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The Problem

Given a polynomial 𝑓 ∈ K(︀𝑋1, . . . , 𝑋𝑛, 𝑌 ⌋︀ compute the roots of 𝑓 in 𝑌 .

→ The classical Newton–Puiseux method is known to compute the roots
of 𝑓 ∈ K(︀𝑋1, 𝑌 ⌋︀ in 𝑌 as Puiseux series in 𝑋

→ The Hensel–Sasaki Construction or Extended Hensel
Construction supports multivariate polynomials, computing the roots
of 𝑓 in 𝑌 as multivariate Puiseux series [12]

→ If 𝑓 is monic, roots in 𝑌 can be computed as multivariate power
series; we call such a method Hensel Factorization

Applications:
→ Computing limits of multivariate rational functions [2]
→ Computing topological closures, limit points of quasi-components [1]
→ An effective variant of the Abhyankar-Jung Theorem
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Goals and Previous Work

Our goal is to improve the practical performance of the Hensel–Sasaki
Construction and its applications.
→ First step is improving the monic case of Hensel factorization.

Practical efficiency:
→ High-performance and memory-efficient underlying polynomial

arithmetic [4]
→ Lazy power series supporting lazy Weierstrass preparation and lazy

Hensel factorization [6]
→ Now: parallel and concurrent processing
→ Now: dynamic load-balancing using complexity estimates
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In This Work

→ Examine the complexity of a lazy scheme for Weierstrass Preparation
Theorem and Hensel factorization

→ Present parallel algorithms for WPT and Hensel factorization

→ Composition of parallel schemes, WPT within Hensel factorization

→ Application of complexity estimates to dynamically load-balance
parallel algorithm

→ Implementation of parallel algorithms supporting arbitrary number of
variables in the BPAS library [3]

→ Experimental evaluation of parallel performance
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Notations

A = K(︀(︀𝑋1, . . . , 𝑋𝑛⌋︀⌋︀ is the ring of multivariate power series over an
algebraically closed field. Its maximal ideal is ℳ= ∐︀𝑋1, . . . , 𝑋𝑛̃︀.
→ 𝑓 = ∑

𝑒∈N𝑛
𝑎𝑒𝑋𝑒

∈ K(︀(︀𝑋1, . . . , 𝑋𝑛⌋︀⌋︀

→ 𝑋𝑒
= 𝑋𝑒1

1 ⋯𝑋𝑒𝑛
𝑛 , ⋃︀𝑒⋃︀ = 𝑒1 +⋯ + 𝑒𝑛

→ 𝑓(𝑘) = ∑
⋃︀𝑒⋃︀=𝑘

𝑎𝑒𝑋𝑒 is the homogeneous part of 𝑓 of degree 𝑘

→ 𝑓(𝑘) ∈ ℳ
𝑘
∖ℳ

𝑘+1

→ The units of A are {𝑢 ⋃︀𝑢 ⇑∈ ℳ}

A(︀𝑌 ⌋︀ is the ring of Univariate Polynomials over Power Series (UPoPS)
→ 𝑓 = ∑

𝑑
𝑖=0 𝑎𝑖𝑌

𝑖, 𝑎𝑖 ∈ A, 𝑎𝑑 ≠ 0 is a UPoPS of degree 𝑑

→ Denote degree of 𝑓 in 𝑌 by deg(𝑓) = 𝑑
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Lazy Power Series

Power series implemented using a lazy evaluation scheme allow for terms
to be computed on demand, increasing precision as needed.

Our lazy power series require:
1 an update function to compute homogeneous parts of a given degree
2 capturing parameters required for the update function
3 storing previously computed homogeneous parts

Where update parameters are power series, they are called ancestors.
Addition, 𝑓 = 𝑔 + ℎ

→ 𝑓(𝑘) = 𝑔(𝑘) + ℎ(𝑘)

Multiplication 𝑓 = 𝑔ℎ

→ 𝑓(𝑘) = ∑
𝑘
𝑖=0 𝑔(𝑖)ℎ(𝑘−𝑖)
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Ancestry Example

𝑝 = 𝑓𝑔 + 𝑎𝑏

𝑓 = 𝑔 = 𝑎 = 𝑏 =
1 + 𝑥 + 𝑦𝑧 + . . . 1 + 𝑧 + 𝑦 + . . . 1 + 𝑦 + 𝑥2

+ . . . 1 + 𝑦𝑧 + 𝑥𝑧 + . . .

× ×

ℎ = 𝑐 =
1 + 𝑧 + 𝑦 + 𝑥 + 𝑦𝑧 + 𝑥𝑧 + 𝑥𝑦 + . . . 1 + 𝑦 + 𝑦𝑧 + 𝑥𝑧 + 𝑥2

+ . . .

+

𝑝 =
2 + 𝑧 + 2𝑦 + 𝑥 + 2𝑦𝑧 + 2𝑥𝑧 + 𝑥𝑦 + 𝑥2

+ . . .
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Weierstrass Preparation Theorem for UPoPS

Theorem 1 (Weierstrass Preparation)
Let 𝑓 = ∑

𝑑+𝑚
𝑖=0 𝑎𝑖𝑌

𝑖
∈ K(︀(︀𝑋1, . . . , 𝑋𝑛⌋︀⌋︀(︀𝑌 ⌋︀ where 𝑑 ≥ 0 be the smallest

integer such that 𝑎𝑑 ⇑∈ ℳ and 𝑚 ∈ Z+. Assume 𝑓 ⇑≡ 0 modℳ(︀𝑌 ⌋︀. Then,
there exists a unique pair 𝑝, 𝛼 satisfying the following:

1 𝑓 = 𝑝 𝛼,
2 𝛼 is an invertible element of K(︀(︀𝑋1, . . . , 𝑋𝑛⌋︀⌋︀(︀(︀𝑌 ⌋︀⌋︀,
3 𝑝 is a monic polynomial of degree 𝑑,
4 writing 𝑝 = 𝑌 𝑑

+ 𝑏𝑑−1𝑌 𝑑−1
+⋯𝑏1𝑌 + 𝑏0, we have 𝑏𝑑−1, . . . , 𝑏0 ∈ ℳ.

Theorem 2 (Lazy Weierstrass Complexity)
For 𝑓 = 𝑝 𝛼 ∈ K(︀(︀𝑋1⌋︀⌋︀(︀𝑌 ⌋︀, deg(𝑝) = 𝑑, deg(𝛼) = 𝑚, computing 𝑝 and 𝛼 to
precision 𝑘 requires 𝑑(𝑚 + 1)𝑘2

+ 𝑑𝑚𝑘 operations in K.
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Lazy Weierstrass Preparation

Let 𝑓 = ∑
𝑑+𝑚
ℓ=0 𝑎ℓ𝑌

ℓ, 𝑝 = 𝑌 𝑑
+∑

𝑑−1
𝑗=0 𝑏𝑗𝑌 𝑗 , 𝛼 = ∑

𝑚
𝑖=0 𝑐𝑖𝑌

𝑖 be UPoPS.

ë 𝑎ℓ, 𝑏𝑗 , 𝑐𝑖 are power series ë 𝑏𝑗 ∈ ℳ for 𝑗 = 0, . . . , 𝑑 − 1

𝑓 = 𝑝 𝛼 Ô⇒ 𝑎0 = 𝑏0𝑐0
𝑎1 = 𝑏0𝑐1 + 𝑏1𝑐0

⋮

𝑎𝑑−1 = 𝑏0𝑐𝑑−1 + 𝑏1𝑐𝑑−2 +⋯ + 𝑏𝑑−2𝑐1 + 𝑏𝑑−1𝑐0
𝑎𝑑 = 𝑏0𝑐𝑑 + 𝑏1𝑐𝑑−1 +⋯ + 𝑏𝑑−1𝑐1 + 𝑐0

⋮

𝑎𝑑+𝑚−1 = 𝑏𝑑−1𝑐𝑚 + 𝑐𝑚−1
𝑎𝑑+𝑚 = 𝑐𝑚

We update 𝑝 and 𝛼 by solving these equations modulo ℳ𝑘, 𝑘 = 1, 2, . . .

modulo ℳ we have:
(1) 𝑏𝑗 ≡ 0 modℳ, 𝑗 = 0, . . . , 𝑑 − 1 (2) 𝑐𝑖 ≡ 𝑎𝑑+𝑖 modℳ 𝑖 = 0, . . . , 𝑚
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Lazy Weierstrass Phase 1: update 𝑝

Let 𝑓 = ∑
𝑑+𝑚
ℓ=0 𝑎ℓ𝑌

ℓ, 𝑝 = 𝑌 𝑑
+∑

𝑑−1
𝑗=0 𝑏𝑗𝑌 𝑗 , 𝛼 = ∑

𝑚
𝑖=0 𝑐𝑖𝑌

𝑖 be UPoPS.

ë 𝑎ℓ, 𝑏𝑗 , 𝑐𝑖 are power series ë 𝑏𝑗 ∈ ℳ for 𝑗 = 0, . . . , 𝑑 − 1

𝑎0 = 𝑏0𝑐0
𝑎1 − 𝑏0𝑐1 = 𝑏1𝑐0

𝑎2 − 𝑏0𝑐2 − 𝑏1𝑐1 = 𝑏2𝑐0
⋮

𝑎𝑑−1 − 𝑏0𝑐𝑑−1 − 𝑏1𝑐𝑑−2 +⋯ − 𝑏𝑑−2𝑐1 = 𝑏𝑑−1𝑐0

→ let 𝐹𝑗 = 𝑎𝑗 −∑
𝑗−1
𝑖=0 𝑏𝑖𝑐𝑗−𝑖

→ with power series division we can solve 𝐹𝑗 = 𝑏𝑗𝑐0 from 𝑗 = 0 to 𝑑 − 1
ë 𝑏𝑗(𝑘) =

1⇑𝑐0(0) (𝐹𝑗(𝑘) −∑
𝑘−1
𝑖=1 𝑏𝑗(𝑖)𝑐0(𝑘−𝑖))

→ each 𝐹𝑗 lazily updated through lazy power series arithmetic
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Lazy Weierstrass Phase 2: update 𝛼

Let 𝑓 = ∑
𝑑+𝑚
ℓ=0 𝑎ℓ𝑌

ℓ, 𝑝 = 𝑌 𝑑
+∑

𝑑−1
𝑗=0 𝑏𝑗𝑌 𝑗 , 𝛼 = ∑

𝑚
𝑖=0 𝑐𝑖𝑌

𝑖 be UPoPS.

ë 𝑎ℓ, 𝑏𝑗 , 𝑐𝑖 are power series ë 𝑏𝑗 ∈ ℳ for 𝑗 = 0, . . . , 𝑑 − 1

𝑐𝑚 = 𝑎𝑑+𝑚

𝑐𝑚−1 = 𝑎𝑑+𝑚−1 − 𝑏𝑑−1𝑐𝑚

𝑐𝑚−2 = 𝑎𝑑+𝑚−2 − 𝑏𝑑−2𝑐𝑚 − 𝑏𝑑−1𝑐𝑚−1
⋮

𝑐0 = 𝑎𝑑 − 𝑏0𝑐𝑑 − 𝑏1𝑐𝑑−1 −⋯ − 𝑏𝑑−1𝑐1

→ 𝑐𝑚−𝑖(𝑘) = 𝑎𝑑+𝑚−𝑖(𝑘) −∑
𝑖
𝑗=1 (𝑏𝑑−𝑗𝑐𝑚−𝑖+𝑗)(𝑘), for 𝑖 ≤ 𝑑

→ each 𝑐𝑚−𝑖 lazily updated through lazy power series arithmetic
→ (𝑏𝑑−𝑗𝑐𝑚−𝑖+𝑗)(𝑘) only requires up to 𝑐𝑚−𝑖+𝑗(𝑘−1) since 𝑏𝑑−𝑗(0) = 0
→ each 𝑐𝑚−𝑖 can thus be updated simultaneously
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Parallel Opportunities in Weierstrass

parallel map-reduce or parallel for loops

In phase 1: 𝑏𝑗(𝑘) = 1⇑𝑐0(0) (𝐹𝑗(𝑘) −∑
𝑘−1
𝑖=1 𝑏𝑗(𝑖)𝑐0(𝑘−𝑖))

→ compute summations using map-reduce:
∑

𝑘
𝑖=1 𝑏𝑗(𝑖)𝑐0(𝑘−𝑖)

→ notice in multivariate case, e.g., 𝑏𝑗(1)𝑐0(𝑘−1) is less work than
𝑏𝑗( 𝑘

2 )
𝑐0(𝑘− 𝑘

2 )

In phase 2: 𝑐𝑚−𝑖(𝑘) = 𝑎𝑑+𝑚−𝑖(𝑘) −∑
𝑖
𝑗=1 (𝑏𝑑−𝑗𝑐𝑚−𝑖+𝑗)(𝑘)

→ compute each 𝑐𝑚−𝑖(𝑘), 0 ≤ 𝑖 ≤ 𝑚 simultaneously, and/or
→ compute product homogeneous parts using a map-reduce:

(𝑏𝑑−𝑗𝑐𝑚−𝑖+𝑗)(𝑘) = ∑
𝑘
ℓ=1 𝑏𝑑−𝑗(ℓ)𝑐𝑚−𝑖+𝑗(𝑘−ℓ)

→ load-balance issue again in the multivariate case
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Update To Deg: Map-Reduce

Algorithm 1 UpdateToDegParallel(𝑘, 𝑓 , 𝑡)

Input: 𝑘 ∈ Z+, 𝑓 ∈ K(︀(︀𝑋1, . . . , 𝑋𝑛⌋︀⌋︀ known to at least precision 𝑘 − 1. If 𝑓 has ancestors, it is
the result of a binary operation. 𝑡 ∈ Z+ for the number of threads to use.

Output: 𝑓 is updated to precision 𝑘, in place.
1: 𝑔, ℎ ∶= FirstAncestor(𝑓), SecondAncestor(𝑓)
2: UpdateToDegParallel(𝑘, 𝑔, 𝑡);
3: UpdateToDegParallel(𝑘, ℎ, 𝑡);

4: if 𝑓 is a product then ▷ compute 𝑓(𝑘) by map-reduce
5: 𝒱 ∶= (︀0, . . . , 0⌋︀ ▷ 0-indexed list of size 𝑡
6: parallel_for 𝑗 ∶= 0 to 𝑡 − 1
7: for 𝑖 ∶= 𝑗𝑘⇑𝑡 to (𝑗+1)𝑘⇑𝑡 − 1 while 𝑖 ≤ 𝑘 do
8: 𝒱(︀𝑗⌋︀ ∶= 𝒱(︀𝑗⌋︀ + 𝑔(𝑖)ℎ(𝑘−𝑖)

9: 𝑓(𝑘) ∶= ∑𝑡−1
𝑗=0 𝒱(︀𝑗⌋︀ ▷ reduce

...
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Parallel Challenges

𝑐𝑚 = 𝑎𝑑+𝑚

𝑐𝑚−1 = 𝑎𝑑+𝑚−1 − 𝑏𝑑−1𝑐𝑚

𝑐𝑚−2 = 𝑎𝑑+𝑚−2 − 𝑏𝑑−2𝑐𝑚 − 𝑏𝑑−1𝑐𝑚−1
𝑐𝑚−3 = 𝑎𝑑+𝑚−3 − 𝑏𝑑−3𝑐𝑚 − 𝑏𝑑−2𝑐𝑚−1 − 𝑏𝑑−1𝑐𝑚−2

⋮

𝑐0 = 𝑎𝑑 − 𝑏0𝑐𝑑 − 𝑏1𝑐𝑑−1 −⋯ − 𝑏𝑑−1𝑐1

→ Computing 𝑐𝑚−𝑖(𝑘) for different 𝑖 requires a different amount of work

→ 𝑐𝑚−𝑖 requires 𝑖 products

→ For load-balance, must compute a different number of 𝑐𝑚−𝑖 with each
thread; the total number of products computed per thread should be
same
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Hensel’s Lemma
Theorem 3 (Hensel’s Lemma)
Let 𝑓 = 𝑌 𝑑

+∑
𝑑−1
𝑖=0 𝑎𝑖𝑌

𝑖 be a monic polynomial in K(︀(︀𝑋1, . . . , 𝑋𝑛⌋︀⌋︀(︀𝑌 ⌋︀.
Let 𝑓 = 𝑓(0, . . . , 0, 𝑌 ) = (𝑌 − 𝑐1)

𝑑1
(𝑌 − 𝑐2)

𝑑2
⋯(𝑌 − 𝑐𝑟)

𝑑𝑟 for 𝑐1, . . . , 𝑐𝑟 ∈ K
and positive integers 𝑑1, . . . , 𝑑𝑟. Then, there exists
𝑓1, . . . , 𝑓𝑟 ∈ K(︀(︀𝑋1, . . . , 𝑋𝑛⌋︀⌋︀(︀𝑌 ⌋︀, all monic in Y, such that:

1 𝑓 = 𝑓1⋯𝑓𝑟,
2 deg(𝑓𝑖, 𝑌 ) = 𝑑𝑖 for 1 ≤ 𝑖 ≤ 𝑟, and
3 𝑓𝑖 = (𝑌 − 𝑐𝑖)

𝑑𝑖 for 1 ≤ 𝑖 ≤ 𝑟.

Proof:
Let 𝑔 = 𝑓(𝑋1, . . . , 𝑋𝑛, 𝑌 + 𝑐𝑟) = 𝑌 𝑑

+∑
𝑑−1
𝑖=0 𝑏𝑖𝑌

𝑖, sending 𝑐𝑟 to the origin.
By construction, 𝑏0, . . . , 𝑏𝑑𝑟−1 ∈ ℳ and Weierstrass preparation can be
applied to produce 𝑔 = 𝑝 𝛼 with deg(𝑝) = 𝑑𝑟, deg(𝛼) = 𝑑 − 𝑑𝑟.
Reversing the shift, 𝑓𝑟 = 𝑝(𝑌 − 𝑐𝑟).
Induction on ⧹︂𝑓 = 𝛼(𝑌 − 𝑐𝑟) completes the proof.
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Hensel Factorization

Algorithm 2 HenselFactorization(𝑓)

Input: 𝑓 = 𝑌 𝑑
+∑

𝑑−1
𝑖=0 𝑎𝑖𝑌

𝑖, 𝑎𝑖 ∈ K(︀(︀𝑋1, . . . , 𝑋𝑛⌋︀⌋︀.
Output: 𝑓1, . . . , 𝑓𝑟 satisfying Theorem 3.

1: 𝑓 = 𝑓(0, . . . , 0, 𝑌 )

2: (𝑐1, . . . , 𝑐𝑟), (𝑑1, . . . , 𝑑𝑟) ∶= roots and their multiplicities of 𝑓
3: 𝑐1, . . . , 𝑐𝑟 ∶= sort((︀𝑐1, . . . , 𝑐𝑟⌋︀) by increasing multiplicity
4: ⧹︂𝑓1 ∶= 𝑓
5: for 𝑖 ∶= 1 to 𝑟 − 1 do
6: 𝑔𝑖 ∶=

⧹︂𝑓 𝑖(𝑌 + 𝑐𝑖)

7: 𝑝𝑖, 𝛼𝑖 ∶= WeierstrassPreparation(𝑔𝑖)
8: 𝑓𝑖 ∶= 𝑝𝑖(𝑌 − 𝑐𝑖)

9: ⧹︂𝑓 𝑖+1 ∶= 𝛼𝑖(𝑌 − 𝑐𝑖)

10: 𝑓𝑟 ∶=
⧹︂𝑓 𝑟

11: return 𝑓1, . . . , 𝑓𝑟
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Hensel Complexity (1/2)

Let ⧹︂𝑑𝑖 = deg(⧹︂𝑓𝑖) = ∑
𝑟
𝑗=𝑖 𝑑𝑖

At each iteration but the last:
1 a shift of degree ⧹︂𝑑𝑖 for ⧹︂𝑓 𝑖(𝑌 + 𝑐𝑖)

2 a Weierstrass preparation producing deg(𝑝) = 𝑑𝑖, deg(𝛼) = ⧹︂𝑑𝑖+1

3 a shift of degree 𝑑𝑖 for 𝑝(𝑌 − 𝑐𝑖)

4 a shift of degree ⧹︂𝑑𝑖+1 for 𝛼(𝑌 − 𝑐𝑖)

Theorem 4 (Hensel Factorization Complexity)
For 𝑓 = 𝑓1⋯𝑓𝑟 ∈ K(︀(︀𝑋1⌋︀⌋︀(︀𝑌 ⌋︀, deg(𝑓) = 𝑑, updating all factors to precision
𝑘 can be done within 𝒪(𝑑3𝑘 + 𝑑2𝑘2

) operations in K.

Conjecture: using relaxed algorithms [8] in Weierstrass may yield
𝒪(𝑑3𝑘 + 𝑑2𝑘 log2 𝑘)
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Hensel Complexity (2/2)

Let 𝑓 ∈ K(︀(︀𝑋1⌋︀⌋︀(︀𝑌 ⌋︀ have degree 𝑑𝑌 in 𝑌 and total degree 𝑑.
Let 𝑀(𝑛) be a polynomial multiplication time.

Factorizing 𝑓 requires...
→ Our method: 𝒪(𝑑3

𝑌 𝑘 + 𝑑2
𝑌 𝑘2

)

→ Hensel–Sasaki Construction (EHC): 𝒪(𝑑3𝑀(𝑑) + 𝑘2𝑑𝑀(𝑑)) [2]
→ Over C, Newton–Puiseux can be done in:

ë 𝒪(𝑑2𝑀(𝑘)); Kung and Traub [9]
ë 𝒪(𝑑2𝑘); Chudnovsky and Chudnovsky [7]

→ Berthomieu, Lecerf, Quintin: 𝒪(𝑀(𝑑𝑌 ) log(𝑑𝑌 )𝑘𝑀(𝑘)) [5]

Including the initial root-finding cost as 𝑅(𝑑𝑌 ):
→ Our method: 𝒪(𝑑3

𝑌 𝑘 + 𝑑2
𝑌 𝑘2
+𝑅(𝑑𝑌 ))

→ Neiger, Rosenkilde, Schost: 𝒪˜(𝑑𝑌 𝑘 + 𝑘𝑅(𝑑𝑌 )) [11]
Note 𝑀(𝑛) ∈ 𝒪(𝑛2

) or 𝒪(𝑛 log 𝑛); 𝑅(𝑛) ∈ 𝒪˜(𝑛2
)
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Serial Performance
EHC outperforms Kung and Traub’s method by orders of magnitude [2]

From CASC 2020, our serial method outperforms EHC and Factorization
via Hensel’s Lemma of PowerSeries sub-package of RegularChains [10]
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Parallel Opportunities in Hensel

→ The output of one Weierstrass becomes input to another
→ 𝑓𝑖+𝑖(𝑘) relies on 𝑓𝑖(𝑘)
→ Can compute 𝑓𝑖(𝑘+1) and 𝑓𝑖+𝑖(𝑘) concurrently in a pipeline

Stage 1 (𝑓1) Stage 2 (𝑓2) Stage 3 (𝑓3) Stage 4 (𝑓4)
Time 1 𝑓1(1)
Time 2 𝑓1(2) 𝑓2(1)
Time 3 𝑓1(3) 𝑓2(2) 𝑓3(1)
Time 4 𝑓1(4) 𝑓2(3) 𝑓3(2) 𝑓4(1)
Time 5 𝑓1(5) 𝑓2(4) 𝑓3(3) 𝑓4(2)
Time 6 𝑓1(6) 𝑓2(5) 𝑓3(4) 𝑓4(3)

𝑓 𝑔1 𝛼1

𝑝1 𝑓1

⧹︂𝑓2 𝑔2 𝛼2

𝑝2 𝑓2

⧹︂𝑓3 𝑔3 𝛼3

𝑝3 𝑓3

𝑓4
+𝑐1

−𝑐1

−𝑐1 +𝑐2

−𝑐2

−𝑐2 +𝑐3

−𝑐3

−𝑐3
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Parallel Challenges and Composition

𝑓 𝑔1 𝛼1

𝑝1 𝑓1

⧹︂𝑓2 𝑔2 𝛼2

𝑝2 𝑓2

⧹︂𝑓3 𝑔3 𝛼3

𝑝3 𝑓3

𝑓4
+𝑐1

−𝑐1

−𝑐1 +𝑐2

−𝑐2

−𝑐2 +𝑐3

−𝑐3

−𝑐3

→ Degrees and computational work diminish with each stage
ë deg(𝑔1) = 𝑑, deg(𝑔2) = 𝑑 − 𝑑1, deg(𝑔3) = 𝑑 − 𝑑1 − 𝑑2, . . .

→ To load-balance each stage, give a decreasing number of threads to
each stage to be used within Weierstrass preparation.

→ From Theorem 1: updating 𝑓𝑖 requires 𝒪(𝑑𝑖
⧹︂𝑑𝑖+1𝑘2

) operations

→ Assign 𝑡𝑖 threads to stage 𝑖 so that 𝑑𝑖
⧹︂𝑑𝑖+1⇑𝑡𝑖 is equal for each stage.

→ Better still, update a group of successive factors per stage.
ë To each stage 𝑠 assign factors 𝑓𝑠1 , . . . , 𝑓𝑠2 and 𝑡𝑠 threads so that
∑

𝑠2
𝑖=𝑠1

𝑑𝑖
⧹︂𝑑𝑖+1⇑𝑡𝑠 is roughly equal for each stage.
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Hensel Pipeline Example

𝑓 = (𝑌 − 1)(𝑌 − 2)(𝑌 − 3)(𝑌 − 4) +𝑋1(𝑌
3
+ 𝑌 )

𝑓1 = 𝑌 − 1, 𝑓2 = 𝑌 − 2, 𝑓3 = 𝑌 − 3, 𝑓4 = 𝑌 − 4

𝑘 = 600

factor serial shift 𝑑𝑖
⧹︂𝑑𝑖+1 Complexity- parallel wait Time-est. parallel wait

time (s) time (s) est. threads time (s) time (s) threads time (s) time (s)

𝑓1 18.1989 0.0012 1 ⋅ 3 6 4.5380 0.0000 7 3.5941 0.0000
𝑓2 6.6681 0.0666 1 ⋅ 2 4 4.5566 0.8530 3 3.6105 0.6163
𝑓3 3.4335 0.0274 1 ⋅ 1 1 4.5748 1.0855 0 - -
𝑓4 0.0009 0.0009 1 ⋅ 0 1 4.5750 4.5707 2 3.6257 1.4170

→ 𝑓4 requires at least one thread so that it (the last factor) gets updated
→ work estimates based on complexity results okay, but does not

account for, e.g., coefficient size or data locality.
→ can also use serial time to suggest thread assignments
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Hensel Pipeline Algorithm

Algorithm 3 HenselPipeStage(𝑘, 𝑓𝑖, 𝑡, gen)

Input: 𝑘 ∈ Z+, 𝑓𝑖 a UPoPS, 𝑡 ∈ Z+ the number
of threads to use within this stage. gen a
generator for the previous pipeline stage.

Output: a sequence of integers 𝑗 signalling 𝑓𝑖 is
known to precision 𝑗; the sequence ends at 𝑘.

1: 𝑝 ∶= Precision(𝑓𝑖) ▷ current precision of 𝑓𝑖

2: do
▷A blocking function call until gen yields

3: 𝑘′ ∶= gen()

4: for 𝑗 ∶= 𝑝 to 𝑘′ do
5: UpdateToDegParallel(𝑗, 𝑓𝑖, 𝑡)
6: yield 𝑗

7: 𝑝 ∶= 𝑘′

8: while 𝑘′ < 𝑘

Algorithm 4 HenselFactorizationPipeline(𝑘, ℱ , 𝒯 )

Input: 𝑘 ∈ Z+, ℱ = {𝑓1, . . . , 𝑓𝑟} the output of Hen-
selFactorization. 𝒯 ∈ Z𝑟 a 0-indexed list of the
number of threads to use in each stage, 𝒯 (︀𝑟−1⌋︀ > 0.

Output: 𝑓1, . . . , 𝑓𝑟 updated in-place to precision 𝑘.

▷ an anonymous function asynchronous generator
1: gen ∶= ( ) → {yield 𝑘}

2: for 𝑖 ∶= 0 to 𝑟 − 1 do
3: if 𝒯 (︀𝑖⌋︀ > 0 then

▷ Capture function as a function object,
passing the previous gen as input

4: gen ∶= AsyncGenerator(
HenselPipeStage, 𝑘, 𝑓𝑖+1, 𝒯 (︀𝑖⌋︀, gen)

▷ ensure last stage completes before returning
5: do
6: 𝑘′ ∶= gen()
7: while 𝑘′ < 𝑘
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Outline

1 Background

2 Weierstrass Preparation Theorem

3 Hensel Factorization

4 Experimentation
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Parallel Speed-up WPT 1

𝑢𝑟 =

𝑟

∑

𝑖=2
(𝑋2

1 +𝑋2 + 𝑖)𝑌 𝑖
+ (𝑋2

1 +𝑋2)𝑌 +𝑋2
1 +𝑋1𝑋2 +𝑋2

2

Ô⇒ deg(𝑝) = 2 deg(𝛼) = 𝑟 − 2
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Parallel Speed-up WPT 2

𝑣𝑟 =

𝑟

∑

𝑖=𝑟⇑2

(𝑋2
1 +𝑋2 + 𝑖)𝑌 𝑖

+

𝑟⇑2−1
∑

𝑖=1
(𝑋2

1 +𝑋2)𝑌
𝑖
+𝑋2

1 +𝑋1𝑋2 +𝑋2
2

Ô⇒ deg(𝑝) = deg(𝛼) = 𝑟⇑2
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Parallel Speed-up Hensel Factorization 1

𝑥𝑟 =

𝑟

∏

𝑖=1
(𝑌 − 𝑖) +𝑋1(𝑌

3
+ 𝑌 )
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Parallel Speed-up Hensel Factorization 2

𝑧𝑟 =

𝑟

∏

𝑖=1
(𝑌 +𝑋1 +𝑋2 − 𝑖) +𝑋1𝑋2(𝑌

3
+ 𝑌 )
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Conclusions and Future Work

→ We have seen complexity estimates and parallel algorithms for lazy
Weierstrass preparation and lazy Hensel factorization.

→ The composition of parallel patterns (map-reduce within pipeline)
provides good performance.

In future:
→ In multivariate case, must improve loop partitioning to better

compute homogeneous parts of products: 𝑓(𝑘) = ∑
𝑘
𝑖=0 𝑔(𝑖)ℎ(𝑘−𝑖)

→ Improved thread distribution between Hensel pipeline stages to
consider practical performance: coefficient size, locality

→ Improved thread distribution between Hensel pipeline stages for
multivariate case

→ Relaxed algorithms within Weierstrass preparation
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