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N-Body Simulations

Many discrete bodies moving by physical forces
= Molecular dynamics (van der Walls forces, electrostatic forces, etc.)
m Astrophysics (gravity, dark matter, general relativity)
» Fluid dynamics (Navier-Stokes equations)

Vortex Particle Method for Fluid dynamics, Ryatina and Lagno (2021) [6]
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Gravitational N-Body
m Bodies moving under the force of gravity
m Exact solutions only known for N < 3

» Yet, N = 10*-10'! is of practical importance

m Simulation is needed!

Three-Body Problem [9]

Solar System Simulation [2]
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Need for Performance

m For N bodies, gravity simulation requires computing
up to N? forces at each time step

m Hierarchical approximation methods introduced in the 1980s
(Barnes-Hut [1], Fast Multipole [5]) reduce num. forces to N log N

m Even with approximation methods, long-term simulations
still run for days, weeks, or even months

m Parallel shared memory methods, and eventually, distributed
computing methods are needed to obtain better performance
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ACM/IEEE Super Computing Conference 1993

One conference, two pioneering parallel hierarchical N-body methods:

Costzones by Singh, Holt, Hennessy, and Gupta [7]

L, Each process builds a local octree and merges them
into a global one in a shared-memory system

Hashed Octree by Warren and Salmon [8]

L, Each process builds a locally-essential octree
in a distributed-memory system

Problems:
Code is unpublished

Details are missing to implement and reproduce
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Goals of This Work

Pedagogical Resource

L, Consolidate information from SC '93, their follow-up papers, and
continuing research, to create a coherent text
L, Include previously missing algorithmic and implementation details

Reproduce
L, Provide a well-documented, open-source code

Adapt to Modern Hardware

L, How well do these methods adapt to modern hardware, communication
protocols, and hybrid distributed-shared memory systems?
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Goals of This Work

Have fun!
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Plan

Background: Gravity, Barnes-Hut

Octrees Encodings

Spacial Decomposition for Parallel Processing

Experimental Results
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Newtonian Gravity

In Newtonian dynamics, a point mass m; at r; evolves as:

d2

gz’

Let F;; be the force acting on mass m; by m;. From F' = ma:

N
2 F. Z Gmimj(ri — rj)
%
dt2 A m; =1 ||’I°Z — rj||3
]#z J#i

The force acting on m; by a collection of bodies .J can be approximated by
their center of mass r;:
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The Barnes-Hut Method

The Barnes-Hut method relies on two key observations:

The centre of mass approximation approaches equality
as dj = ||r; — ry|| increases

An octree (quadtree) hierarchically groups bodies to
easily determine groups J for which computing F;; is sufficient

For each m;:
If %J; < 0, use F;;. Otherwise, recurse. Niz]
m Yellow is well-separated from J ) 6‘7{%‘; ° s
m Purple might be well-separated from K Ui 7_ CI
dK "l‘A
m Force between greens cannot be
approximated .
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Octrees
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A binary tree based on pointers can easily be extended to an octree:
m 8 children per node

m Augment each node with its spatial information:
its center and side length ¢;

m Divide the space until each body resides in a unique leaf node
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Linear Octree (Hashed Octree)
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A linear octree (introduced by Gargantini, UWO Professor emeritus [4])
allows for direct indexing of any node via a hash table encoding.

m Each node gets a unique key: its parent’s key concatenated with
(0-8), in octal

m Root node gets key 1
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The Need For Spatial Decomposition
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Goal: partition the simulation domain and assign one partition to each
process (thread, processor)

Naively dividing the simulation domain into equal-sized chunks is
insufficient for load-balancing.
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N-order, Z-order, Morton Order
A space-filling curve gives a linear order to 2D or 3D space.

Linearize the bodies, partition space so that each partition has an equal
number of bodies.
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Costzones Method

= Each processor builds a local, pointer-based octree for its partition.

m Merge local trees into a single global, shared tree.
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Hashed Octree Method

m Each processor builds a local, hashed octree for its partition.

m Neighbour bodies are shared between adjacent domains to act as
entry points to remote trees.

m During force calculation, remote data is dynamically requested as
needed during recursive calls.
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Implementation and Experimental Setup

Code, technical report: https://github.com/alexgbrandt/Parallel-NBody

Code written in C, visualization implemented in OpenGL 3.3
Parallelization and distributed computing by OpenMPI [3]
10-node LAN compute cluster, each with 2x 6-core Intel Xeon X5650

Experiment: collision of two globular clusters

t=0.0 t =20 t=4.0
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https://github.com/alexgbrandt/Parallel-NBody

Execution Time

Time vs Simulation Size, Costzones

Time vs Simulation Size, Hashed Octree
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Parallel Speedup

Parallel Speed-up, Costzones Parallel Speed-up, Hashed Octree
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Thank you!

Questions?
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