,0($s1) 1

nop lw $t1,12($s1) #-4 2
addu $t0,$t0,$s2 lw $t2,8($s1) #-8 3
addu $t1,$t1,$s2 lw $t3,4($s1) #-12 4
addu $t2,$t2,$s2 sw $t0,16($s1) #0 5
addu $t3,$t3,$s2 sw $t1,12($s1) #-4 6
nop sw $t2,8($s1) #-8 7
bne $s1,$0,loop sw $t3,4($s1) #-12 8

Alex Brandt Chapter 4: ILP , Part 3: Beyond Pipelining Tuesday March 19, 2019 17 / 29

Outline

1 Introduction

2 VLIW

3 Loop Unrolling

4 Dynamic Superscalar Processors

5 Register Renaming

Alex Brandt Chapter 4: ILP , Part 3: Beyond Pipelining Tuesday March 19, 2019 18 / 29

Dynamic Superscalar Processors

Dynamic in the name implies that the hardware handles code
scheduling.

Because of the dynamic nature out-of-order execution can occur.
ë Instructions are actually executed in a different order than they are

fetched.

This scheme allows for different types of execution paths which all
take a different amount of time:

ë Ex: Normal ALU, Floating point unit, Memory load/store path.

This scheme is particularly good at overcoming stalls due to cache
misses and other dependencies.

However, hardware becomes much more complex than static schemes.

Alex Brandt Chapter 4: ILP , Part 3: Beyond Pipelining Tuesday March 19, 2019 19 / 29

A Dynamic Superscalar Pipeline (1/2)

Fetch one instr. per cycle as normal.
“Pre-decode” instr. and add to
instruction buffer in RD (dispatch)
stage.

ë Out-of-order execution ⇒ must
wait for updated values of
operands.

Once instr. operands are ready,
dispatcher issues instr. to one of
many execution units. This is where
out-of-order execution is introduced.
Dispatch: adding instr. to buffer.
Issue: sending instr. to execution
unit.

RO/WB

Alex Brandt Chapter 4: ILP , Part 3: Beyond Pipelining Tuesday March 19, 2019 20 / 29

A Dynamic Superscalar Pipeline (2/2)
Before WB stage, a reorder buffer or completion stage makes sure
instructions are in-order before writing results back (a.k.a
committing).

ë Out-of-order execution means WAR and WAW dependencies matter.
Finally, instructions are retired.

A centralized reservation station is both a dispatcher and issuer.
Alex Brandt Chapter 4: ILP , Part 3: Beyond Pipelining Tuesday March 19, 2019 21 / 29

Pros and Cons of Dynamic Scheduling

Compiler is only so good at scheduling code. Data hazards are hard
to resolve.

ë Compiler only sees pointers but hardware sees actual memory addresses.

Dynamic scheduling overcomes unpredictable stalls (cache misses) but
requires complex circuitry.

Dynamic scheduling more aggressively overlaps instructions since
operand values are read and then queued in reservation stations.

Instructions are fetched in-order, executed out-of-order, and then
committed/retired in-order and sequentially.
Flynn’s bottleneck: can only retire as many instr. per cycle as are
fetched.

ë Superscalar machines usually augmented with fetching multiple
instructions at once.

Alex Brandt Chapter 4: ILP , Part 3: Beyond Pipelining Tuesday March 19, 2019 22 / 29

Comparing Multiple Issue Processors (1/2)

VLIW
Static scheduling.
In-order execution.
Single IF unit but
many EX units.
Instructions
packed together in
issue packet.

Static SS
Static scheduling.
In-order execution.
Many IF units (or
one IF fetching
multiple instr.)
and many EX
units.
Compiler explicitly
schedules each
datapath.

Dynamic SS
Dynamic scheduling.
Out-of-order exec.
Single IF unit but
many EX units.
IF unit might fetch
multiple instr. per
cycle.

Alex Brandt Chapter 4: ILP , Part 3: Beyond Pipelining Tuesday March 19, 2019 23 / 29

Comparing Multiple Issue Pipelines (2/2)

Tapani Ahonen, University of Tampere

Alex Brandt Chapter 4: ILP , Part 3: Beyond Pipelining Tuesday March 19, 2019 24 / 29

Outline

1 Introduction

2 VLIW

3 Loop Unrolling

4 Dynamic Superscalar Processors

5 Register Renaming

Alex Brandt Chapter 4: ILP , Part 3: Beyond Pipelining Tuesday March 19, 2019 25 / 29

Writer After X Dependencies

Out-of-order execution causes hazards beyond RAW dependencies.
WAR dependency – write a value after it is read by a previous
instruction.
Ex: Cannot write to $t1 in until addi has read its value of $t1.

addi $t0, $t1, 2
add $t1, $t3, $0

WAW dependency – write a value after its destination has been
written to by a previous instruction. Needed to maintain consistent
values for future instructions.
Ex: If add executed before addi then value of $t1 incorrect.

addi $t1, $t4, 12
add $t1, $t3, $0

Alex Brandt Chapter 4: ILP , Part 3: Beyond Pipelining Tuesday March 19, 2019 26 / 29

Register Renaming

Register renaming is both a static and dynamic technique used to
help superscalar pipelines and can fix WAR and WAW dependencies.
Essentially, code is modified so that every destination is replaced with
a unique “logical” destination (sometimes called value name).

ë Reservation stations provide a hardware buffer for storing logical
destinations.

ë For dynamic renaming, hardware maintains a mapping from register
names to logical destinations to modify operands for incoming
instructions.

Ex:

add $t6, $t0, $t2
sub $t4, $t2, $t0
xor $t0, $t6, $t2
and $t2, $t2, $t6

RAW: $t6 in add and xor.
WAR: $t0 in sub and xor.
WAR: $t2 in sub and and.
WAR: $t2 in sub and and.

Alex Brandt Chapter 4: ILP , Part 3: Beyond Pipelining Tuesday March 19, 2019 27 / 29

Register Renaming Example

Instr. $t0 $t2 $t4 $t6 Renamed Instr.
Initially V0 V1 V2 V3 —

add $t6, $t0, $t2 V4 add V4, V0, V1
sub $t4, $t2, $t0 V5 sub V5, V1, V0
xor $t0, $t6, $t2 V6 xor V6, V4, V1
and $t2, $t2, $t6 add ??, V1, ??

Instr. $t0 $t2 $t4 $t6 Renamed Instr.
Initially V0 V1 V2 V3 —

add $t6, $t0, $t2 V4 add V4, V0, V1
sub $t4, $t2, $t0 V5 sub V5, V1, V0
xor $t0, $t6, $t2 V6 xor V6, V4, V1
and $t2, $t2, $t6 V7 add V7, V1, V4

Alex Brandt Chapter 4: ILP , Part 3: Beyond Pipelining Tuesday March 19, 2019 28 / 29

Register Renaming Example

Instr. $t0 $t2 $t4 $t6 Renamed Instr.
Initially V0 V1 V2 V3 —

add $t6, $t0, $t2 V4 add V4, V0, V1
sub $t4, $t2, $t0 V5 sub V5, V1, V0
xor $t0, $t6, $t2 V6 xor V6, V4, V1
and $t2, $t2, $t6 add ??, V1, ??

Instr. $t0 $t2 $t4 $t6 Renamed Instr.
Initially V0 V1 V2 V3 —

add $t6, $t0, $t2 V4 add V4, V0, V1
sub $t4, $t2, $t0 V5 sub V5, V1, V0
xor $t0, $t6, $t2 V6 xor V6, V4, V1
and $t2, $t2, $t6 V7 add V7, V1, V4

Alex Brandt Chapter 4: ILP , Part 3: Beyond Pipelining Tuesday March 19, 2019 28 / 29

Summary

Multiple issue processors execute multiple instructions simultaneously
for CPI < 1.

VLIW uses statically-scheduled issue packets.

Loop unrolling exposes more parallelism and removes some branching
overhead.

Dynamic superscalar processors combat against unexpected stalls
(cache misses) by allowing for out-of-order execution.

Register renaming fixes WAR and WAW dependencies.

RAW dependencies are the only true dependency and still must be
accounted for in scheduling.

Alex Brandt Chapter 4: ILP , Part 3: Beyond Pipelining Tuesday March 19, 2019 29 / 29

