
Chapter 1. Introduction

“Truth proceedeth more readily from error than from confusion.”
Sir Francis Bacon

Whatever one might mean by the term “biodiversity,” the main thrust of all inquiries conducted 
under that name is the desire to say something meaningful about species of living things in their 
natural habitat. In particular, the population sizes of various species, both in relative and absolute 
terms, become the central focus. The most comprehensive studies address whole communities, 
namely all the species within a particular group and living within a specific area. One might wish 
to know how many species of butterflies there are in a particular forest, for example, along with 
their relative or absolute abundances. Or one might wish to study a community of aquatic plants 
in a tropical embayment with the same general aim in mind. Literally thousands of such studies 
have been conducted for more than 100 years, in every clime, habitat, and living kingdom. In all 
cases -- or nearly all cases -- the investigator has had recourse to only one principal mode of 
investigation, namely to take samples of the community in question. 

This book is about such communities and the exact relationship of their (unknown) abundances 
to abundances that appear when samples are taken. Short of a Faustian magic mirror that shows 
us a whole community, along with all its living components, we are stuck with samples. As 
indicated in the description of the frontispiece, the (so-called) J-curve is ubiquitous in samples of 
natural communities and there is a clear consensus to that effect, reached in the last decade. 
(McGill et al. 2007). The random sample of a non-natural community such as a large vegetable 
garden is likely to have a rather different distribution of abundances.

When we examine any of the histograms that appear in this book, we shall not know which 
species have which abundances. The theory proposed here to account for this ubiquitous shape 
has an associated statistical manifestation called the logistic-J distribution (Dewdney 1998, 
2003). Like other proposals to account for this shape (see the next section), the logistic-J theory 
is oblivious to the actual species that have a given abundance; only the number of species having 
that abundance is relevant. 

1.1 The community and the sample

Figure 1.1 illustrates the relationship between a natural community and a sample of it. Each little 
square represents a species, with its position on the horizontal axis representing its abundance. It 
will be a general feature of the histograms shown in this book that the numerical label associated 
with each abundance appears at the right hand side of the corresponding interval on the 
abundance axis. This is a technical device that harmonizes discrete and continuous versions of the 
logistic-J distribution. Some theoretical abundances, as well as some empirical ones are fractional, 
with values such as 3.2, 3.7, and 3.8, for example, all gathered into the category 4.0. In general, 
the kth category would embrace all abundances lying in the half-open interval,  (k-1, k]
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It will be a common experience for readers of this book to encounter histograms like the ones in 
Figure 1.1 where, due to horizontal space limitations, not all species can be shown. In cases 
where it matters, the missing abundances are always given. In cases where it doesn’t, the reader 
may imagine them as being present, nevertheless. Indeed, logistic-J theory indicates just how far 
out on the abundance axis such species might be expected to occur. 

The histograms shown in Figure 1.1 are imaginary, but reflect what one might call realistic 
variability. Those with experience of actual sample histograms, may well accept the sample data 
as typical, but who has seen the histogram of an entire community? The community histogram is 
simply an indication of what a community might look like under logistic-J theory. The horrifying 
sight presented in the sample of so many species seemingly about to go extinct vanishes at the 
sight of the community with no such peak. It must be remembered that, in general, the abundance 
of a species in a sample is usually much lower than its abundance in the community from which 
the sample was taken. For example, a species of abundance 1 in the sample histogram might well 
have abundance 27 in the community. The sampling process has “mapped” it from a position of 
relatively high abundance to one of relatively low abundance.

Figure 1.1  The relationship between abundances in a community and those of a sample

Although the focus of this work is ultimately the community under investigation, we have only 
samples to work with. As a result, most of the histograms presented in this book belong to either 
hypothetical or actual samples. As illustrated in the frontispiece, they are generally characterized 
by a high initial peak that is followed by a rapid descent in bar height, whether smooth or ragged. 
The descent becomes more gradual with ever higher abundances, there being ever fewer species at 
these abundances. The theoretical curves that represent these histograms have the same general 
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shape, although they are smoother looking. As for communities, the histograms and curves that 
are associated with them tend to have rather low initial peaks.

Many biologists find the high initial peaks that occur in most samples rather alarming, as if many 
species were about to go extinct. However, as the example above illustrates, samples of ever 
greater intensity, all taken from the same community, would show a trend toward ever lower 
initial peaks. In any case, from the point of view of logistic-J theory the initial peaks are far from 
“anomalous” (Coddington et al., 2009). They are entirely natural.  

The sections in this introductory chapter include a brief review of other proposals for abundance 
distributions, along with an explanation of goodness of fit tests and their use in both negative and 
positive mode. An introduction to the logistic-J distribution begins with the probability density 
function (pdf), an explanation of the two associated parameters and a derivation of a formula for 
the mean µ. The chapter ends with a brief history of my early work in this area, providing 
another doorway to understanding. 

1.2 The need for an appropriate theory

It is an unusual development in any science that a plethora of formulae should result from 
attempts to capture a natural phenomenon in mathematical terms. In the normal course of 
research any formula found wanting would be discarded and a new formula developed. Since the 
early 1940s about a dozen formulas for species abundances (in samples) have been proposed and 
none of them discarded. Here are the principal ones discussed by Magurran (1988). She also 
mentions another three proposals, for a total of seven

1. The geometric series (May 1975)
2. The log-series distribution (Fisher, Corbett & Williams 1943)
3. The lognormal distribution (Preston 1948),  (See Sections 3.6 and 3.6.1)
4. The broken stick model (MacArthur 1957)

Among the other proposals discussed by Magurran, special mention should be made of the 
dynamical model of Hughes (1986), the only proposal prior to the 1990s to be tested against an 
appropriately large number of samples from the field. Unfortunately, Hughes was never able to 
find a closed formula for the J-shaped curves that his data produced. 

It is difficult to characterize succinctly, without committing the sin of oversimplification, how 
ecologists interested in theory have worked in the past. However, it is fair to say that the various 
proposals just indicated have been compared with various sets of field data over the years with 
the aim of discovering which proposals fit the field data best. This seems like a perfectly logical 
procedure, but it contains a very dangerous pitfall in the form of an unstated (and apparently 
unrealized) assumption. From the point of view of statistical theory, the outcome of this method 
is (when one thinks about it) predictable, with each distribution fitting best with certain data sets 
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and not fitting others as well. For example, four of the proposals listed above are described by 
Magurran, in her research summary, as follows. Based on the rank-abundance representation of 
field data (see Section 4.2), the geometric series best fitted (apparently by visual inspection) 
plant data from a sub-alpine forest, the log-series and the lognormal best fitted a histogram of 
plant data from a deciduous forest, and the broken stick model best fit a survey of nesting birds 
in a deciduous forest. 

The methodology of comparing a handful of field histograms with various theoretical 
distributions has persisted into the new millennium. For example, Hubbell (2001) draws support 
for various manifestations of his zero-sum multinomial distribution from seven studies of various 
biotic groups, from trees to birds and, not surprisingly, finds a good (visual) fit within a milieu 
that contains previously proposed distributions implicitly. Connolly et al (2005) compared  four 
different distributions with survey data involving corals and fish in Pacific Ocean reefs, finding 
that some distributions fit the data from some reefs better than others, where other distributions 
did better. 

As more and more data sets are compared with the limited number of distribution proposals 
under active consideration, it is not surprising that each camp builds up followers, so to speak. A 
more recent summary of the situation provided by Diserud and Engen (2000) points out that “A 
large number of data sets from ecological communities correspond well to the model in which the 
abundances are lognormally distributed . . .”, later pointing out in the same breath that “. . 
.lognormal models may often provide a rather bad fit to observed data.” 

As if it were a tacit admission that something is wrong, there has been a long tradition in 
theoretical ecology of attempting to unify somehow the various distribution proposals into one. 
It is not difficult to find mathematical generalizations of the proposals mentioned above. But was 
it the unsatisfactory results of such unification projects that has spawned a cottage industry of 
attempts? Beginning with Sugihara (1980) and culminating with (Deserud and Engen 2000), then 
(Hubbell 2001), the unification process has served to keep alive the idea that each proposal has 
its niche, so to speak. More recently, a group of  18 authors (McGill, Etienne, et al. 2007) have 
proposed “moving beyond single prediction theories to integration within an ecological 
framework.” The article demonstrates clearly a continuing confusion about the roles of species 
abundance distributions in an ecological context. It makes little sense to “move beyond” the 
present situation until it is corrected. 

The manner in which these applications were determined illustrates an underlying weakness in 
the understanding of both the wide range of variation in the shapes of sample data and the 
reasons for that variation. The weakness has resulted in no little soul-searching, as when the  14-
author paper, Doak, Estes et al. (2008) declare that, in view of science being full of surprises, 
“. . . it is not so surprising, so to speak, that we frequently face outcomes of experiments and 
observations that leave us scratching our heads, wondering how we could have been so wrong in 
our expectations.” From the point of view advanced here, it isn’t surprising at all. 

4



Two main assumptions appear to support the traditional approach to the assessment of 
proposals. It isn’t clear from my reading of the literature that either assumption has ever been 
explicitly stated in some journal article, but most would agree that they would be necessary 
assumptions for the method just described to work:

a) the shape of the sample histogram, however its abundances are plotted, reflects in a 
    specific way the shape of the community.

b) the shape of a community histogram is stable in the sense that two samples that are 
     well separated in time or space will tend to reflect that (type of) community.

The first assumption is an article of faith with field biologists. If the samples they so 
painstakingly gathered in the wild turned out to have no such relation with the community, there 
could only be despair. In fact, the distribution underlying the sample will reflect the distribution 
underlying the community in a very direct manner. The underlying distributions are the same, on 
average, but for a change in parameter values. (Dewdney 2002) Thus, whatever one means by the 
(deliberately vague) word “reflect”, the first assumption is completely solid. 

A reasonable abstract description of any “community” can be framed in the context of the upper 
histogram in Figure 1.1. As I have pointed out, the histogram of a community would have a rather 
strung-out appearance, in comparison with the histogram of a sample of it. Over time, the various 
populations that make up the community will all fluctuate, some increasing, some decreasing, 
with occasional changes of direction, seemingly at random, among all of the populations. In terms 
of the histogram itself, one may visualize these fluctuations as a sort of vibration when the film is 
speeded up, so to speak. Species at the high abundance end vibrate at a higher frequently because 
their populations are much larger. At the low abundance end, in corresponding fashion, the 
species move in more sedate fashion, slowing rather quickly as they approach extirpation.
 
The reasons for the apparent randomness in the motion of these species are typically myriad. 
Suffice it to say that the overall shape of the histogram, however one described it, would also 
change. Would it change so much as to defy any attempt to describe it as “geometric”,”log-
series”, “lognormal”, or “broken stick”?  The answer is simple: It would change its overall shape 
enough, over time, to defy any proposal, including the centrepiece of this book, the logistic-J 
distribution. I cannot account for the reasoning behind Assumption b, but it may have something 
to do with the notion that large sample size guarantees statistical significance. In other words, the 
large size of the field samples that have been used to promote one distribution over another were 
themselves thought to guarantee that the overall results were somehow determinative, all of that 
at a guess. 

According to the first assumption, as a community distribution changes its shape over time, so 
would the samples taken of it. Studies that would attach significance to such changes (Magurran 
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2007) fall into essentially the same trap.  Changes in the shape of a community distribution will 
happen willy-nilly and the new variations of the J-curve, as revealed (or not) by the sample 
distribution have little actual significance. Logistic-J theory tells us that living communities in 
general have no particular shape beyond lying within the class of perturbations claimed by that 
theory as having, collectively, a logistic-J distribution. 

The sub-alpine community of forest plants that supported the geometric distribution today, may 
well betray it utterly 50 years later, favouring the log-series distribution instead, perhaps. With 
this view of natural communities in mind, none of the conclusions about proposed distributions 
reached by this method can be accepted as anything but coincidences. Made 30 years earlier on 
corresponding data, the order of the four distributions might well be scrambled. In view of this 
unfortunate methodology, one could substitute any four distributions one liked -- made up for 
the occasion -- then rewind the historical tape and watch very much the same papers appear, 
favouring one distribution or another or perhaps attempting to unify them!  To put the same 
point more precisely, it is certainly possible to submit all 125 datasets in the metastudy reported 
in Chapter 7 to a simple test. It would be a bit labour-intensive, but one could compare each of 
the datasets with each of the distributions that have appeared in the literature to date, including 
the logistic-J distribution as well. It is, after all, an elementary observation that every proposal 
will have some datasets fit that distribution better than any other. Some will have more than 
others, of course, and I think it likely that the logistic-J distribution would have the most. 

In the remainder of this chapter and in the chapter to come, I will argue that there can be only one 
universal statistical descriptor of abundances in natural communities. 

As for other problems with the method just described, one might also point out that none of the 
goodness-of-fit tests that are standard in other fields were ever employed in the assessment of 
these shapes in sample histograms. Indeed, a search of the relevant literature by a paid 
professional library researcher (Galsworthy 2004) turned up no occurrences of the phrase “Chi 
square” or “kolmogoroff-Smirnov”, these being names of the principle tests of this kind. Such 
tests take two histograms and compare them, producing a numerical measure of the degree of the 
similarity. In a field that yearns for quantitative treatments, why should anyone neglect a 
perfectly good numerical measure of similarity between theoretical and empirical histograms? The 
fact that such measures of similarity have not been used may explain why there is so little 
awareness among theorists of the enormous variation to be expected from a single source 
distribution. The chi square curve (See Figure 1.2) has a long tail to tell, so to speak, of the many 
field histograms that will fit very poorly without failing to arise from the distribution in question.

The effort to fit individual field histograms to specific theoretical distributions reminds one of the 
story of the child who was found one day with three buckets into which he was busily sorting 
pennies. The buckets were labeled “unlucky” “normal” and “lucky”. He would take a penny 
from a pile beside him and flip it 10 times, counting the number of heads, then placing the penny 
in the ”lucky” bucket if it came up heads more than seven times. If it came up heads fewer
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than four times, he would deposit it in the ”unlucky” bucket. The remainder ended up in the 
bucket labeled “normal”. The specific biotic source of a sample no more inheres in its field 
histogram than the element of luck inheres in a penny.  
 
Given the difficulties just described, it may be suspected that the field of theoretical ecology is in 
the grip of an unacknowledged crisis. The failure to appreciate the statistical behaviour of 
abundances in communities has become a nursery of untested proposals. The crisis is only made 
worse by the adoption by some ecologists of a social constructivist ethic, as enunciated by 
Hilborn and Mangel in The Ecological Detective (1997). In this milieu, “there is no correct 
model.”  Ironically, the statement was largely true up to the time of that book’s publication. The 
notion that all “models” are more or less acceptable is nevertheless unhelpful. Indeed, I have just 
reviewed a prime example, in which each “model” is seen as having a part to play in the 
description of natural communities. At this point, the quote from Sir Francis Bacon that begins 
this chapter comes into play. If, in a given field of inquiry, it is not possible to be in error, then it 
is not possible for that field to be a science.  After all, that’s exactly what the quote means. 

1.3. A positive test using multi-sample data

As normally applied, goodness-of-fit tests are used to reject hypotheses. As such, the rejection, 
when supported by the test, applies to each sample tested. Non-rejection of a particular fit does 
not amount to “acceptance”, as such, since the tests are not symmetrical in this respect. Non-
rejection, when based on a single sample or just a few, may be taken as evidence in favour of the 
null hypothesis, but as “evidence” it is weak and cannot be used, by itself, to establish anything. 
Since such tests are used here in affirmative rather than rejective mode, a great many samples, 
rather than just a few, are needed to establish the presence of an underlying distribution, in any 
case.  

This last point is important enough to expand upon so that the reasons for the multi-test 
requirement are made plain.  As normally used in curve-fitting applications, a test such as the chi 
square compiles the chi square statistic or “score” as follows. 

!2 score = !(ti - ei)2/ti

The index i ranges through abundance classes 1, 2, 3, etc., and the variables ti and ei represent the 
number of species having abundance i in the theoretical and empirical distributions, respectively.  
The greater the difference between the theoretical prediction  (ti) and the empirical datum (ei), the 
greater is the contribution to the statistic above. Thus higher chi square scores reflect a rather 
poor fit to the data, while lower scores represents better fits.  The same thing is true of the 
Kolmogoroff-Smirnov test. 

Used in the normal way (Hays & Winkler 1971) a goodness-of-fit test will determine the 
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likelihood that a given set of empirical data does not have a particular theoretical distribution. In 
such a case a chi square score, for example, can be used to reject the distribution if it exceeds a 
threshold or critical value, as given in a standard chi square table. (See Chapter 4.) In such a case, 
the null hypothesis (that the empirical data follow a particular theoretical distribution) is rejected.  
In normal parlance the hypothesis is said to be “accepted” if the score is at or below the 
appropriate critical value.  As already pointed out, such terminology does not actually mean that 
the data in question have the distribution under test. After all, there are infinitely many curves, 
each with a different mathematical formula, that would fit the data as well or better than the 
distribution under test. How, then, could a particular form be confirmed as the underlying 
distribution?  

Figure 1.2.  Distribution of chi square scores: bar height = number of scores

To use a goodness of fit test in confirmatory mode, one must have a great many datasets (say 
100) and one must perform a goodness-of-fit test on all of them, compiling the scores themselves 
into a new distribution that may be compared directly with the chi square distribution itself, as in 
Figure 1.2. The figure shows the chi square distribution (smooth curve) with 125 test scores 
superimposed upon it. The height of bar over a given numerical category represents the number 
of chi square scores that fell within the category. Thus four scores with values in the range (4.00, 
5.00] happened to fall in category 5. 

The theoretical chi square curve clearly indicates the expectation that some samples will have 
very poor (i.e., large) scores, while others have very good ones. Indeed the actual scores thus 
achieved fulfill this prediction, or nearly so. It  is a key observation of chi square theory that if 
the null hypothesis is true for a great many such scores, their average value will equal the number 
of degrees of freedom of the tests themselves. If all the tests were conducted at 10 degrees of 
freedom, for example, the average expected score would be 10.0 or very close to it. Since the chi 
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square envelope is based on 10 degrees of freedom, while the actual average score of 10.42  was 
somewhat greater than 10, the bars representing scores of the field data appear to be collectively 
shifted to the right. In any event, it is not possible for results to be shifted to the left by any 
significant amount, since this would violate Pearson’s theorem. The overall fits were optimal in 
this sense. If other proposed distributions have test scores that are far enough away from the 
optimal mean to be statistically separable from it, the logistic-J distribution is clearly preferable 
(Dewdney 2000).

The histogram in Figure 1.2 represents the actual scores obtained in the metastudy which forms 
the empirical foundation for the claim of universality for the logistic-J distribution. Among the 
other proposals, the distribution closest to the logistic-J distribution in general shape is the log-
series distribution. When put through the the same series of tests against empirical data, the log- 
series had a significantly higher score of 13.56, overall. It’s chi square “envelope” would overlap 
the one shown in Figure 1.2, but it would be displaced several categories to the right. Other 
distributions proposed for the role of species/abundance descriptors, particularly the lognormal 
distribution, resemble the logistic-J far less and one does not need to subject them to the same 
test since their scores would be far too high to be in the running. To do as well as the logistic-J 
distribution, a proposed alternative must resemble it very closely indeed. I will return to the 
metastudy in Chapter 7, providing all the detail necessary for its evaluation as a research method.

It is an interesting historical fact that the British biologist C. B. Williams thought that the 
“hollow curves” he was seeing in lepidopteran light-trap data collectively resembled hyperbolae.  
(Williams 1964). He appears to have been right. His statistical colleague, R. A. Fisher, talked 
Williams out of the hyperbola, declaring that it was unsuitable for use as a statistical distribution, 
since it had a nonfinite area under it. Fisher was also right, but the idea of a displaced hyperbola 
truncated by its axes obviously never occurred to him. Given that the subtleties of randomly 
fluctuating populations would not become apparent until computers were widely available, 
Fisher can hardly be blamed for this. (See next section.)  In any event, it was not Fisher who 
developed goodness-of-fit tests, but his arch-rival (statistically speaking), Carl Pearson. Fisher 
undoubtedly knew about goodness-of-fit tests, but seems to have avoided them for some reason. 
Ironically, in spite of Willams’ insight, it may have been here that the pattern of inappropriate 
testing in theoretical ecology first developed.  

The foregoing provides some background to the development of the logistic-J distribution that 
may be useful in clarifying its role in species-abundance studies. In the next section I will provide 
a mathematical description of the logistic-J distribution. In subsequent chapters I will show how 
to use the distribution in the field and to make reliable statistical inferences about communities 
from their samples. 

1.4.  The logistic-J distribution: probability density function

I would claim that the logistic-J distribution occurs universally in all natural communities (and in 
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all samples of them) in a collective sense. The J-prefix, as I explained earlier, indicates the 
ubiquitous shape of samples, while the word “logistic” indicates the presence of a finite limit to 
the abundances to be found in any particular community. This limit is implied by the equilibrium 
theorem. (See the next section.)

The logistic-J distribution is essentially the standard hyperbola, as shown in Figure 1.3, 
translated in the horizontal direction by the amount " (epsilon) and in the vertical direction by # 
(delta). If we use the variables x’ and y’ for the primary axis system, the formula for the 
hyperbola is

y’ = 1/x’

    
Figure 1.3. The hyperbola as the basis of the logistic-J distribution 

The variables x and y for the displaced system obey the following equalities,  

x = x’ - " 

y = y’ - #,

and the formula for the probability density function (pdf) becomes

f(x) = c(1/(x+") - #); 0 " x " $ - ",

10



       = 0; x # $ - " 

where $ = 1/# and c is a normalizing constant (a function of " and #) that gives the pdf an area of 
unity, as required by all probability density functions. This “density” represents the probability 
of finding a species with an abundance represented by an infinitesimal interval on the abundance 
axis. The constant c has the following formula:

c = (ln(($/") - 1 + "/$)-1

In most cases, one may neglect the term "/$, which tends to be very small.

Thus the logistic-J is a two-parameter distribution. The inverses of " and #, namely % and $, 
represent the species peak and the logistic limit, respectively. The first parameter E (when 
multiplied by Rc, the number of species and the constant c) bounds the number of species in the 
lowest abundance category, as well as all others. The second parameter $ bounds the abundance 
of the largest population. Both bounds operate in a statistical or average sense.

Early in the research program that resulted in this book, a second form of the logistic-J 
distribution called the “special” logistic-J was tested alongside the “general” logistic-J (an early 
name for the distribution treated above). It was identical to the general distribution, except for 
being defined only over the interval [", $], instead of [0, $]  (Dewdney 2000). It took the 
somewhat simpler form,

f(x) = c’(1/x - #),

with the variable x in place of (x+e) in the denominator of the fractional part of the pdf. The 
unitizing constant c’ is different from c, of course.  Although it resulted in much the same average 
scores as the more general function, it did not have the same flexibility as the general form when 
dealing with communities, rather than samples. 

In discussing particular logistic-J distributions, the notation LJ[", $] x R will be used to refer to 
the distribution with parameters " and $ and having R species (whether in a community or a 
sample).  In the context of data on hand -- samples of a community -- we can estimate the two 
parameters " and $ by finding a best fit for the data, as described in Section 4.3. The parameter 
values that emerge from the best fit will be defined as the values pertaining to the sample. The 
parameter $ can be estimated independently of this process by simply taking $ as the maximum 
abundance. However, the parameter " has a more indirect relationship with the other extreme 
point of the distribution, namely the number of species in the minimum abundance category. This 
relationship will be explored in the next chapter. 

1.5. Emergence of the logistic-J distribution
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The logistic-J distribution first emerged with certainty from a computer simulation written in the 
mid-1990s to simulate a mutually predatory community of protists. As a longtime sampler of 
local waters, I had plenty of microbial data on hand. As a longtime teacher of stochastic 
simulation and statistics, I had the tools and background necessary to the project. 

When it first occurred to me to write such a program, I had already been observing the J-curve in 
plots of my abundance data. I had expected something more like a normal curve, with a 
concentration of species about some mean abundance. Although I was well aware that no 
microbial community could possibly consist of mutually predatory species of, say, ciliates, it 
seemed at the time that if any such “community” could produce a unimodal, normal distribution 
of abundances, it would be this mutually predatory one. 

A simulation clock governed the flow of events in the system; at each tick of the clock two 
individual “organisms” would be selected from the total community population. Without having 
to represent the organisms at all, the simulation would simply ensure that the species of the first 
individual had its population incremented by 1 (the species-token moving, in consequence, one 
unit to the right along the abundance axis). Meanwhile the species of the second individual would 
have its population decremented, with its species shifting one position to the left. In such a 
system, the total number of individuals would be preserved by the “predation” operation. 

The original purpose of the simulation was to demonstrate that such a community would achieve 
a balance of populations, with all species fluctuating about the same mean population size. This 
did not happen. Indeed, a J-shaped curve emerged every time the simulation was run. Each 
simulation run would begin with a single spike, with all populations occupying the same 
abundance category. Over time, the spike would flatten into a skewed, bell-shaped curve which 
itself flattened out while species piled up at the low end of the abundance scale or fled randomly 
to the high end. In most of these mini-experiments, I kept the average abundance low in order to 
encourage a more definite shape. Accordingly, I kept the extirpation switch in the “off” position 
in order to allow the shape to build. 

During the equilibrium phase of the simulation, histograms with a low mean abundance bore a 
close similarity to the field samples that I had already begun to collect from biosurveys of other 
kinds of communities. Indeed, they were (visually at least) indistinguishable from them. Yet only 
a small fraction of the field histograms I had been examining involved predation of any kind. It 
took a considerable time to realize that the simulation was not about predation, with one 
organism dying while another reproduced in consequence. It was about the birth/death processes 
itself, in particular the equality of probabilities of births versus deaths. After all, there was no 
actual predation in the dynamical system. Whenever one species moved to the right, some other 
species would move to the left. It was a clear case of a specific model turning out to be rather 
general, after all.  

An initial result that appeared to confirm the presence of a hyperbolic function relied on the 
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analysis of a slightly more general system in which a random individual was selected from the set 
of all individuals and either duplicated or deleted, both events taking place with equal probability.  
(See Section 2.3 for the Equilibrium Theorem)

After a year of studying this system, I obtained a slightly more exact result: the equilibrium 
solution of the system was indeed a hyperbola, but translated downward by a small amount that 
I decided to call “delta.”  The formula was 

k(1/x - #), 

where k is a constant (Dewdney 1998a).  (See Chapter 6 for the Logistic Theorem.)  New 
simulation programs were written to explore the idea of equiprobable birth/death processes under 
varying conditions on the balance of probabilities governing them. The probability of birth, for 
example, could exceed that of death for a time, but it would eventually move in the other direction 
-- all at random. These more general versions of the dynamical system produced the same J-
shaped curves as the earlier system. Indeed, they were indistinguishable from the histograms of 
field surveys that I had already been to collecting. I could hardly be blamed for suspecting that 
the J-curve was a universal phenomenon. 

In the new simulations, each individual “organism” had an approximately equal probability of 
dying or reproducing at each moment. Populations fluctuated randomly but ultimately, a few 
became larger, while many became smaller. The result, as in the case of the predation system, was 
distinctly counterintuitive and illustrates the dangers of armchair theorizing. At equilibrium, 
which never failed to develop, the histogram would be frozen and compared with a hyperbola 
(visually). The fit was often rather good, taking into account normal statistical fluctuations.  Since 
the net effect of the births and deaths in this program was to preserve the total “biomass” of the 
system, the logistic limit could be applied and the same formula derived from the predation 
system applied here, as well. 

At this point a general mechanism suggested itself. Called the stochastic species hypothesis, it 
postulated equal probabilities of birth and death over small periods of time, with corresponding 
changes in population over longer periods. 

Following an intensive literature review of other species-abundance models (a disappointing 
experience), a massive study was launched. With the aid of graduate students in our Department 
of Biology, I began a random collection of biosurvey papers, ensuring that all the major classes of 
biota were covered as they went. Each of the resulting histograms was compared with a version 
of the logistic-J distribution that shared the same mean and height of initial peak; given values for 
these quantities, the values of the parameters " and $ are readily determined. (See Transfer 
Equations in Appendix A.1.) The resulting chi square scores were normalized to 10 degrees of 
freedom to make cross-comparisons possible. (See the scores histogram in Figure 1.1)  The 
average score that emerged from the study was 10.4, very close to the optimum score of 10.0 and 
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well separated from the average score that emerged from parallel tests of the distribution that 
most closely resembled the logistic-J curve. The log-series distribution mentioned in the previous 
section scored over 13. It was unnecessary to test other distributions, since they resembled the 
logistic-J distribution even less. Only something with a very similar shape could hope to score as 
well (Dewdney 2003). In short, there is no “room” for another distribution in view of the 
optimality of the scores. The results of this metastudy amounted to what can only be called 
“strong support” of the stochastic species hypothesis and therefore of  the logistic-J distribution 
that emerges from it as a universal natural phenomenon.  

1.6. Fluctuating populations

The stochastic species hypothesis (see section 6.1.1 for a full description) might seem, at first 
sight, to justify a great throwing up of the hands: if it’s all random, what’s the point of trying to 
tease out ecological mechanisms to account for population changes? The answer is simply that 
the stochastic species hypothesis provides a framework of understanding within which such 
studies may be pursued. Populations fluctuate for a huge variety of reasons, each with its own 
mechanism. The net effect of these mechanisms is effectively random, even though one 
mechanism may dominate during one period of time, another later. Weather is the ultimate 
determinant of many of these mechanisms and the weather itself is known to be subject to the 
grand mechanism of chaos (Gleick 1985) which itself produces events that are effectively 
random.  

Randomness in natural populations has long been suspected, but has faced an uphill struggle in 
the academic forum against mechanistic theories which can be classified into a continuum. The 
first view is that all species maintain more or less fixed populations (Marsh 1865), a common 
19th century understanding of nature. Amazingly, this view persisted to some degree throughout 
most of the 20th Century. For example, in a book on population genetics Wallace (1981) declares 
more than 100 years later, “The second thing we can say about populations is that, despite 
temporal fluctuations, in the long run they tend to remain constant in size.” 

This “common understanding” was replaced by the notion of predator-prey cycles, as predicted 
by the Lotke-Volterra equations (Leigh 1968). Backed by famous datasets such as the Hudson’s 
Bay trapping data, the theory gained wide acceptance and is still believed by many ecologists 
today, in spite of experimental evidence that such cycles don’t always develop, e.g. the Gause 
experiments (Gause 1934) as described in (Botkin 1990). However, a more modern view, that of 
“density regulated” populations, held that populations did, indeed, fluctuate randomly, but only 
within limits imposed by the density (relative abundance) of a species (Smith 1935). Despite the 
extensive literature on density-regulation that has developed since Smith’s time, this concept of 
population behavior is not universally accepted. Thanks in part to the popularity of chaotic 
population dynamics (May 1974) and in part to the failure of the population-regulation school to 
come to firm conclusions (Cappuccino and Price 1995), there would appear to be a growing 
suspicion that fluctuations in natural populations are indeed random, the same view pursued by 
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Hubbell (2001). An interesting example of accommodation between the two views addresses the 
concept of “density-vague” behaviour in which populations are bounded away only from extreme 
density and extirpation (Strong, 1986). Not surprisingly, the literature is sprinkled with negative 
results, as in the comparison of a great many populations with random walks that yielded very 
little difference. (den Boer, 1991). 

About the problems of coming to grips with population fluctuations , Botkin (1990) writes: 

“At the heart of the issues are ideas of stability, constancy, and balance, ideas intimately 
entwined in theories about nature. Perhaps one reason that the deficiencies of the theories 
were not examined or tested adequately by observation in the field -- out in nature -- was 
that ecologists were typically uncomfortable with theory and theoreticians. Doing science 
and creating theory were commonly distinguished as separate activities. Although theory 
was typically considered not to be necessary or important to the practicing ecologist, . . . 
theory played a dominant role in shaping the very character of inquiry and conclusions 
about populations and ecosystems (i.e., about nature). As Kenneth Watt wrote in 1962, 
ecologists had tended to believe that their science had lacked theory, while in fact it had 
‘too much’ theory -- in the sense that the theory had been utilized and was influential 
even though it was not carefully connected to observations.  ‘Field ecologists,’ those 
making measurements and observations in the forest and field, generally did not 
understand the mathematics of the logistic and of the Lotka-Volterra equations. But since 
physicists and mathematicians had the highest status among scientists, and since what 
physicists and mathematicians generally said was generally right, field ecologists tended 
to regard the logistic and the Lotka-Volterra equations as true. Lacking the 
understanding to analyse and thereby to criticize these equations, they accepted them on 
the basis of authority.”

The logistic-J distribution breaks this deadlock by implying that notions of stability are best 
applied at the community level and not at the level of individual populations. Species are 
constrained only at the high abundance end by logistic influences embedded in the myriad 
interactions among species within a community, between communities, and between species and 
the physical environment.

1.6.1 Perturbation theory

A key conceptual tool in the exploration of fluctuations in the populations of a community is the 
idea of a perturbation. The concept is implicit in the proof of Pearson’s theorem (MIT, 2006) 
that chi square test scores of random samples arising from a given source distribution must follow 
the chi square distribution. I have made it explicit here in order to play a role in the application of 
Pearson’s theorem

Let F by any finite, nonnegative, real-valued function defined over the integers 1, 2, 3, etc,. In this 
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context, the function F will be called the source distribution. Let V(k) be a real-valued random 
variable having a normal distribution with mean 0 and standard deviation &(k). Then the random 
variable F(k) + V(k) will be called a perturbation of the kth column. A perturbation of the function 
F will be the multivariate function consisting of perturbations of its values F(k). In practice, a 
perturbation of F will consists of specific values for V(k) selected by a random number generator, 
while the function F may be a theoretical distribution for a community or a sample. It may also 
be a histogram, whether real- or integer-valued, of a community or a sample. The standard 
deviations &(k) are defined on the basis of F(k), the variance being proportional to 

1 - k/N.

Perturbations enable one to give a specific meaning to variations within communities or samples 
of them. For example, I will claim as an hypothesis that the histograms of all natural communities 
(could we but know them) are perturbations of the logistic-J distribution in a collective sense, 
just as I shall claim that all samples of them are perturbations of the logistic-J distribution, albeit 
with different parameter values. A single random perturbation has no particular relevance or 
meaning in this context. In the case of multiple random perturbations of a particular source 
distribution F, however, a specific collective behaviour is expected: a goodness-of-fit test applied 
to the perturbations in question should have scores that reflect the test in relation to F. The 
scores for a chi square test should follow the chi square distribution optimally, with an average 
that supports the null hypothesis. This requirement will be made clearer in Chapter 7, where the 
metastudy mentioned in Section 1.3 above is explained in detail. 

This hypothesis can be applied directly to the notion of fluctuating populations described in the 
foregoing section. Over time, the histogram of an entire community might undergo slow changes, 
with some functional values F(k) increasing, others decreasing. Such changes would merely reflect 
the result of fluctuating populations, some increasing, others decreasing. Random motions along 
the abundance axis are reflected in random changes in the bar heights that represent the function 
F. When a species of abundance k adds or subtracts an individual, F(k) decreases by unity, for 
example. Multiple population changes would therefore induce multiple changes in the histogram. 
The hypothesis implies that at any given moment the histogram of a community will be the 
perturbation of the corresponding logistic-J distribution. Over time, such perturbations, whether 
they change quickly or slowly, will follow the logistic-J distribution, the shape being not a 
property of individual perturbations, but of their collectivity. The more such histograms could be 
observed, the more they would come to resemble the logistic-J distribution and no other. As 
already mentioned, that is the thesis supported by the metastudy.

When one samples a community, there are two sources of variation in the histogram of the field 
sample. The first source lies in the community itself, with its already-perturbed version of the 
logistic-L distribution present in the community histogram. The second source lies in the vagaries 
of the sampling process itself, with samples taken closely together in time showing what are 
typically the variations inherent in the sampling process. If the samples are taken far apart in 
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time, however, both sources of variation would come into play and the samples would tend to 
resemble each other less. Such a claim hardly needs any support, since no one has trouble 
believing that both sources of variation exist. In the context of what I call exact ecology, however, 
these sources must be taken explicitly into account. A sample, one might say, is the perturbation 
of a perturbation.

1.7 The value of a uniform methodology

In an age when the natural environment is under threat from habitat loss, pollution, and climate 
change, it is more important than ever that ecologists develop and employ uniform procedures for 
assessing the condition of all the canaries in the mine, so to speak. Unless results can be 
compared directly, confusion is likely to result.  

The lack of a universally accepted (theoretical) species abundance distribution hampers the field 
even more greatly. I have mentioned some of the principal proposals in this introduction, along 
with a few others. Attempts to “unify” these proposals, from Sugihara (1980) to Hubbell (2001) 
are not likely to be helpful since the presence of these distributions was never demonstrated in 
the first place and would be unlikely to pass a metatest, as described in Chapter 7.

A widely accepted, and well established distribution would be greatly preferable to the confusion 
of tongues that now characterizes the field. I would of course propose the logistic-J distribution 
for this role. However, should it turn out to be incorrect in the end, it can only be said that the 
replacement distribution will have to be mathematically very similar, if not a simple modification 
of it. In any event, to have the present proposal roundly rejected in a purely scientific manner 
would of course be a disappointment, but one balanced by the pleasure of seeing at least one 
theory so rejected!
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