
On the Complexity and Parallel Implementation of
Hensel’s Lemma and Weierstrass Preparation

Alexander Brandt, Marc Moreno Maza

Ontario Research Center for Computer Algebra
Department of Computer Science

University of Western Ontario, Canada

September 17, 2021
CASC 2021

Alexander Brandt Complexity and Parallel Implementation of Hensel’s Lemma CASC 2021 1 / 33

The Problem

Given a polynomial 𝑓 ∈ K(︀𝑋1, . . . , 𝑋𝑛, 𝑌 ⌋︀ compute the roots of 𝑓 in 𝑌 .

→ The classical Newton–Puiseux method is known to compute the roots
of 𝑓 ∈ K(︀𝑋1, 𝑌 ⌋︀ in 𝑌 as Puiseux series in 𝑋

→ The Hensel–Sasaki Construction or Extended Hensel
Construction supports multivariate polynomials, computing the roots
of 𝑓 in 𝑌 as multivariate Puiseux series [12]

→ If 𝑓 is monic, roots in 𝑌 can be computed as multivariate power
series; we call such a method Hensel Factorization

Applications:
→ Computing limits of multivariate rational functions [2]
→ Computing topological closures, limit points of quasi-components [1]
→ An effective variant of the Abhyankar-Jung Theorem

Alexander Brandt Complexity and Parallel Implementation of Hensel’s Lemma CASC 2021 2 / 33

Goals and Previous Work

Our goal is to improve the practical performance of the Hensel–Sasaki
Construction and its applications.
→ First step is improving the monic case of Hensel factorization.

Practical efficiency:
→ High-performance and memory-efficient underlying polynomial

arithmetic [4]
→ Lazy power series supporting lazy Weierstrass preparation and lazy

Hensel factorization [6]
→ Now: parallel and concurrent processing
→ Now: dynamic load-balancing using complexity estimates

Alexander Brandt Complexity and Parallel Implementation of Hensel’s Lemma CASC 2021 3 / 33

In This Work

→ Examine the complexity of a lazy scheme for Weierstrass Preparation
Theorem and Hensel factorization

→ Present parallel algorithms for WPT and Hensel factorization

→ Composition of parallel schemes, WPT within Hensel factorization

→ Application of complexity estimates to dynamically load-balance
parallel algorithm

→ Implementation of parallel algorithms supporting arbitrary number of
variables in the BPAS library [3]

→ Experimental evaluation of parallel performance

Alexander Brandt Complexity and Parallel Implementation of Hensel’s Lemma CASC 2021 4 / 33

Outline

1 Background

2 Weierstrass Preparation Theorem

3 Hensel Factorization

4 Experimentation

Alexander Brandt Complexity and Parallel Implementation of Hensel’s Lemma CASC 2021 5 / 33

Notations

A = K(︀(︀𝑋1, . . . , 𝑋𝑛⌋︀⌋︀ is the ring of multivariate power series over an
algebraically closed field. Its maximal ideal is ℳ = ∐︀𝑋1, . . . , 𝑋𝑛̃︀.
→ 𝑓 = ∑

𝑒∈N𝑛
𝑎𝑒𝑋𝑒

∈ K(︀(︀𝑋1, . . . , 𝑋𝑛⌋︀⌋︀

→ 𝑋𝑒
= 𝑋𝑒1

1 ⋯𝑋𝑒𝑛
𝑛 , ⋃︀𝑒⋃︀ = 𝑒1 +⋯ + 𝑒𝑛

→ 𝑓(𝑘) = ∑
⋃︀𝑒⋃︀=𝑘

𝑎𝑒𝑋𝑒 is the homogeneous part of 𝑓 of degree 𝑘

→ 𝑓(𝑘) ∈ℳ
𝑘
∖ℳ

𝑘+1

→ The units of A are {𝑢 ⋃︀𝑢 ⇑∈ℳ}

A(︀𝑌 ⌋︀ is the ring of Univariate Polynomials over Power Series (UPoPS)
→ 𝑓 = ∑

𝑑
𝑖=0 𝑎𝑖𝑌

𝑖, 𝑎𝑖 ∈ A, 𝑎𝑑 ≠ 0 is a UPoPS of degree 𝑑

→ Denote degree of 𝑓 in 𝑌 by deg(𝑓) = 𝑑

Alexander Brandt Complexity and Parallel Implementation of Hensel’s Lemma CASC 2021 6 / 33

Lazy Power Series

Power series implemented using a lazy evaluation scheme allow for terms
to be computed on demand, increasing precision as needed.

Our lazy power series require:
1 an update function to compute homogeneous parts of a given degree
2 capturing parameters required for the update function
3 storing previously computed homogeneous parts

Where update parameters are power series, they are called ancestors.
Addition, 𝑓 = 𝑔 + ℎ

→ 𝑓(𝑘) = 𝑔(𝑘) + ℎ(𝑘)

Multiplication 𝑓 = 𝑔ℎ

→ 𝑓(𝑘) = ∑
𝑘
𝑖=0 𝑔(𝑖)ℎ(𝑘−𝑖)

Alexander Brandt Complexity and Parallel Implementation of Hensel’s Lemma CASC 2021 7 / 33

Ancestry Example

𝑝 = 𝑓𝑔 + 𝑎𝑏

𝑓 = 𝑔 = 𝑎 = 𝑏 =
1 + 𝑥 + 𝑦𝑧 + . . . 1 + 𝑧 + 𝑦 + . . . 1 + 𝑦 + 𝑥2

+ . . . 1 + 𝑦𝑧 + 𝑥𝑧 + . . .

× ×

ℎ = 𝑐 =
1 + 𝑧 + 𝑦 + 𝑥 + 𝑦𝑧 + 𝑥𝑧 + 𝑥𝑦 + . . . 1 + 𝑦 + 𝑦𝑧 + 𝑥𝑧 + 𝑥2

+ . . .

+

𝑝 =
2 + 𝑧 + 2𝑦 + 𝑥 + 2𝑦𝑧 + 2𝑥𝑧 + 𝑥𝑦 + 𝑥2

+ . . .

Alexander Brandt Complexity and Parallel Implementation of Hensel’s Lemma CASC 2021 8 / 33

Outline

1 Background

2 Weierstrass Preparation Theorem

3 Hensel Factorization

4 Experimentation

Alexander Brandt Complexity and Parallel Implementation of Hensel’s Lemma CASC 2021 9 / 33

Weierstrass Preparation Theorem for UPoPS

Theorem 1 (Weierstrass Preparation)
Let 𝑓 = ∑

𝑑+𝑚
𝑖=0 𝑎𝑖𝑌

𝑖
∈ K(︀(︀𝑋1, . . . , 𝑋𝑛⌋︀⌋︀(︀𝑌 ⌋︀ where 𝑑 ≥ 0 be the smallest

integer such that 𝑎𝑑 ⇑∈ℳ and 𝑚 ∈ Z+. Assume 𝑓 ⇑≡ 0 modℳ(︀𝑌 ⌋︀. Then,
there exists a unique pair 𝑝, 𝛼 satisfying the following:

1 𝑓 = 𝑝 𝛼,
2 𝛼 is an invertible element of K(︀(︀𝑋1, . . . , 𝑋𝑛⌋︀⌋︀(︀(︀𝑌 ⌋︀⌋︀,
3 𝑝 is a monic polynomial of degree 𝑑,
4 writing 𝑝 = 𝑌 𝑑

+ 𝑏𝑑−1𝑌 𝑑−1
+⋯𝑏1𝑌 + 𝑏0, we have 𝑏𝑑−1, . . . , 𝑏0 ∈ℳ.

Theorem 2 (Lazy Weierstrass Complexity)
For 𝑓 = 𝑝 𝛼 ∈ K(︀(︀𝑋1⌋︀⌋︀(︀𝑌 ⌋︀, deg(𝑝) = 𝑑, deg(𝛼) = 𝑚, computing 𝑝 and 𝛼 to
precision 𝑘 requires 𝑑(𝑚 + 1)𝑘2

+ 𝑑𝑚𝑘 operations in K.

Alexander Brandt Complexity and Parallel Implementation of Hensel’s Lemma CASC 2021 10 / 33

Lazy Weierstrass Preparation

Let 𝑓 = ∑
𝑑+𝑚
ℓ=0 𝑎ℓ𝑌

ℓ, 𝑝 = 𝑌 𝑑
+∑

𝑑−1
𝑗=0 𝑏𝑗𝑌 𝑗 , 𝛼 = ∑

𝑚
𝑖=0 𝑐𝑖𝑌

𝑖 be UPoPS.

ë 𝑎ℓ, 𝑏𝑗 , 𝑐𝑖 are power series ë 𝑏𝑗 ∈ℳ for 𝑗 = 0, . . . , 𝑑 − 1

𝑓 = 𝑝 𝛼 Ô⇒ 𝑎0 = 𝑏0𝑐0
𝑎1 = 𝑏0𝑐1 + 𝑏1𝑐0

⋮

𝑎𝑑−1 = 𝑏0𝑐𝑑−1 + 𝑏1𝑐𝑑−2 +⋯ + 𝑏𝑑−2𝑐1 + 𝑏𝑑−1𝑐0
𝑎𝑑 = 𝑏0𝑐𝑑 + 𝑏1𝑐𝑑−1 +⋯ + 𝑏𝑑−1𝑐1 + 𝑐0

⋮

𝑎𝑑+𝑚−1 = 𝑏𝑑−1𝑐𝑚 + 𝑐𝑚−1
𝑎𝑑+𝑚 = 𝑐𝑚

We update 𝑝 and 𝛼 by solving these equations modulo ℳ𝑘, 𝑘 = 1, 2, . . .

modulo ℳ we have:
(1) 𝑏𝑗 ≡ 0 modℳ, 𝑗 = 0, . . . , 𝑑 − 1 (2) 𝑐𝑖 ≡ 𝑎𝑑+𝑖 modℳ 𝑖 = 0, . . . , 𝑚

Alexander Brandt Complexity and Parallel Implementation of Hensel’s Lemma CASC 2021 11 / 33

Lazy Weierstrass Phase 1: update 𝑝

Let 𝑓 = ∑
𝑑+𝑚
ℓ=0 𝑎ℓ𝑌

ℓ, 𝑝 = 𝑌 𝑑
+∑

𝑑−1
𝑗=0 𝑏𝑗𝑌 𝑗 , 𝛼 = ∑

𝑚
𝑖=0 𝑐𝑖𝑌

𝑖 be UPoPS.

ë 𝑎ℓ, 𝑏𝑗 , 𝑐𝑖 are power series ë 𝑏𝑗 ∈ℳ for 𝑗 = 0, . . . , 𝑑 − 1

𝑎0 = 𝑏0𝑐0
𝑎1 − 𝑏0𝑐1 = 𝑏1𝑐0

𝑎2 − 𝑏0𝑐2 − 𝑏1𝑐1 = 𝑏2𝑐0
⋮

𝑎𝑑−1 − 𝑏0𝑐𝑑−1 − 𝑏1𝑐𝑑−2 +⋯ − 𝑏𝑑−2𝑐1 = 𝑏𝑑−1𝑐0

→ let 𝐹𝑗 = 𝑎𝑗 −∑
𝑗−1
𝑖=0 𝑏𝑖𝑐𝑗−𝑖

→ with power series division we can solve 𝐹𝑗 = 𝑏𝑗𝑐0 from 𝑗 = 0 to 𝑑 − 1
ë 𝑏𝑗(𝑘) =

1⇑𝑐0(0) (𝐹𝑗(𝑘) −∑
𝑘−1
𝑖=1 𝑏𝑗(𝑖)𝑐0(𝑘−𝑖))

→ each 𝐹𝑗 lazily updated through lazy power series arithmetic

Alexander Brandt Complexity and Parallel Implementation of Hensel’s Lemma CASC 2021 12 / 33

Lazy Weierstrass Phase 2: update 𝛼

Let 𝑓 = ∑
𝑑+𝑚
ℓ=0 𝑎ℓ𝑌

ℓ, 𝑝 = 𝑌 𝑑
+∑

𝑑−1
𝑗=0 𝑏𝑗𝑌 𝑗 , 𝛼 = ∑

𝑚
𝑖=0 𝑐𝑖𝑌

𝑖 be UPoPS.

ë 𝑎ℓ, 𝑏𝑗 , 𝑐𝑖 are power series ë 𝑏𝑗 ∈ℳ for 𝑗 = 0, . . . , 𝑑 − 1

𝑐𝑚 = 𝑎𝑑+𝑚

𝑐𝑚−1 = 𝑎𝑑+𝑚−1 − 𝑏𝑑−1𝑐𝑚

𝑐𝑚−2 = 𝑎𝑑+𝑚−2 − 𝑏𝑑−2𝑐𝑚 − 𝑏𝑑−1𝑐𝑚−1
⋮

𝑐0 = 𝑎𝑑 − 𝑏0𝑐𝑑 − 𝑏1𝑐𝑑−1 −⋯ − 𝑏𝑑−1𝑐1

→ 𝑐𝑚−𝑖(𝑘) = 𝑎𝑑+𝑚−𝑖(𝑘) −∑
𝑖
𝑗=1 (𝑏𝑑−𝑗𝑐𝑚−𝑖+𝑗)(𝑘), for 𝑖 ≤ 𝑑

→ each 𝑐𝑚−𝑖 lazily updated through lazy power series arithmetic
→ (𝑏𝑑−𝑗𝑐𝑚−𝑖+𝑗)(𝑘) only requires up to 𝑐𝑚−𝑖+𝑗(𝑘−1) since 𝑏𝑑−𝑗(0) = 0
→ each 𝑐𝑚−𝑖 can thus be updated simultaneously

Alexander Brandt Complexity and Parallel Implementation of Hensel’s Lemma CASC 2021 13 / 33

Parallel Opportunities in Weierstrass

parallel map-reduce or parallel for loops

In phase 1: 𝑏𝑗(𝑘) = 1⇑𝑐0(0) (𝐹𝑗(𝑘) −∑
𝑘−1
𝑖=1 𝑏𝑗(𝑖)𝑐0(𝑘−𝑖))

→ compute summations using map-reduce:
∑

𝑘
𝑖=1 𝑏𝑗(𝑖)𝑐0(𝑘−𝑖)

→ notice in multivariate case, e.g., 𝑏𝑗(1)𝑐0(𝑘−1) is less work than
𝑏𝑗(𝑘

2)
𝑐0(𝑘− 𝑘

2)

In phase 2: 𝑐𝑚−𝑖(𝑘) = 𝑎𝑑+𝑚−𝑖(𝑘) −∑
𝑖
𝑗=1 (𝑏𝑑−𝑗𝑐𝑚−𝑖+𝑗)(𝑘)

→ compute each 𝑐𝑚−𝑖(𝑘), 0 ≤ 𝑖 ≤ 𝑚 simultaneously, and/or
→ compute product homogeneous parts using a map-reduce:

(𝑏𝑑−𝑗𝑐𝑚−𝑖+𝑗)(𝑘) = ∑
𝑘
ℓ=1 𝑏𝑑−𝑗(ℓ)𝑐𝑚−𝑖+𝑗(𝑘−ℓ)

→ load-balance issue again in the multivariate case

Alexander Brandt Complexity and Parallel Implementation of Hensel’s Lemma CASC 2021 14 / 33

Update To Deg: Map-Reduce

Algorithm 1 UpdateToDegParallel(𝑘, 𝑓 , 𝑡)

Input: 𝑘 ∈ Z+, 𝑓 ∈ K(︀(︀𝑋1, . . . , 𝑋𝑛⌋︀⌋︀ known to at least precision 𝑘 − 1. If 𝑓 has ancestors, it is
the result of a binary operation. 𝑡 ∈ Z+ for the number of threads to use.

Output: 𝑓 is updated to precision 𝑘, in place.
1: 𝑔, ℎ ∶= FirstAncestor(𝑓), SecondAncestor(𝑓)
2: UpdateToDegParallel(𝑘, 𝑔, 𝑡);
3: UpdateToDegParallel(𝑘, ℎ, 𝑡);

4: if 𝑓 is a product then ▷ compute 𝑓(𝑘) by map-reduce
5: 𝒱 ∶= (︀0, . . . , 0⌋︀ ▷ 0-indexed list of size 𝑡
6: parallel_for 𝑗 ∶= 0 to 𝑡 − 1
7: for 𝑖 ∶= 𝑗𝑘⇑𝑡 to (𝑗+1)𝑘⇑𝑡 − 1 while 𝑖 ≤ 𝑘 do
8: 𝒱(︀𝑗⌋︀ ∶= 𝒱(︀𝑗⌋︀ + 𝑔(𝑖)ℎ(𝑘−𝑖)

9: 𝑓(𝑘) ∶= ∑𝑡−1
𝑗=0 𝒱(︀𝑗⌋︀ ▷ reduce

...

Alexander Brandt Complexity and Parallel Implementation of Hensel’s Lemma CASC 2021 15 / 33

Parallel Challenges

𝑐𝑚 = 𝑎𝑑+𝑚

𝑐𝑚−1 = 𝑎𝑑+𝑚−1 − 𝑏𝑑−1𝑐𝑚

𝑐𝑚−2 = 𝑎𝑑+𝑚−2 − 𝑏𝑑−2𝑐𝑚 − 𝑏𝑑−1𝑐𝑚−1
𝑐𝑚−3 = 𝑎𝑑+𝑚−3 − 𝑏𝑑−3𝑐𝑚 − 𝑏𝑑−2𝑐𝑚−1 − 𝑏𝑑−1𝑐𝑚−2

⋮

𝑐0 = 𝑎𝑑 − 𝑏0𝑐𝑑 − 𝑏1𝑐𝑑−1 −⋯ − 𝑏𝑑−1𝑐1

→ Computing 𝑐𝑚−𝑖(𝑘) for different 𝑖 requires a different amount of work

→ 𝑐𝑚−𝑖 requires 𝑖 products

→ For load-balance, must compute a different number of 𝑐𝑚−𝑖 with each
thread; the total number of products computed per thread should be
same

Alexander Brandt Complexity and Parallel Implementation of Hensel’s Lemma CASC 2021 16 / 33

Outline

1 Background

2 Weierstrass Preparation Theorem

3 Hensel Factorization

4 Experimentation

Alexander Brandt Complexity and Parallel Implementation of Hensel’s Lemma CASC 2021 17 / 33

Hensel’s Lemma
Theorem 3 (Hensel’s Lemma)
Let 𝑓 = 𝑌 𝑑

+∑
𝑑−1
𝑖=0 𝑎𝑖𝑌

𝑖 be a monic polynomial in K(︀(︀𝑋1, . . . , 𝑋𝑛⌋︀⌋︀(︀𝑌 ⌋︀.
Let 𝑓 = 𝑓(0, . . . , 0, 𝑌) = (𝑌 − 𝑐1)

𝑑1
(𝑌 − 𝑐2)

𝑑2
⋯(𝑌 − 𝑐𝑟)

𝑑𝑟 for 𝑐1, . . . , 𝑐𝑟 ∈ K
and positive integers 𝑑1, . . . , 𝑑𝑟. Then, there exists
𝑓1, . . . , 𝑓𝑟 ∈ K(︀(︀𝑋1, . . . , 𝑋𝑛⌋︀⌋︀(︀𝑌 ⌋︀, all monic in Y, such that:

1 𝑓 = 𝑓1⋯𝑓𝑟,
2 deg(𝑓𝑖, 𝑌) = 𝑑𝑖 for 1 ≤ 𝑖 ≤ 𝑟, and
3 𝑓𝑖 = (𝑌 − 𝑐𝑖)

𝑑𝑖 for 1 ≤ 𝑖 ≤ 𝑟.

Proof:
Let 𝑔 = 𝑓(𝑋1, . . . , 𝑋𝑛, 𝑌 + 𝑐𝑟) = 𝑌 𝑑

+∑
𝑑−1
𝑖=0 𝑏𝑖𝑌

𝑖, sending 𝑐𝑟 to the origin.
By construction, 𝑏0, . . . , 𝑏𝑑𝑟−1 ∈ℳ and Weierstrass preparation can be
applied to produce 𝑔 = 𝑝 𝛼 with deg(𝑝) = 𝑑𝑟, deg(𝛼) = 𝑑 − 𝑑𝑟.
Reversing the shift, 𝑓𝑟 = 𝑝(𝑌 − 𝑐𝑟).
Induction on ⧹︂𝑓 = 𝛼(𝑌 − 𝑐𝑟) completes the proof.
Alexander Brandt Complexity and Parallel Implementation of Hensel’s Lemma CASC 2021 18 / 33

Hensel Factorization

Algorithm 2 HenselFactorization(𝑓)

Input: 𝑓 = 𝑌 𝑑
+∑

𝑑−1
𝑖=0 𝑎𝑖𝑌

𝑖, 𝑎𝑖 ∈ K(︀(︀𝑋1, . . . , 𝑋𝑛⌋︀⌋︀.
Output: 𝑓1, . . . , 𝑓𝑟 satisfying Theorem 3.

1: 𝑓 = 𝑓(0, . . . , 0, 𝑌)

2: (𝑐1, . . . , 𝑐𝑟), (𝑑1, . . . , 𝑑𝑟) ∶= roots and their multiplicities of 𝑓
3: 𝑐1, . . . , 𝑐𝑟 ∶= sort((︀𝑐1, . . . , 𝑐𝑟⌋︀) by increasing multiplicity
4: ⧹︂𝑓1 ∶= 𝑓
5: for 𝑖 ∶= 1 to 𝑟 − 1 do
6: 𝑔𝑖 ∶=

⧹︂𝑓 𝑖(𝑌 + 𝑐𝑖)

7: 𝑝𝑖, 𝛼𝑖 ∶= WeierstrassPreparation(𝑔𝑖)
8: 𝑓𝑖 ∶= 𝑝𝑖(𝑌 − 𝑐𝑖)

9: ⧹︂𝑓 𝑖+1 ∶= 𝛼𝑖(𝑌 − 𝑐𝑖)

10: 𝑓𝑟 ∶=
⧹︂𝑓 𝑟

11: return 𝑓1, . . . , 𝑓𝑟

Alexander Brandt Complexity and Parallel Implementation of Hensel’s Lemma CASC 2021 19 / 33

Hensel Complexity (1/2)

Let ⧹︂𝑑𝑖 = deg(⧹︂𝑓𝑖) = ∑
𝑟
𝑗=𝑖 𝑑𝑖

At each iteration but the last:
1 a shift of degree ⧹︂𝑑𝑖 for ⧹︂𝑓 𝑖(𝑌 + 𝑐𝑖)

2 a Weierstrass preparation producing deg(𝑝) = 𝑑𝑖, deg(𝛼) = ⧹︂𝑑𝑖+1

3 a shift of degree 𝑑𝑖 for 𝑝(𝑌 − 𝑐𝑖)

4 a shift of degree ⧹︂𝑑𝑖+1 for 𝛼(𝑌 − 𝑐𝑖)

Theorem 4 (Hensel Factorization Complexity)
For 𝑓 = 𝑓1⋯𝑓𝑟 ∈ K(︀(︀𝑋1⌋︀⌋︀(︀𝑌 ⌋︀, deg(𝑓) = 𝑑, updating all factors to precision
𝑘 can be done within 𝒪(𝑑3𝑘 + 𝑑2𝑘2

) operations in K.

Conjecture: using relaxed algorithms [8] in Weierstrass may yield
𝒪(𝑑3𝑘 + 𝑑2𝑘 log2 𝑘)

Alexander Brandt Complexity and Parallel Implementation of Hensel’s Lemma CASC 2021 20 / 33

Hensel Complexity (2/2)

Let 𝑓 ∈ K(︀(︀𝑋1⌋︀⌋︀(︀𝑌 ⌋︀ have degree 𝑑𝑌 in 𝑌 and total degree 𝑑.
Let 𝑀(𝑛) be a polynomial multiplication time.

Factorizing 𝑓 requires...
→ Our method: 𝒪(𝑑3

𝑌 𝑘 + 𝑑2
𝑌 𝑘2

)

→ Hensel–Sasaki Construction (EHC): 𝒪(𝑑3𝑀(𝑑) + 𝑘2𝑑𝑀(𝑑)) [2]
→ Over C, Newton–Puiseux can be done in:

ë 𝒪(𝑑2𝑀(𝑘)); Kung and Traub [9]
ë 𝒪(𝑑2𝑘); Chudnovsky and Chudnovsky [7]

→ Berthomieu, Lecerf, Quintin: 𝒪(𝑀(𝑑𝑌) log(𝑑𝑌)𝑘𝑀(𝑘)) [5]

Including the initial root-finding cost as 𝑅(𝑑𝑌):
→ Our method: 𝒪(𝑑3

𝑌 𝑘 + 𝑑2
𝑌 𝑘2
+𝑅(𝑑𝑌))

→ Neiger, Rosenkilde, Schost: 𝒪˜(𝑑𝑌 𝑘 + 𝑘𝑅(𝑑𝑌)) [11]
Note 𝑀(𝑛) ∈ 𝒪(𝑛2

) or 𝒪(𝑛 log 𝑛); 𝑅(𝑛) ∈ 𝒪˜(𝑛2
)

Alexander Brandt Complexity and Parallel Implementation of Hensel’s Lemma CASC 2021 21 / 33

Serial Performance
EHC outperforms Kung and Traub’s method by orders of magnitude [2]

From CASC 2020, our serial method outperforms EHC and Factorization
via Hensel’s Lemma of PowerSeries sub-package of RegularChains [10]

Alexander Brandt Complexity and Parallel Implementation of Hensel’s Lemma CASC 2021 22 / 33

Parallel Opportunities in Hensel

→ The output of one Weierstrass becomes input to another
→ 𝑓𝑖+𝑖(𝑘) relies on 𝑓𝑖(𝑘)
→ Can compute 𝑓𝑖(𝑘+1) and 𝑓𝑖+𝑖(𝑘) concurrently in a pipeline

Stage 1 (𝑓1) Stage 2 (𝑓2) Stage 3 (𝑓3) Stage 4 (𝑓4)
Time 1 𝑓1(1)
Time 2 𝑓1(2) 𝑓2(1)
Time 3 𝑓1(3) 𝑓2(2) 𝑓3(1)
Time 4 𝑓1(4) 𝑓2(3) 𝑓3(2) 𝑓4(1)
Time 5 𝑓1(5) 𝑓2(4) 𝑓3(3) 𝑓4(2)
Time 6 𝑓1(6) 𝑓2(5) 𝑓3(4) 𝑓4(3)

𝑓 𝑔1 𝛼1

𝑝1 𝑓1

⧹︂𝑓2 𝑔2 𝛼2

𝑝2 𝑓2

⧹︂𝑓3 𝑔3 𝛼3

𝑝3 𝑓3

𝑓4
+𝑐1

−𝑐1

−𝑐1 +𝑐2

−𝑐2

−𝑐2 +𝑐3

−𝑐3

−𝑐3

Alexander Brandt Complexity and Parallel Implementation of Hensel’s Lemma CASC 2021 23 / 33

Parallel Challenges and Composition

𝑓 𝑔1 𝛼1

𝑝1 𝑓1

⧹︂𝑓2 𝑔2 𝛼2

𝑝2 𝑓2

⧹︂𝑓3 𝑔3 𝛼3

𝑝3 𝑓3

𝑓4
+𝑐1

−𝑐1

−𝑐1 +𝑐2

−𝑐2

−𝑐2 +𝑐3

−𝑐3

−𝑐3

→ Degrees and computational work diminish with each stage
ë deg(𝑔1) = 𝑑, deg(𝑔2) = 𝑑 − 𝑑1, deg(𝑔3) = 𝑑 − 𝑑1 − 𝑑2, . . .

→ To load-balance each stage, give a decreasing number of threads to
each stage to be used within Weierstrass preparation.

→ From Theorem 1: updating 𝑓𝑖 requires 𝒪(𝑑𝑖
⧹︂𝑑𝑖+1𝑘2

) operations

→ Assign 𝑡𝑖 threads to stage 𝑖 so that 𝑑𝑖
⧹︂𝑑𝑖+1⇑𝑡𝑖 is equal for each stage.

→ Better still, update a group of successive factors per stage.
ë To each stage 𝑠 assign factors 𝑓𝑠1 , . . . , 𝑓𝑠2 and 𝑡𝑠 threads so that
∑

𝑠2
𝑖=𝑠1

𝑑𝑖
⧹︂𝑑𝑖+1⇑𝑡𝑠 is roughly equal for each stage.

Alexander Brandt Complexity and Parallel Implementation of Hensel’s Lemma CASC 2021 24 / 33

Hensel Pipeline Example

𝑓 = (𝑌 − 1)(𝑌 − 2)(𝑌 − 3)(𝑌 − 4) +𝑋1(𝑌
3
+ 𝑌)

𝑓1 = 𝑌 − 1, 𝑓2 = 𝑌 − 2, 𝑓3 = 𝑌 − 3, 𝑓4 = 𝑌 − 4

𝑘 = 600

factor serial shift 𝑑𝑖
⧹︂𝑑𝑖+1 Complexity- parallel wait Time-est. parallel wait

time (s) time (s) est. threads time (s) time (s) threads time (s) time (s)

𝑓1 18.1989 0.0012 1 ⋅ 3 6 4.5380 0.0000 7 3.5941 0.0000
𝑓2 6.6681 0.0666 1 ⋅ 2 4 4.5566 0.8530 3 3.6105 0.6163
𝑓3 3.4335 0.0274 1 ⋅ 1 1 4.5748 1.0855 0 - -
𝑓4 0.0009 0.0009 1 ⋅ 0 1 4.5750 4.5707 2 3.6257 1.4170

→ 𝑓4 requires at least one thread so that it (the last factor) gets updated
→ work estimates based on complexity results okay, but does not

account for, e.g., coefficient size or data locality.
→ can also use serial time to suggest thread assignments

Alexander Brandt Complexity and Parallel Implementation of Hensel’s Lemma CASC 2021 25 / 33

Hensel Pipeline Algorithm

Algorithm 3 HenselPipeStage(𝑘, 𝑓𝑖, 𝑡, gen)

Input: 𝑘 ∈ Z+, 𝑓𝑖 a UPoPS, 𝑡 ∈ Z+ the number
of threads to use within this stage. gen a
generator for the previous pipeline stage.

Output: a sequence of integers 𝑗 signalling 𝑓𝑖 is
known to precision 𝑗; the sequence ends at 𝑘.

1: 𝑝 ∶= Precision(𝑓𝑖) ▷ current precision of 𝑓𝑖

2: do
▷A blocking function call until gen yields

3: 𝑘′ ∶= gen()

4: for 𝑗 ∶= 𝑝 to 𝑘′ do
5: UpdateToDegParallel(𝑗, 𝑓𝑖, 𝑡)
6: yield 𝑗

7: 𝑝 ∶= 𝑘′

8: while 𝑘′ < 𝑘

Algorithm 4 HenselFactorizationPipeline(𝑘, ℱ , 𝒯)

Input: 𝑘 ∈ Z+, ℱ = {𝑓1, . . . , 𝑓𝑟} the output of Hen-
selFactorization. 𝒯 ∈ Z𝑟 a 0-indexed list of the
number of threads to use in each stage, 𝒯 (︀𝑟−1⌋︀ > 0.

Output: 𝑓1, . . . , 𝑓𝑟 updated in-place to precision 𝑘.

▷ an anonymous function asynchronous generator
1: gen ∶= ()→ {yield 𝑘}

2: for 𝑖 ∶= 0 to 𝑟 − 1 do
3: if 𝒯 (︀𝑖⌋︀ > 0 then

▷ Capture function as a function object,
passing the previous gen as input

4: gen ∶= AsyncGenerator(
HenselPipeStage, 𝑘, 𝑓𝑖+1, 𝒯 (︀𝑖⌋︀, gen)

▷ ensure last stage completes before returning
5: do
6: 𝑘′ ∶= gen()
7: while 𝑘′ < 𝑘

Alexander Brandt Complexity and Parallel Implementation of Hensel’s Lemma CASC 2021 26 / 33

Outline

1 Background

2 Weierstrass Preparation Theorem

3 Hensel Factorization

4 Experimentation

Alexander Brandt Complexity and Parallel Implementation of Hensel’s Lemma CASC 2021 27 / 33

Parallel Speed-up WPT 1

𝑢𝑟 =

𝑟

∑

𝑖=2
(𝑋2

1 +𝑋2 + 𝑖)𝑌 𝑖
+ (𝑋2

1 +𝑋2)𝑌 +𝑋2
1 +𝑋1𝑋2 +𝑋2

2

Ô⇒ deg(𝑝) = 2 deg(𝛼) = 𝑟 − 2
Alexander Brandt Complexity and Parallel Implementation of Hensel’s Lemma CASC 2021 28 / 33

Parallel Speed-up WPT 2

𝑣𝑟 =

𝑟

∑

𝑖=𝑟⇑2

(𝑋2
1 +𝑋2 + 𝑖)𝑌 𝑖

+

𝑟⇑2−1
∑

𝑖=1
(𝑋2

1 +𝑋2)𝑌
𝑖
+𝑋2

1 +𝑋1𝑋2 +𝑋2
2

Ô⇒ deg(𝑝) = deg(𝛼) = 𝑟⇑2

Alexander Brandt Complexity and Parallel Implementation of Hensel’s Lemma CASC 2021 29 / 33

Parallel Speed-up Hensel Factorization 1

𝑥𝑟 =

𝑟

∏

𝑖=1
(𝑌 − 𝑖) +𝑋1(𝑌

3
+ 𝑌)

Alexander Brandt Complexity and Parallel Implementation of Hensel’s Lemma CASC 2021 30 / 33

Parallel Speed-up Hensel Factorization 2

𝑧𝑟 =

𝑟

∏

𝑖=1
(𝑌 +𝑋1 +𝑋2 − 𝑖) +𝑋1𝑋2(𝑌

3
+ 𝑌)

Alexander Brandt Complexity and Parallel Implementation of Hensel’s Lemma CASC 2021 31 / 33

Conclusions and Future Work

→ We have seen complexity estimates and parallel algorithms for lazy
Weierstrass preparation and lazy Hensel factorization.

→ The composition of parallel patterns (map-reduce within pipeline)
provides good performance.

In future:
→ In multivariate case, must improve loop partitioning to better

compute homogeneous parts of products: 𝑓(𝑘) = ∑
𝑘
𝑖=0 𝑔(𝑖)ℎ(𝑘−𝑖)

→ Improved thread distribution between Hensel pipeline stages to
consider practical performance: coefficient size, locality

→ Improved thread distribution between Hensel pipeline stages for
multivariate case

→ Relaxed algorithms within Weierstrass preparation
Alexander Brandt Complexity and Parallel Implementation of Hensel’s Lemma CASC 2021 32 / 33

References
[1] P. Alvandi. “Computing Limit Points of Quasi-components of Regular Chains and its Applications”.

PhD thesis. University of Western Ontario, 2017.
[2] P. Alvandi, M. Ataei, M. Kazemi, and M. Moreno Maza. “On the Extended Hensel Construction and

its application to the computation of real limit points”. In: J. Symb. Comput. 98 (2020),
pp. 120–162.

[3] M. Asadi, A. Brandt, C. Chen, S. Covanov, M. Kazemi, F. Mansouri, D. Mohajerani, R. H. C. Moir,
M. Moreno Maza, D. Talaashrafi, L. Wang, N. Xie, and Y. Xie. Basic Polynomial Algebra
Subprograms (BPAS) (version 1.791). http://www.bpaslib.org. 2021.

[4] M. Asadi, A. Brandt, R. H. C. Moir, and M. Moreno Maza. “Algorithms and Data Structures for
Sparse Polynomial Arithmetic”. In: Mathematics 7.5 (2019), p. 441.

[5] J. Berthomieu, G. Lecerf, and G. Quintin. “Polynomial root finding over local rings and application
to error correcting codes”. In: Appl. Algebra Eng. Commun. Comput. 24.6 (2013), pp. 413–443.

[6] A. Brandt, M. Kazemi, and M. Moreno Maza. “Power Series Arithmetic with the BPAS Library”. In:
Proc. of CASC 2020. Vol. 12291. LNCS. Springer, 2020, pp. 108–128.

[7] D. V. Chudnovsky and G. V. Chudnovsky. “On expansion of algebraic functions in power and
Puiseux series I”. In: Journal of Complexity 2.4 (1986), pp. 271–294.

[8] J. van der Hoeven. “Relax, but Don’t be Too Lazy”. In: J. Symb. Comput. 34.6 (2002), pp. 479–542.
[9] H. T. Kung and J. F. Traub. “All Algebraic Functions Can Be Computed Fast”. In: J. ACM 25.2

(1978), pp. 245–260.
[10] F. Lemaire, M. Moreno Maza, and Y. Xie. “The RegularChains library in MAPLE”. In: ACM

SIGSAM Bulletin 39.3 (2005), pp. 96–97.
[11] V. Neiger, J. Rosenkilde, and É. Schost. “Fast Computation of the Roots of Polynomials Over the

Ring of Power Series”. In: Proc. of ISSAC 2017. ACM, 2017, pp. 349–356.
[12] T. Sasaki and F. Kako. “Solving multivariate algebraic equation by Hensel construction”. In: Japan

J. Indust. and Appl. Math. 16.2 (1999), pp. 257–285.

Alexander Brandt Complexity and Parallel Implementation of Hensel’s Lemma CASC 2021 33 / 33

http://www.bpaslib.org

