On the Complexity and Parallel Implementation of Hensel's Lemma and Weierstrass Preparation

Alexander Brandt, Marc Moreno Maza

Ontario Research Center for Computer Algebra Department of Computer Science University of Western Ontario, Canada

> September 17, 2021 CASC 2021

The Problem

Given a polynomial $f \in \mathbb{K}[X_1, \dots, X_n, Y]$ compute the roots of f in Y.

- → The classical Newton–Puiseux method is known to compute the roots of $f \in \mathbb{K}[X_1,Y]$ in Y as Puiseux series in X
- → The Hensel-Sasaki Construction or Extended Hensel Construction supports multivariate polynomials, computing the roots of f in Y as multivariate Puiseux series [12]
- \rightarrow If f is monic, roots in Y can be computed as multivariate *power* series; we call such a method **Hensel Factorization**

Applications:

- \rightarrow Computing limits of multivariate rational functions [2]
- $\rightarrow\,$ Computing topological closures, limit points of quasi-components [1]
- $\rightarrow\,$ An effective variant of the Abhyankar-Jung Theorem

Alexander Brandt

Goals and Previous Work

Our goal is to improve the practical performance of the Hensel–Sasaki Construction and its applications.

 $\rightarrow\,$ First step is improving the monic case of Hensel factorization.

Practical efficiency:

- → High-performance and memory-efficient underlying polynomial arithmetic [4]
- \rightarrow Lazy power series supporting lazy Weierstrass preparation and lazy Hensel factorization [6]
- \rightarrow Now: parallel and concurrent processing
- \rightarrow Now: dynamic load-balancing using complexity estimates

In This Work

- $\rightarrow\,$ Examine the complexity of a lazy scheme for Weierstrass Preparation Theorem and Hensel factorization
- $\rightarrow\,$ Present parallel algorithms for WPT and Hensel factorization
- $\rightarrow\,$ Composition of parallel schemes, WPT within Hensel factorization
- $\rightarrow\,$ Application of complexity estimates to dynamically load-balance parallel algorithm
- $\rightarrow\,$ Implementation of parallel algorithms supporting arbitrary number of variables in the BPAS library [3]
- $\rightarrow\,$ Experimental evaluation of parallel performance

Alexander Brandt

Outline

- 2 Weierstrass Preparation Theorem
- 3 Hensel Factorization
- 4 Experimentation

Notations

 $\mathbb{A} = \mathbb{K}[[X_1, \dots, X_n]] \text{ is the ring of multivariate power series over an algebraically closed field. Its maximal ideal is <math>\mathcal{M} = \langle X_1, \dots, X_n \rangle$.

$$\to f = \sum_{e \in \mathbb{N}^n} a_e X^e \in \mathbb{K}[[X_1, \dots, X_n]]$$

$$\rightarrow X^e = X_1^{e_1} \cdots X_n^{e_n}, \quad |e| = e_1 + \cdots + e_n$$

 $\rightarrow f_{(k)} = \sum\limits_{|e|=k} a_e X^e$ is the homogeneous part of f of degree k

$$\rightarrow f_{(k)} \in \mathcal{M}^k \smallsetminus \mathcal{M}^{k+1}$$

 \rightarrow The units of \mathbb{A} are $\{u \mid u \notin \mathcal{M}\}$

 $\mathbb{A}[Y] \text{ is the ring of Univariate Polynomials over Power Series (UPoPS)}$ $\rightarrow f = \sum_{i=0}^{d} a_i Y^i, a_i \in \mathbb{A}, a_d \neq 0 \text{ is a UPoPS of degree } d$

 \rightarrow Denote degree of f in Y by $\deg(f) = d$

Power series implemented using a *lazy evaluation* scheme allow for terms to be computed on demand, increasing **precision** as needed.

Our lazy power series require:

- 1 an update function to compute homogeneous parts of a given degree
- 2 capturing parameters required for the update function
- 3 storing previously computed homogeneous parts

Where update parameters are power series, they are called ancestors.

Addition,
$$f = g + h$$
Multiplication $f = gh$ $\rightarrow f_{(k)} = g_{(k)} + h_{(k)}$ $\rightarrow f_{(k)} = \sum_{i=0}^{k} g_{(i)} h_{(k-i)}$

Ancestry Example

$$p = fg + ab$$

Complexity and Parallel Implementation of Hensel's Lemma

Outline

2 Weierstrass Preparation Theorem

3 Hensel Factorization

4 Experimentation

Alexander Brandt

Weierstrass Preparation Theorem for UPoPS

Theorem 1 (Weierstrass Preparation)

Let $f = \sum_{i=0}^{d+m} a_i Y^i \in \mathbb{K}[[X_1, \ldots, X_n]][Y]$ where $d \ge 0$ be the smallest integer such that $a_d \notin \mathcal{M}$ and $m \in \mathbb{Z}^+$. Assume $f \notin 0 \mod \mathcal{M}[Y]$. Then, there exists a unique pair p, α satisfying the following:

1
$$f = p \alpha$$
,

- **2** α is an invertible element of $\mathbb{K}[[X_1, \ldots, X_n]][[Y]]$,
- **3** p is a monic polynomial of degree d,

4 writing
$$p = Y^d + b_{d-1}Y^{d-1} + \cdots + b_1Y + b_0$$
, we have $b_{d-1}, \dots, b_0 \in \mathcal{M}$.

Theorem 2 (Lazy Weierstrass Complexity)

For $f = p \alpha \in \mathbb{K}[[X_1]][Y], \deg(p) = d, \deg(\alpha) = m$, computing p and α to precision k requires $d(m+1)k^2 + dmk$ operations in \mathbb{K} .

Lazy Weierstrass Preparation

Let
$$f = \sum_{\ell=0}^{d+m} a_{\ell} Y^{\ell}$$
, $p = Y^d + \sum_{j=0}^{d-1} b_j Y^j$, $\alpha = \sum_{i=0}^m c_i Y^i$ be UPoPS.
 $\downarrow a_{\ell}, b_j, c_i$ are power series $\downarrow b_j \in \mathcal{M}$ for $j = 0, \dots, d-1$

$$\begin{array}{rcl} f=p\,\alpha \implies & a_{0} & = & b_{0}c_{0} \\ & a_{1} & = & b_{0}c_{1}+b_{1}c_{0} \\ & \vdots \\ & a_{d-1} & = & b_{0}c_{d-1}+b_{1}c_{d-2}+\dots+b_{d-2}c_{1}+b_{d-1}c_{0} \\ & a_{d} & = & b_{0}c_{d}+b_{1}c_{d-1}+\dots+b_{d-1}c_{1}+c_{0} \\ & \vdots \\ & a_{d+m-1} & = & b_{d-1}c_{m}+c_{m-1} \\ & a_{d+m} & = & c_{m} \end{array}$$

We update p and α by solving these equations modulo \mathcal{M}^k , k = 1, 2, ...

modulo \mathcal{M} we have: (1) $b_j \equiv 0 \mod \mathcal{M}, j = 0, \dots, d-1$ (2) $c_i \equiv a_{d+i} \mod \mathcal{M} \ i = 0, \dots, m$

Lazy Weierstrass Phase 1: update p

Let
$$f = \sum_{\ell=0}^{d+m} a_{\ell} Y^{\ell}$$
, $p = Y^d + \sum_{j=0}^{d-1} b_j Y^j$, $\alpha = \sum_{i=0}^m c_i Y^i$ be UPoPS.
 $\downarrow a_{\ell}, b_j, c_i$ are power series $\downarrow b_j \in \mathcal{M}$ for $j = 0, \dots, d-1$

$$a_{0} = b_{0}c_{0}$$

$$a_{1} - b_{0}c_{1} = b_{1}c_{0}$$

$$a_{2} - b_{0}c_{2} - b_{1}c_{1} = b_{2}c_{0}$$

$$\vdots$$

$$a_{d-1} - b_{0}c_{d-1} - b_{1}c_{d-2} + \dots - b_{d-2}c_{1} = b_{d-1}c_{0}$$

$$\rightarrow$$
 let $F_j = a_j - \sum_{i=0}^{j-1} b_i c_{j-i}$

→ with power series division we can solve $F_j = b_j c_0$ from j = 0 to d - 1 $\downarrow_{\rightarrow} b_{j(k)} = \frac{1}{c_{0(0)}} \left(F_{j(k)} - \sum_{i=1}^{k-1} b_{j(i)} c_{0(k-i)} \right)$

 \rightarrow each F_j lazily updated through lazy power series arithmetic

Lazy Weierstrass Phase 2: update α

Let
$$f = \sum_{\ell=0}^{d+m} a_{\ell} Y^{\ell}$$
, $p = Y^d + \sum_{j=0}^{d-1} b_j Y^j$, $\alpha = \sum_{i=0}^m c_i Y^i$ be UPoPS.
 $\downarrow a_{\ell}, b_j, c_i$ are power series $\downarrow b_j \in \mathcal{M}$ for $j = 0, \dots, d-1$

$$c_{m} = a_{d+m}$$

$$c_{m-1} = a_{d+m-1} - b_{d-1}c_{m}$$

$$c_{m-2} = a_{d+m-2} - b_{d-2}c_{m} - b_{d-1}c_{m-1}$$

$$\vdots$$

$$c_{0} = a_{d} - b_{0}c_{d} - b_{1}c_{d-1} - \dots - b_{d-1}c_{1}$$

→
$$c_{m-i(k)} = a_{d+m-i(k)} - \sum_{j=1}^{i} (b_{d-j}c_{m-i+j})_{(k)}$$
, for $i \le d$
→ each c_{m-i} lazily updated through lazy power series arithmetic
→ $(b_{d-j}c_{m-i+j})_{(k)}$ only requires up to $c_{m-i+j(k-1)}$ since $b_{d-j(0)} = 0$
→ each c_{m-i} can thus be updated simultaneously

CASC 2021 13 / 33

Parallel Opportunities in Weierstrass

parallel map-reduce or parallel for loops

In phase 1:
$$b_{j(k)} = \frac{1}{c_{0(0)}} \left(F_{j(k)} - \sum_{i=1}^{k-1} b_{j(i)} c_{0(k-i)} \right)$$

 $\rightarrow\,$ compute summations using map-reduce:

$$\sum_{i=1}^{k} b_{j(i)} c_{0(k-i)}$$

 \to notice in multivariate case, e.g., $b_{j\,(1)}c_{0\,(k-1)}$ is less work than $b_{j\,(\frac{k}{2})}c_{0\,(k-\frac{k}{2})}$

In phase 2: $c_{m-i(k)} = a_{d+m-i(k)} - \sum_{j=1}^{i} (b_{d-j}c_{m-i+j})_{(k)}$

- $\rightarrow \mbox{ compute each } c_{m-i(k)}, \ 0 \leq i \leq m$ simultaneously, and/or
- \rightarrow compute product homogeneous parts using a map-reduce:

$$(b_{d-j}c_{m-i+j})_{(k)} = \sum_{\ell=1}^{k} b_{d-j(\ell)}c_{m-i+j(k-\ell)}$$

 $\rightarrow\,$ load-balance issue again in the multivariate case

Update To Deg: Map-Reduce

Algorithm 1 UPDATETODEGPARALLEL(k, f, t)

Input: $k \in \mathbb{Z}^+$, $f \in \mathbb{K}[[X_1, \ldots, X_n]]$ known to at least precision k - 1. If f has ancestors, it is the result of a binary operation. $t \in \mathbb{Z}^+$ for the number of threads to use.

Output: f is updated to precision k, in place.

- 1: g, h := FIRSTANCESTOR(f), SECONDANCESTOR(f)
- 2: UPDATETODEGPARALLEL(k, g, t);
- 3: UPDATETODEGPARALLEL(k, h, t);

4: if f is a product then
$$\triangleright$$
 compute $f_{(k)}$ by map-reduce5: $\mathcal{V} := [0, \dots, 0]$ \triangleright 0-indexed list of size t6: parallel_for $j := 0$ to $t - 1$ \triangleright 0-indexed list of size t7: $|$ for $i := jk/t$ to $(j+1)k/t - 1$ while $i \le k$ do \triangleright 0-indexed list of size t8: $|$ $\mathcal{V}[j] := \mathcal{V}[j] + g_{(i)}h_{(k-i)}$ \triangleright reduce9: $|$ $f_{(k)} := \sum_{j=0}^{t-1} \mathcal{V}[j]$ \triangleright reduce

Parallel Challenges

$$c_{m} = a_{d+m}$$

$$c_{m-1} = a_{d+m-1} - b_{d-1}c_{m}$$

$$c_{m-2} = a_{d+m-2} - b_{d-2}c_{m} - b_{d-1}c_{m-1}$$

$$c_{m-3} = a_{d+m-3} - b_{d-3}c_{m} - b_{d-2}c_{m-1} - b_{d-1}c_{m-2}$$

$$\vdots$$

$$c_{0} = a_{d} - b_{0}c_{d} - b_{1}c_{d-1} - \dots - b_{d-1}c_{1}$$

- \rightarrow Computing $c_{m-i(k)}$ for different i requires a different amount of work
- $\rightarrow c_{m-i}$ requires *i* products
- \rightarrow For load-balance, must compute a different number of c_{m-i} with each thread; the total number of products computed per thread should be same

Outline

2 Weierstrass Preparation Theorem

- 3 Hensel Factorization
- 4 Experimentation

Hensel's Lemma

Theorem 3 (Hensel's Lemma)

Let
$$f = Y^d + \sum_{i=0}^{d-1} a_i Y^i$$
 be a monic polynomial in $\mathbb{K}[[X_1, \dots, X_n]][Y]$.
Let $\bar{f} = f(0, \dots, 0, Y) = (Y - c_1)^{d_1}(Y - c_2)^{d_2} \cdots (Y - c_r)^{d_r}$ for $c_1, \dots, c_r \in \mathbb{K}$
and positive integers d_1, \dots, d_r . Then, there exists
 $f_1, \dots, f_r \in \mathbb{K}[[X_1, \dots, X_n]][Y]$, all monic in Y , such that:
1 $f = f_1 \cdots f_r$,
2 $\deg(f_i, Y) = d_i$ for $1 \le i \le r$, and
3 $\bar{f}_i = (Y - c_i)^{d_i}$ for $1 \le i \le r$.

Proof:

Let $g = f(X_1, \ldots, X_n, Y + c_r) = Y^d + \sum_{i=0}^{d-1} b_i Y^i$, sending c_r to the origin. By construction, $b_0, \ldots, b_{d_r-1} \in \mathcal{M}$ and Weierstrass preparation can be applied to produce $g = p \alpha$ with $\deg(p) = d_r, \deg(\alpha) = d - d_r$.

Reversing the shift, $f_r = p(Y - c_r)$. Induction on $\hat{f} = \alpha(Y - c_r)$ completes the proof.

Hensel Factorization

Algorithm 2 HENSELFACTORIZATION(f)

Input:
$$f = Y^d + \sum_{i=0}^{d-1} a_i Y^i, a_i \in \mathbb{K}[[X_1, \dots, X_n]].$$

Output: f_1, \dots, f_r satisfying Theorem 3.
1: $\overline{f} = f(0, \dots, 0, Y)$
2: $(c_1, \dots, c_r), (d_1, \dots, d_r) \coloneqq$ roots and their multiplicities of \overline{f}
3: $c_1, \dots, c_r \coloneqq$ SORT($[c_1, \dots, c_r]$) by increasing multiplicity
4: $\widehat{f_1} \coloneqq f$
5: for $i \coloneqq 1$ to $r - 1$ do
6: $g_i \coloneqq \widehat{f_i}(Y + c_i)$
7: $p_i, \alpha_i \coloneqq$ WEIERSTRASSPREPARATION(g_i)
8: $f_i \coloneqq p_i(Y - c_i)$
9: $\widehat{f_{i+1}} \coloneqq \alpha_i(Y - c_i)$
10: $f_r \coloneqq \widehat{f_r}$
11: return f_1, \dots, f_r

Hensel Complexity (1/2)

Let $\widehat{d_i} = \deg(\widehat{f_i}) = \sum_{j=i}^r d_i$

At each iteration but the last:

- **1** a shift of degree \widehat{d}_i for $\widehat{f}_i(Y + c_i)$
- **2** a Weierstrass preparation producing $deg(p) = d_i, deg(\alpha) = \widehat{d}_{i+1}$
- **3** a shift of degree d_i for $p(Y c_i)$
- **4** a shift of degree \widehat{d}_{i+1} for $\alpha(Y c_i)$

Theorem 4 (Hensel Factorization Complexity)

For $f = f_1 \cdots f_r \in \mathbb{K}[[X_1]][Y]$, $\deg(f) = d$, updating all factors to precision k can be done within $\mathcal{O}(d^3k + d^2k^2)$ operations in \mathbb{K} .

Conjecture: using relaxed algorithms [8] in Weierstrass may yield $\mathcal{O}(d^3k + d^2k\log^2k)$

Alexander Brandt

Hensel Complexity (2/2)

Let $f \in \mathbb{K}[[X_1]][Y]$ have degree d_Y in Y and total degree d. Let M(n) be a polynomial multiplication time.

Factorizing f requires...

- \rightarrow Our method: $\mathcal{O}(d_Y^3k + d_Y^2k^2)$
- \rightarrow Hensel–Sasaki Construction (EHC): $\mathcal{O}(d^3M(d) + k^2dM(d))$ [2]
- $\rightarrow\,$ Over $\mathbb C,$ Newton–Puiseux can be done in:
- \rightarrow Berthomieu, Lecerf, Quintin: $\mathcal{O}(M(d_Y)\log(d_Y)kM(k))$ [5]

Including the initial root-finding cost as $R(d_Y)$:

- \rightarrow Our method: $\mathcal{O}(d_Y^3k + d_Y^2k^2 + R(d_Y))$
- \rightarrow Neiger, Rosenkilde, Schost: $\mathcal{O}^{\sim}(d_Y k + kR(d_Y))$ [11]

Note $M(n) \in \mathcal{O}(n^2)$ or $\mathcal{O}(n \log n)$; $R(n) \in \mathcal{O}^{\sim}(n^2)$

Serial Performance

EHC outperforms Kung and Traub's method by orders of magnitude [2] From CASC 2020, our serial method outperforms EHC and Factorization via Hensel's Lemma of PowerSeries sub-package of RegularChains [10]

Parallel Opportunities in Hensel

- \rightarrow The output of one Weierstrass becomes input to another
- $\rightarrow f_{i+i(k)}$ relies on $f_{i(k)}$
- \rightarrow Can compute $f_{i(k+1)}$ and $f_{i+i(k)}$ concurrently in a **pipeline**

	Stage 1 (f_1)	Stage 2 (f_2)	Stage 3 (f_3)	Stage 4 (f_4)
Time 1	$f_{1(1)}$			
Time 2	$f_{1(2)}$	$f_{2(1)}$		
Time 3	$f_{1(3)}$	$f_{2(2)}$	$f_{3(1)}$	
Time 4	$f_{1(4)}$	$f_{2(3)}$	$f_{3(2)}$	$f_{4(1)}$
Time 5	$f_{1(5)}$	$f_{2(4)}$	$f_{3(3)}$	$f_{4(2)}$
Time 6	$f_{1(6)}$	$f_{2(5)}$	$f_{3(4)}$	$f_{4(3)}$

Parallel Challenges and Composition

$$p_{1} \xrightarrow{-c_{1}} f_{1} \qquad p_{2} \xrightarrow{-c_{2}} f_{2} \qquad p_{3} \xrightarrow{-c_{3}} f_{3}$$

$$f \xrightarrow{+c_{1}} g_{1} \xrightarrow{\alpha_{1}} \widehat{f_{2}} \xrightarrow{+c_{2}} g_{2} \xrightarrow{\alpha_{2}} \alpha_{2} \xrightarrow{-c_{2}} \widehat{f_{3}} \xrightarrow{+c_{3}} g_{3} \xrightarrow{\alpha_{3}} \alpha_{3} \xrightarrow{-c_{3}} f_{4}$$

→ Degrees and computational work diminish with each stage \downarrow deg $(g_1) = d$, deg $(g_2) = d - d_1$, deg $(g_3) = d - d_1 - d_2$, ...

- $\rightarrow\,$ To load-balance each stage, give a decreasing number of threads to each stage to be used within Weierstrass preparation.
- \rightarrow From Theorem 1: updating f_i requires $\mathcal{O}(d_i \widehat{d}_{i+1} k^2)$ operations
- \rightarrow Assign t_i threads to stage i so that $d_i \hat{d}_{i+1}/t_i$ is equal for each stage.
- $\rightarrow\,$ Better still, update a group of successive factors per stage.
 - $$\label{eq:constant} \begin{split} & \rightarrowtail \mbox{ To each stage s assign factors f_{s_1},\ldots,f_{s_2} and t_s threads so that $\sum_{i=s_1}^{s_2} d_i \widehat{d}_{i+1}/t_s$ is roughly equal for each stage. } \end{split}$$

Hensel Pipeline Example

$$f = (Y-1)(Y-2)(Y-3)(Y-4) + X_1(Y^3+Y)$$

$$\bar{f}_1 = Y-1, \quad \bar{f}_2 = Y-2, \quad \bar{f}_3 = Y-3, \quad \bar{f}_4 = Y-4$$

k = 600

factor	serial time (s)	shift time (s)	$d_i \widehat{d}_{i+1}$	Complexity- est. threads	parallel time (s)	wait time (s)	Time-est. threads	parallel time (s)	wait time (s)
f_1	18.1989	0.0012	$1 \cdot 3$	6	4.5380	0.0000	7	3.5941	0.0000
f_2	6.6681	0.0666	$1\cdot 2$	4	4.5566	0.8530	3	3.6105	0.6163
f_3	3.4335	0.0274	$1 \cdot 1$	1	4.5748	1.0855	0	-	-
f_4	0.0009	0.0009	$1 \cdot 0$	1	4.5750	4.5707	2	3.6257	1.4170

 $\rightarrow f_4$ requires at least one thread so that it (the last factor) gets updated

- $\rightarrow\,$ work estimates based on complexity results okay, but does not account for, e.g., coefficient size or data locality.
- $\rightarrow\,$ can also use serial time to suggest thread assignments

Alexander Brandt

Hensel Pipeline Algorithm

Algorithm 3 HENSELPIPESTAGE(k, f_i, t, GEN)

- **Input:** $k \in \mathbb{Z}^+$, f_i a UPoPS, $t \in \mathbb{Z}^+$ the number of threads to use within this stage. GEN a generator for the previous pipeline stage.
- **Output:** a sequence of integers j signalling f_i is known to precision j; the sequence ends at k.

1: $p := PRECISION(f_i) \triangleright current precision of f_i$ 2: do

 \triangleright A blocking function call until GEN yields k' := GEN()

```
4: for j := p to k' do

5: UPDATETODEGPARALLEL(j, f_i, t)

6: yield j
```

```
7: p := k'
8: while k' < k
```

3:

Algorithm 4 HENSELFACTORIZATION PIPELINE $(k, \mathcal{F}, \mathcal{T})$

Input: $k \in \mathbb{Z}^+$, $\mathcal{F} = \{f_1, \ldots, f_r\}$ the output of HEN-SELFACTORIZATION. $\mathcal{T} \in \mathbb{Z}^r$ a 0-indexed list of the number of threads to use in each stage, $\mathcal{T}[r-1] > 0$.

Output: f_1, \ldots, f_r updated in-place to precision k.

▷ an anonymous function asynchronous generator 1: GEN := () \rightarrow {yield k}

```
2: for i := 0 to r - 1 do

3: if \mathcal{T}[i] > 0 then

4: GEN := ASYNCGENERATOR(

HENSELPIPESTAGE, k, f_{i+1}, \mathcal{T}[i], \text{GEN})
```

> ensure last stage completes before returning

- 5: do 6: | k' := GEN()
- 7: while k' < k

Outline

2 Weierstrass Preparation Theorem

3 Hensel Factorization

4 Experimentation

Parallel Speed-up WPT 1

Parallel Speed-up WPT 2

Parallel Speedup vs Precision, Weierstrass Prep. v_r

Complexity and Parallel Implementation of Hensel's Lemma

Parallel Speed-up Hensel Factorization 1

Parallel Speed-up Hensel Factorization 2

Complexity and Parallel Implementation of Hensel's Lemma

Conclusions and Future Work

- $\rightarrow\,$ We have seen complexity estimates and parallel algorithms for lazy Weierstrass preparation and lazy Hensel factorization.
- → The composition of parallel patterns (map-reduce within pipeline) provides good performance.

In future:

- → In multivariate case, must improve loop partitioning to better compute homogeneous parts of products: $f_{(k)} = \sum_{i=0}^{k} g_{(i)} h_{(k-i)}$
- \rightarrow Improved thread distribution between Hensel pipeline stages to consider practical performance: coefficient size, locality
- $\rightarrow\,$ Improved thread distribution between Hensel pipeline stages for multivariate case
- $\rightarrow\,$ Relaxed algorithms within Weierstrass preparation

Alexander Brandt

References

- P. Alvandi. "Computing Limit Points of Quasi-components of Regular Chains and its Applications". PhD thesis. University of Western Ontario, 2017.
- [2] P. Alvandi, M. Ataei, M. Kazemi, and M. Moreno Maza. "On the Extended Hensel Construction and its application to the computation of real limit points". In: J. Symb. Comput. 98 (2020), pp. 120–162.
- [3] M. Asadi, A. Brandt, C. Chen, S. Covanov, M. Kazemi, F. Mansouri, D. Mohajerani, R. H. C. Moir, M. Moreno Maza, D. Talaashrafi, L. Wang, N. Xie, and Y. Xie. *Basic Polynomial Algebra Subprograms (BPAS) (version 1.791)*. http://www.bpaslib.org, 2021.
- [4] M. Asadi, A. Brandt, R. H. C. Moir, and M. Moreno Maza. "Algorithms and Data Structures for Sparse Polynomial Arithmetic". In: *Mathematics* 7.5 (2019), p. 441.
- [5] J. Berthomieu, G. Lecerf, and G. Quintin. "Polynomial root finding over local rings and application to error correcting codes". In: Appl. Algebra Eng. Commun. Comput. 24.6 (2013), pp. 413–443.
- [6] A. Brandt, M. Kazemi, and M. Moreno Maza. "Power Series Arithmetic with the BPAS Library". In: Proc. of CASC 2020. Vol. 12291. LNCS. Springer, 2020, pp. 108–128.
- [7] D. V. Chudnovsky and G. V. Chudnovsky. "On expansion of algebraic functions in power and Puiseux series I". In: *Journal of Complexity* 2.4 (1986), pp. 271–294.
- [8] J. van der Hoeven. "Relax, but Don't be Too Lazy". In: J. Symb. Comput. 34.6 (2002), pp. 479–542.
- [9] H. T. Kung and J. F. Traub. "All Algebraic Functions Can Be Computed Fast". In: J. ACM 25.2 (1978), pp. 245–260.
- [10] F. Lemaire, M. Moreno Maza, and Y. Xie. "The RegularChains library in MAPLE". In: ACM SIGSAM Bulletin 39.3 (2005), pp. 96–97.
- [11] V. Neiger, J. Rosenkilde, and É. Schost. "Fast Computation of the Roots of Polynomials Over the Ring of Power Series". In: Proc. of ISSAC 2017. ACM, 2017, pp. 349–356.
- [12] T. Sasaki and F. Kako. "Solving multivariate algebraic equation by Hensel construction". In: Japan J. Indust. and Appl. Math. 16.2 (1999), pp. 257–285.

Α	lexand	ler B	randt