On The Parallelization of Triangular Decompositions

Mohammadali Asadi, Alexander Brandt, Robert H. C. Moir, Marc Moreno Maza, Yuzhen Xie
Ontario Research Center for Computer Algebra
Department of Computer Science
University of Western Ontario, Canada

ISSAC 2020, September 7, 2020

Outline

1 Introduction

2 Preliminaries

3 Triangularize: Task Pool Parallelization

4 Intersect: Asynchronous Generators

5 Removing Redundancies: Divide-and-Conquer

6 Experimentation

Decomposing a Non-Linear System

Many ways to "solve" a system

$$
\left\{\begin{array} { l }
{ x ^ { 2 } + y + z = 1 } \\
{ x + y ^ { 2 } + z = 1 } \\
{ x + y + z ^ { 2 } = 1 }
\end{array} \quad \stackrel { \text { Gröbner Basis } } { \Longrightarrow } \left\{\begin{array}{r}
x+y+z^{2}=1 \\
(y+z-1)(y-z)=0 \\
z^{2}\left(z^{2}+2 y-1\right)=0 \\
z^{2}\left(z^{2}+2 z-1\right)(z-1)^{2}=0
\end{array}\right.\right.
$$

Triangular Decomposition

$$
\left\{\begin{array}{r}
x-z=0 \\
y-z=0 \\
z^{2}+2 z-1=0
\end{array},\left\{\begin{array}{r}
x=0 \\
y=0 \\
z-1=0
\end{array}, \quad\left\{\begin{array}{r}
x=0 \\
y-1=0 \\
z=0
\end{array}, \quad\left\{\begin{array}{r}
x-1=0 \\
y=0 \\
z=0
\end{array}\right.\right.\right.\right.
$$

Both solutions are equivalent (via a union).
\rightarrow by using triangular decomposition, multiple components are found, suggesting possible component-level parallelism

Incremental Decomposition of a Non-Linear System

$$
\begin{aligned}
& F=\left\{\begin{array}{l}
x^{2}+y+z=1 \\
x+y^{2}+z=1 \\
x+y+z^{2}=1
\end{array}\right. \\
& F[1] \quad \begin{array}{c}
\varnothing \\
\downarrow
\end{array} \\
& \left\{x^{2}+y+z=1\right\} \\
& F[2] \quad \downarrow \\
& \left\{\begin{array}{r}
x+y^{2}+z=1 \\
y^{4}+(2 z-2) y^{2}+y+\left(z^{2}-z\right)=0
\end{array}\right\} \\
& F[3] \\
& \left\{\begin{array}{rl}
x-z & =0 \\
y-z & =0 \\
z^{2}+2 z-1 & =0
\end{array},\left\{\begin{array}{r}
x \\
y
\end{array}=0, ~\left(\begin{array}{rl}
x & =0 \\
z-1 & =0
\end{array},\left\{\begin{array}{rl}
x-1 & =0 \\
y-1 & =0 \\
z & =0
\end{array},\left\{\begin{aligned}
& x-1 \\
& z=0
\end{aligned}\right.\right.\right.\right.\right.
\end{aligned}
$$

Our Goal: take advantage of different components to gain better performance in high-level decomposition algorithms via parallelism

Motivations and Challenges

- Many challenges exist in parallelizing triangular decompositions:
\hookrightarrow Some systems never split
\hookrightarrow Some split only at the final step, leaving very little concurrency
\hookrightarrow Some split into one "main" component and several degenerative cases
- Potential parallelism is problem-dependent and not algorithmic; it exhibits irregular parallelism
- Where a splitting is found in an intermediate step, subsequent steps can operate concurrently on each independent component
\hookrightarrow Finding splittings in the geometry is as difficult as solving the system
- A solution must exploit all possible parallelism, without adding too much overhead in the cases where there is none

A more interesting example (1/2)

$$
\left\{\begin{array}{r}
x+z^{2}+1 \\
5 y+1 \\
5 w-1
\end{array}\right\}, \quad\left\{\begin{array}{r}
5 y+1 \\
z \\
5 w-1
\end{array}\right\}, \quad\left\{\begin{array}{r}
x+z^{2}+1 \\
y \\
w
\end{array}\right\},\left\{\begin{array}{c}
y \\
z \\
w
\end{array}\right\}
$$

$F[4]$

$$
\left\{\begin{array}{r}
x+z^{2}+1 \\
5 y+1 \\
z^{8}+\cdots \\
5 w-1
\end{array},\left\{\begin{array}{r}
x-z \\
5 y+1 \\
z^{2}+z+1 \\
5 w-1
\end{array},\left\{\begin{array}{r}
x \\
5 y+1 \\
z^{\prime} \\
5 w-1
\end{array}, \quad\left\{\begin{array}{r}
x^{2}+1 \\
5 y+1 \\
z w-1 \\
z
\end{array},\left\{\begin{array}{r}
x+z^{2}+1 \\
y \\
z^{8}+\cdots \\
w
\end{array},\left\{\begin{array}{r}
x-z \\
y \\
z^{2}+z+1 \\
w
\end{array},\left\{\begin{array}{r}
x^{2}+1 \\
y \\
z^{\prime} \\
w
\end{array},\left\{\begin{array}{r}
x \\
y \\
z \\
w
\end{array}\right.\right.\right.\right.\right.\right.\right.\right.
$$

A more interesting example $(2 / 2)$

Sys2913 Component Tree

\rightarrow more parallelism exposed as more components found
\rightarrow yet, work unbalanced between branches
\rightarrow mechanism needed for dynamic parallelism: "workpile" or "task pool"

Previous Works

- Parallelization of high-level algebraic and geometric algorithms was more common roughly 30 years ago
\hookrightarrow Such as in Gröbner Bases [1, 3, 4] and CAD [10]
- Recent work on parallelism has been on low-level routines with regular parallelism:
\hookrightarrow Polynomial arithmetic [5, 7]
\hookrightarrow Modular methods for GCDs and Factorization [6, 8]
- Recently, high-level algorithms, often with irregular parallelism have neither seen much attention nor received thorough parallelization
\hookrightarrow The normalization algorithm of [2] finds components serially, then processes each component with a simple parallel map
\hookrightarrow Early work on parallel triangular decomposition was limited by symmetric multi-processing and inter-process communication [9]

Main Results

- An implementation of triangular decomposition fully in $\mathrm{C} / \mathrm{C}++$
- Parallelization effectively exploits as much parallelism as possible throughout the triangular decomposition algorithm
- Implementation framework for parallelization based on task pools, generating functions, pipelines, fork-join
- An extensive evaluation of our implementation against over 3000 real-world polynomial systems

Outline

1 Introduction

2 Preliminaries

3 Triangularize: Task Pool Parallelization

4 Intersect: Asynchronous Generators

5 Removing Redundancies: Divide-and-Conquer

6 Experimentation

Regular Chains, Notations

Let \mathbf{k} be a perfect field, and $\mathbf{k}[\underline{X}]$ have ordered vars. $\underline{X}=X_{1}<\cdots<X_{n}$
A triangular set T is a regular chain if h is regular modulo $\operatorname{sat}\left(T_{v}^{-}\right)$and T_{v}^{-} is a regular chain

Example:

$$
\begin{aligned}
T & =\left\{\begin{array}{r}
(2 y+b a) x-b y+a^{2} \\
2 y^{2}-b y-a^{2} \\
a+b
\end{array}\right\} \\
& \subset \mathbb{Q}[b<a<y<x]
\end{aligned}
$$

Saturated ideal of a regular chain:

$$
\begin{aligned}
& \rightarrow \operatorname{sat}(T)=\left(\operatorname{sat}\left(T_{v}^{-}\right)+\left\langle T_{v}\right\rangle\right):\langle h\rangle^{\infty} \\
& \rightarrow \operatorname{sat}(\varnothing)=\langle 0\rangle
\end{aligned}
$$

Quasi-component of a regular chain:

$$
\begin{aligned}
& \rightarrow W(T):=V(T) \backslash V\left(h_{T}\right), h_{T}:=\prod_{p \in T} h_{p} \\
& \rightarrow \overline{W(T)}=V(\operatorname{sat}(T))
\end{aligned}
$$

Triangular Decomposition Algorithms

A triangular decomposition of an input system $F \subseteq \mathbf{k}[\underline{X}]$ is a set of regular chains T_{1}, \ldots, T_{e} such that:
(a) $V(F)=\bigcup_{i=1}^{e} \overline{W\left(T_{i}\right)}$, in the sense of Kalkbrener, or
(b) $V(F)=\bigcup_{i=1}^{e} W\left(T_{i}\right)$, in the sense of Wu and Lazard

Triangular decomposition by incremental intersection has key subroutines:
Intersect. Given $p \in \mathbf{k}[\underline{X}], T \subset \mathbf{k}[\underline{X}]$, compute T_{1}, \ldots, T_{e} such that:
$V(p) \cap W(T) \subseteq \cup_{i=1}^{e} W\left(T_{i}\right) \subseteq V(p) \cap \overline{W(T)}$
Regularize: Given $p \in \mathbf{k}[\underline{X}], T \subset \mathbf{k}[\underline{X}]$, compute T_{1}, \ldots, T_{e} such that:
i. $W(T) \subseteq \cup_{i=1}^{e} W\left(T_{i}\right) \subseteq \overline{W(T)}$, and
ii. $\quad p \in \operatorname{sat}\left(T_{i}\right)$ or p is regular modulo sat $\left(T_{i}\right)$, for $i=1, \ldots, e$

RegularGCD: Given $p \in \mathbf{k}[\underline{X}]$ with main variable $v, T=\left\{T_{v}\right\} \cup T_{v}^{-}$, find pairs $\left(g_{i}, T_{i}\right)$ such that:
i. $W\left(T_{v}^{-}\right) \subseteq \bigcup_{i=1}^{e} W\left(T_{i}\right) \subseteq \overline{W\left(T_{v}^{-}\right)}$, and
ii. g_{i} is a regular gcd of p, T_{v} w.r.t. T_{i}

Finding Splittings: GCDs and Regularize

Let $p \in \mathbf{k}[\underline{X}] \backslash \mathbf{k}$ with main variable v. Let $T=T_{v}^{-} \cup T_{v}$. All are square free.
A regular GCD g of p and T_{v} w.r.t. $\operatorname{sat}\left(T_{v}^{-}\right)$has:
$1 h_{g}$ is regular modulo $\operatorname{sat}\left(T_{v}^{-}\right)$
$2 g \in\left\langle p, T_{v}\right\rangle$ (every solution of p and T_{v} solves g as well)
3 if $\operatorname{deg}(g, v)>0$, then g pseudo-divides p and T_{v}.

Let $q=\operatorname{pquo}\left(T_{v}, g\right)$. In Regularize, g says where p vanishes or is regular:

$$
W(T) \subseteq W\left(T_{v}^{-} \cup g\right) \cup W\left(T_{v}^{-} \cup q\right) \cup\left(V\left(h_{g}\right) \cap W(T)\right) \subseteq \overline{W(T)}
$$

In Intersect, splittings are found via recursive calls:

$$
\begin{aligned}
& V(p) \cap W(T) \subseteq \\
& \quad W\left(T_{v}^{-} \cup g\right) \cup\left(V(p) \cap\left(V\left(h_{g}\right) \cap W(T)\right)\right)
\end{aligned}
$$

$$
\subseteq V(p) \cap \overline{W(T)}
$$

Parallel Programming Patterns

Parallel Map, Workpile

\rightarrow Map a function to each item in a collection, executing each function call simultaneously. Requires lockstep threads.
\rightarrow Workpile generalizes map to a "pile" of tasks and a set of workers. Allows intermediate tasks to add more tasks, enables load-balancing

Asynchronous Generators, Pipeline

\rightarrow A generator function (a.k.a iterator, coroutine) which produces data to be consumed in parallel; special-case of producer-consumer problem
\rightarrow Async generators calling other async generators create a pipeline

Divide-and-Conquer, Fork-Join Parallelism

\rightarrow Divide a problem, solve recursively, then combine sub-solutions.
\rightarrow When >1 recursive call fork computations, perform each recursive call concurrently, then join before combining sub-solutions.

Outline

1 Introduction

2 Preliminaries

3 Triangularize: Task Pool Parallelization

4 Intersect: Asynchronous Generators

5 Removing Redundancies: Divide-and-Conquer

6 Experimentation

Triangularize: incremental triangular decomposition

```
Algorithm 1 Triangularize \((F)\)
Input: a finite set \(F \subseteq \mathbf{k}[\underline{X}]\)
Output: regular chains \(T_{1}, \ldots, T_{e} \subseteq \mathbf{k}[\underline{X}]\) such that \(V(F)=W\left(T_{1}\right) \cup \cdots \cup W\left(T_{e}\right)\)
    1: \(\mathcal{T}:=\{\varnothing\}\)
    2: for \(p \in F\) do
3: \(\quad \mathcal{T}^{\prime}:=\{ \}\)
4: for \(T \in \mathcal{T}\) do \(\quad \triangleright\) map Intersect over the current components
5: \(\quad \mathcal{T}^{\prime}:=\mathcal{T}^{\prime} \cup \operatorname{Intersect}(p, T)\)
6: \(\quad \mathcal{T}:=\mathcal{T}^{\prime}\)
7: return RemoveRedundantComponents \((\mathcal{T})\)
```

- Coarse-grained parallelism: each Intersect represents substantial work
- At each "level" there $|\mathcal{T}|$ components with which to intersect, yielding $|\mathcal{T}|-1$ additional threads
- Performs a breadth-first search, with synchronization at each level

Triangularize: a task-based approach

Algorithm 2 TriangularizeByTasks (F)
Input: a finite set $F \subseteq \mathbf{k}[\underline{X}]$
Output: regular chains $T_{1}, \ldots, T_{e} \subseteq \mathbf{k}[\underline{X}]$ such that $V(F)=W\left(T_{1}\right) \cup \cdots \cup W\left(T_{e}\right)$
1: Tasks $\leftarrow\{(F, \varnothing)\} ; \mathcal{T} \leftarrow\{ \}$
2: while \mid Tasks $\mid>0$ do
3: $\quad(P, T) \leftarrow$ pop a task from Tasks
4: \quad Choose a polynomial $p \in P ; P^{\prime} \leftarrow P \backslash\{p\}$
5: \quad for T^{\prime} in $\operatorname{Intersect}(p, T)$ do
6: \quad if $\left|P^{\prime}\right|=0$ then $\mathcal{T} \leftarrow \mathcal{T} \cup\left\{T^{\prime}\right\}$
7: \quad else Tasks \leftarrow Tasks $\cup\left\{\left(P^{\prime}, T^{\prime}\right)\right\}$
8: return RemoveRedundantComponents (\mathcal{T})

- Tasks is essentially an underlying data structure for a task scheduler
- Use a thread pool of workers, each executing the body of the while loop
- Tasks create more tasks, workers pop Tasks until none remain.
- Adaptive to load-balancing, no inter-task synchronization

Outline

1 Introduction

2 Preliminaries

3 Triangularize: Task Pool Parallelization

4 Intersect: Asynchronous Generators

5 Removing Redundancies: Divide-and-Conquer

6 Experimentation

Intersect as a Generator

```
Algorithm 3 Intersect( }p,T
Input: p\in }\mathbf{k}[\underline{X}]\\mathbf{k},v:= mvar(p), a regular chain T s.t. T= T T \cup Tv
Output: regular chains }\mp@subsup{T}{1}{},\ldots,\mp@subsup{T}{e}{}\mathrm{ satisfying specs.
    1: for ( }\mp@subsup{g}{i}{},\mp@subsup{T}{i}{})\in\operatorname{RegularGCD}(p,\mp@subsup{T}{v}{},v,\mp@subsup{T}{v}{-})\mathrm{ do
2: if }\operatorname{dim}(\mp@subsup{T}{i}{})\not=\operatorname{dim}(\mp@subsup{T}{v}{-})\mathrm{ then
3: for }\mp@subsup{T}{i,j}{}\in\boldsymbol{Intersect}(p,\mp@subsup{T}{i}{})\mathrm{ do
4: yield T}\mp@subsup{T}{i,j}{
5: else
6: }\quad\mathrm{ if }\mp@subsup{g}{i}{}\not\in\mathbf{k}\mathrm{ and }\operatorname{deg}(\mp@subsup{g}{i}{},v)>0\mathrm{ then
    7: yield Ti}\mp@subsup{T}{i}{}\cup{\mp@subsup{g}{i}{}
    8: for }\mp@subsup{T}{i,j}{}\in\operatorname{Intersect(lc}(\mp@subsup{g}{i}{},v),\mp@subsup{T}{i}{})\mathrm{ do
    9: for T' }\in\boldsymbol{\operatorname{Intersect}}(p,\mp@subsup{T}{i,j}{\prime})\mathrm{ do
10: yield T'
```

\rightarrow yield "produces" a single data item, and then continues computation
\rightarrow each for loop consumes a data one at a time from the generator

Generators are both Producers and Consumers

Algorithm $3 \operatorname{Intersect}(p, T)$	
1: for $\left(g_{i}, T_{i}\right) \in \operatorname{RegularGCD}\left(p, T_{v}, T_{v}^{-}\right)$do	
2:	if $\operatorname{dim}\left(T_{i}\right) \neq \operatorname{dim}\left(T_{v}^{-}\right)$then
3:	for $T_{i, j} \in \operatorname{Intersect}\left(p, T_{i}\right)$ do
4:	yield $T_{i, j}$
5:	else
6:	if $g_{i} \notin \mathbf{k}$ and $\operatorname{deg}\left(g_{i}, v\right)>0$ then
7:	yield $T_{i} \cup\left\{g_{i}\right\}$
8:	for $T_{i, j} \in \operatorname{Intersect}\left(\operatorname{lc}\left(g_{i}, v\right), T_{i}\right)$ do
9:	for $T^{\prime} \in \operatorname{Intersect}\left(p, T_{i, j}\right)$ do
10:	yield T^{\prime}

```
Algorithm 4 Regularize \((p, T)\)
    1: for \(\left(g_{i}, T_{i}\right) \in \operatorname{RegularGCD}\left(p, T_{v}, T_{v}^{-}\right)\)do
    2: \(\quad \triangleright\) assume \(\operatorname{dim}\left(T_{i}\right)=\operatorname{dim}\left(T_{v}^{-}\right)\)
    3: if \(0<\operatorname{deg}\left(g_{i}, v\right)<\operatorname{deg}\left(T_{v}, v\right)\) then
    4: \(\quad\) yield \(T_{i} \cup g_{i}\)
    5: \(\quad\) yield \(T_{i} \cup \operatorname{pquo}\left(T_{v}, g_{i}\right)\)
    6: \(\quad\) for \(T_{i, j} \in \operatorname{Intersect}\left(\operatorname{lc}\left(g_{i}, v\right), T_{i}\right)\) do
    7: \(\quad\) for \(T^{\prime} \in \operatorname{Regularize}\left(p, T_{i, j}\right)\) do
    8: \(\quad\) yield \(T^{\prime}\)
    9: else
    10: \(\quad\) yield \(T_{i}\)
```

\rightarrow Establishing mutually recursive functions as generators allows data to stream between subroutines; subroutines are effectively non-blocking
\rightarrow function call stack of generators creates a dynamic parallel pipeline.

Subroutine Pipeline

\rightarrow All subroutines as generators allows pipeline to evolve dynamically with the call stack.
\rightarrow call stack forms a tree if several generators invoked by one consumer
\rightarrow Pipeline creates fine-grained parallelism since work diminishes with each recursive call
\rightarrow A thread pool is used and shared among all generators; generators run synchronously if pool is empty

Outline

1 Introduction

2 Preliminaries

3 Triangularize: Task Pool Parallelization

4 Intersect: Asynchronous Generators

5 Removing Redundancies: Divide-and-Conquer

6 Experimentation

Divide-and-Conquer and Fork-Join

Remove redundancies from a list of regular chains with DnC:
\rightarrow Recursively and concurrently obtain two irredundant lists, then merge.
\rightarrow Cilk is used to fork/spawn and join/sync

Algorithm 5 RemoveRedundantComponents (\mathcal{T})

Input: a finite set $\mathcal{T}=\left\{T_{1}, \ldots, T_{e}\right\}$ of regular chains
Output: an irredudant set \mathcal{T}^{\prime} with the same algebraic set as \mathcal{T}
if $e=1$ then return \mathcal{T}
$\ell \leftarrow\lceil e / 2\rceil ; \mathcal{T}_{\leq \ell} \leftarrow\left\{T_{1}, \ldots, T_{\ell}\right\} ; \mathcal{T}_{>\ell} \leftarrow\left\{T_{\ell+1}, \ldots, T_{e}\right\}$
$\mathcal{T}_{1}:=$ spawn RemoveRedundantComponents $\left(\mathcal{T}_{\leq \ell}\right)$
$\mathcal{T}_{2}:=$ RemoveRedundantComponents $\left(\mathcal{T}_{>\ell}\right)$
sync
$\mathcal{T}_{1}^{\prime}:=\varnothing ; \quad \mathcal{T}_{2}^{\prime}:=\varnothing$
for $T_{1} \in \mathcal{T}_{1}$ do
if $\forall T_{2}$ in \mathcal{T}_{2} IsNotIncluded $\left(T_{1}, T_{2}\right)$ then $\mathcal{T}_{1}^{\prime}:=\mathcal{T}_{1}^{\prime} \cup\left\{T_{1}\right\}$
for $T_{2} \in \mathcal{T}_{2}$ do
if $\forall T_{1}$ in \mathcal{T}_{1}^{\prime} IsNotIncluded $\left(T_{2}, T_{1}\right)$ then $\mathcal{T}_{2}^{\prime}:=\mathcal{T}_{2}^{\prime} \cup\left\{T_{2}\right\}$
return $\mathcal{T}_{1}^{\prime} \cup \mathcal{T}_{2}^{\prime}$

Outline

1 Introduction

2 Preliminaries

3 Triangularize: Task Pool Parallelization

4 Intersect: Asynchronous Generators

5 Removing Redundancies: Divide-and-Conquer

6 Experimentation

Experimentation Setup

Thanks to Maplesoft, we have a collection of over 3000 real-world systems from: actual user data, the literature, bug reports.

Of these >3000 systems, 828 require greater than 0.1 s to solve
\rightarrow Non-trivial systems to warrant the overheads of parallelism

203 of these 828 systems (25\%) do not split at all
\rightarrow No speed-up expected; some slow-down is expected in these cases
\rightarrow however, we include them to ensure that slow-down is minimal

These experiments are run on a node with 2×6-core Intel Xeon X560 processors (24 physical threads with hyperthreading)

Speed-ups on Non-Trivial Systems (1/2)

\rightarrow "Coarse": task manager only, "Fine": tasks and generators
\rightarrow Adding generators increases parallelism: streaming components allows Triangularize to create a new task as early as possible

Speed-ups on Non-Trivial Systems $(2 / 2)$

\rightarrow "Coarse": task manager only, "Fine": tasks and generators
\rightarrow Adding generators increases parallelism: streaming components allows Triangularize to create a new task as early as possible

Inspecting the Geometry: Sys2691

Sys2691 Component Tree

\rightarrow Bottom "main" branch is majority of the work.
\rightarrow Little overlap with the quickly-solved degenerative branches
$\rightarrow 2.13 \times$ speedup achieved; 88% efficient compared to work/span ratio

Conclusion \& Future Work

We have tackled irregular parallelism in a high-level algebraic algorithm
\rightarrow our solution dynamically finds and exploits possible parallelism
\rightarrow uses dynamic parallel task management, async. generators, and DnC
Further parallelism can be found through:
\rightarrow evaluation/interpolation schemes for subresultant chains
\rightarrow solving over a prime field produces more splittings; then lift solutions
Our parallel techniques could be employed in further high-level algorithms.
\rightarrow e.g. factorization: pipelining between square-free, distinct-degree, and equal-degree factorization

Thank You!

I look forward to your questions:
\rightarrow during the live Q / A session,
\rightarrow at a Zoom Meeting 18:00-19:00 EEST July 21 2020: https://westernuniversity.zoom.us/j/93900888047 (Meeting ID: 93900888047)
\rightarrow via email:
Alex Brandt abrandt5@uwo.ca,
Ali Asadi masadi4@uwo.ca, Marc Moreno Maza moreno@csd.uwo.ca

References

[1] G. Attardi and C. Traverso. "Strategy-Accurate Parallel Buchberger Algorithms". In: J. Symbolic Computation 22 (1996), pp. 1-15.
[2] J. Böhm, W. Decker, S. Laplagne, G. Pfister, A. Steenpaß, and S. Steidel. "Parallel algorithms for normalization". In: J. Symb. Comput. 51 (2013), pp. 99-114.
[3] B. Buchberger. "The parallelization of critical-pair/completion procedures on the L-Machine". In: Proc. of the Jap. Symp. on functional programming. 1987, pp. 54-61.
[4] J. C. Faugere. "Parallelization of Gröbner Basis". In: Parallel Symbolic Computation PASCO 1994 Proceedings. Vol. 5. World Scientific. 1994, p. 124.
[5] M. Gastineau and J. Laskar. "Parallel sparse multivariate polynomial division". In: Proceedings of PASCO 2015. 2015, pp. 25-33.
[6] J. Hu and M. B. Monagan. "A Fast Parallel Sparse Polynomial GCD Algorithm". In: ISSAC 2016, Waterloo, ON, Canada, July 19-22, 2016. 2016, pp. 271-278.
[7] M. Monagan and R. Pearce. "Parallel sparse polynomial multiplication using heaps". In: ISSAC. 2009, pp. 263-270.
[8] M. Monagan and B. Tuncer. "Sparse Multivariate Hensel Lifting: A High-Performance Design and Implementation". In: ICMS 2018. 2018, pp. 359-368.
[9] M. Moreno Maza and Y. Xie. "Component-level parallelization of triangular decompositions". In: PASCO 2007 Proceedings. ACM. 2007, pp. 69-77.
[10] B. D. Saunders, H. R. Lee, and S. K. Abdali. "A parallel implementation of the cylindrical algebraic decomposition algorithm". In: ISSAC. Vol. 89. 1989, pp. 298-307.

