
Chapter 3. Sampling in practice and in theory

A major focus of this book, the relationship between “samples” and “communities” in terms of 
their abundances, must now be put on a precise footing by defining both terms, the first in 
theory, the second in practice. In theory, a community C is simply a finite collection (set) of 
disjoint finite sets called species.  Each species consists of individuals, but these are not 
distinguished.

C = {S1, S2, ... Sn}

In practice, there are many ways to define a community, depending on the sometimes peculiar 
nature of the organisms being studied.  In most practical applications the following definition will 
serve:

In a field setting, a community is the set of all organisms that, at a particular point in time, inhabit 
a defined volume (or area) of the biosphere and belong to a particular “grouping” G of species.  
The time element is important as it enables us to visualize a living community as frozen in time, 
as though we could wander through that still landscape and sample to our heart’s content. In 
reality, of course, the community is dynamic and, to allow this possibility, we could speak of a 
community through time, a kind of three-dimensional movie, if one likes. In many instances, the 
field biologist, having sampled over a relatively short period of time, might think of the 
community that was sampled as a once-fixed entity that, since the sample was taken, has 
undergone some population fluctuations, as well as the addition or deletion of a species or two.  
It is then a slightly different community.  

The grouping G referred to in the previous paragraph is simply a very general conceptual slot 
into which we might insert a taxonomic criterion for membership, as in a community consisting of 
all species of macrofungi in the phylum Basidiomycota. Or we might use habitat and trophism, as 
in all species of near-shore stream invertebrate saprotophs.  In other words, although 
“community” is  often defined as a taxonomic group, other criteria are possible without having 
(so far) compromised the methods explained here or the theory behind those methods. I will not 
attempt a definition of species, since differing species concepts used in the biosurvey literature 
seem to make no difference to the appearance of the logistic-J distribution in the metastudy 
described in Chapter 1. The reader may deploy the concept that best suits. 

The connection between the theoretical and practical definitions just given is that a natural 
community, as defined operationally, automatically implies the set structure of the theoretical 
definition. The structure is largely invisible, of course, and only to be discerned, dimly enough, 
through samples taken of it.

If the sample is “random” enough, the biologist may be fairly confident that a species that is 
common in the sample is also common in the community. By the same token, a species that 

1



occurs just once in a sample will tend to belong to smaller populations in the community. In most 
cases many of the lowest-abundance species will not show up in a sample at all. The notion of 
randomness will be discussed in the next section   

An unbiased sample is one in which no population of the community is favoured by the 
sampling method. In other words, if a particular unbiased method tends to sample the ratio r of 
one species, it will tend to sample the ratio r of all the species. Thus if r = 0.1, the sampling 
method will pick up approximately 10 percent of the individuals in each species in the 
community (give or take the usual statistical fluctuations). But if the method consistently 
samples ten percent of one species and one percent of another, the method is biased toward the 
first species. Such samples will over-represent the first species or under-represent the second one 
-- or both.

All discussion of samples in this book assumes unbiased methods. Most biologists, particularly 
those who sample animal communities, tend to be sensitive to this issue and to take 
compensatory steps to eliminate bias from the sampling method. For example if one is sampling a 
community of butterflies, some species may be drawn preferentially to a particular species of 
plant. Sampling patches of such plants exclusively will cause the species in question to be over-
represented in the sample. Sweeping a large, defined area with the greatest variety of plant types 
will certainly help to eliminate that particular source of bias -- as long as the sweeping trails are 
randomly selected (and recorded for subsequent resampling, if necessary).    

The ratio r mentioned above is called the sampling intensity.  Broadly defined, a random 
(unbiased) sample of a community consisting of N individuals (all species) will have size rN.  Of 
course, in any one sample, there will be some variation -- statistical in nature -- in the tendency 
for a species of abundance Ni to show up rNi times in the sample.  But over a number of 
repeated samples, it will appear close to rNi times, on average. I am aware that some authors 
refer to the intensity of a sampling process in relative terms, as would be the case where the field 
biologist who took three samples in a particular area would be sampling more intensively than 
one who took only two, other things being equal. If necessary, one could call the version defined 
here the “absolute intensity”, but for the purposes of this book, I will let the present term stand.

Sampling intensity is a very important parameter in any sampling scheme. As will be shown in 
Chapter 5, no richness estimation technique can work reliably in the absence of knowledge about 
r.  If one doesn’t know the intensity of one’s sample, no method exists -- or can exist -- that will 
reliably and accurately predict the number of species in the community being studied. Indeed, the 
accuracy of any such method will depend critically on the accuracy of one’s estimate of r.  
Various methods for estimating r are described in Section 3.2.

Finally, statisticians distinguish two major types of sample. In the standard statistical model, 
balls are drawn at random from an urn - colored balls if one likes. If each ball thus withdrawn is 
replaced, the operation is called sampling with replacement. If not, it is called sampling without 
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replacement.  We will see that modern sampling techniques, as deployed over the five kingdoms 
of life (six, if one counts Archaea), come in both flavours. In the context of the richness 
estimation methods to be explored in Chapter 5, the distinction between sampling with and 
without replacement is relatively unimportant when sample intensity is small because the 
removal of individuals from the general population (in reality or in effect) hardly changes 
selection probabilities. The distinction becomes more important in Chapter 9 where the problem 
of accumulation curves is explored. The accumulation curve for sampling with replacement has a 
horizontal asymptote at “infinity”, the curve for sampling without replacement terminates 
abruptly with a nonzero (positive) slope. 

The remainder of this chapter is devoted to a variety of topics, including practical issues, such as 
estimating intensity and theoretical topics such as the general theory of sampling. 

3.1 The variety of sampling activity

It is interesting to classify the methods that biologists have developed to assess natural 
communities by way of samples. The methods speak to the ingenuity of field biologists in 
studying natural environments in a manner that is appropriate for each kind of organism.

The most common forms of sampling with replacement involve plants and some animals such as 
birds or fish. A botanist carrying out a survey of oldfield plants, for example, may lay out several 
quadrats at random and record every plant contained within each quadrat without picking any of 
them. (Not removing a plant at all is equivalent to sampling-with-replacement, although an 
occasional voucher sample may be taken.) A point-count of birds is carried out by the zoologist 
walking a specified distance, then stopping for a specified period of time and noting all birds 
calling or visible within a given distance. Of course, in this case, there is no actual collecting done, 
but the technique amounts to the same thing. The birds are still there when the biologist leaves 
the area. A somewhat better example is the method of sampling bats by catching them in a mist 
net when they are flying. A specimen can be extracted from the net, identified, recorded, and then 
released. There is always the problem of overcounting in these techniques, although with bats the 
problem can be solved by marking the animal with a temporary stigma before releasing it. Similar 
remarks apply to some forms of sampling fish. Most fish-trapping techniques, from seine nets to 
kick-samples, to minnow traps to drag nets can be deployed in this manner. Electrofishing, 
however, may kill or injure the fish brought to the surface (stunned) by powerful electric 
currents).  Small mammals such as moles, shrews, voles, (non-jumping) mice, and small mustelids 
may be captured in pitfall traps, again to be counted and released. In all the foregoing cases 
involving vertebrates, the group being sampled is usually well known and an expert field biologist 
can make an identification rapidly enough to release the animal before any harm is done.

Fungi occupy a special place in this summary of techniques because, at least with macrofungi, 
only the fruiting body is normally collected, leaving the organism with its mycelial network more 
or less intact. Microfungi are typically part of soil samples or samples of other substrates. They 
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may be identified through culturing methods or identified through DNA sequence analysis of 
substrate samples.
 
Sampling without replacement is most common in arthropod surveys. No other group of 
organisms has more collecting techniques applied to it and almost all involve sampling without 
replacement, “sacrificing” the animal, if you will. Arthropods may be captured in light traps, 
pitfall traps, malaise traps, Berlese funnels, emergence traps, aspiration bottles, pan traps, and 
by sweeping, fogging, hand-collecting, beating, observing, and so on. We note here that different 
collecting techniques carry a natural emphasis on different habitats. Night-flying insects may be 
drawn to a light trap, but insects that are not flying at the time will not appear there. Indeed, 
moths, for example, may be drawn preferentially to a light trap, some strongly, some only 
weakly. Such preferences undoubtedly introduce bias into the sample so taken. Ground 
(Staphylinid) beetles are natural victims for pan traps and pitfall traps but will not usually be 
collected by sweeping bushes with a net. 

With the smallest organisms, namely protists and bacteria, a sample of soil or water is collected 
and transported back to the laboratory for examination. If not killed by staining or other chemical 
treatments, the organisms may be flushed into the sink once they have been examined, but they 
are never “replaced” in situ.

When populations are large and samples are relatively small (as in the foregoing paragraph), it 
makes little difference to the final assessment whether the sample was taken with or without 
replacement. Removing five individuals from a population of 1000 at random has very little effect 
on the balance of probabilities for a subsequent observation.

3.2 Estimating sample intensity 

Readers will recall that the sample intensity r is simply the ratio of individuals in the sample to 
those in the community being sampled. In the case of plant surveys, r is easily estimated.  
Assuming that the field biologist has a defined polygon within which a survey will be taken, it is 
relatively easy to calculate r. For example, if the biologist records every plant in each of ten 
randomly placed one-metre square plots within the polygon, the intensity will be

r = 10/A,

where A is the area of the polygon in square metres. Mycologists collecting samples have 
roughly the same advantage as botanists when it comes to calculating r.  

In the animal kingdom, the sampling process is bedeviled by the tendency of subjects to wander 
off or fly away, to be counted more than once or not at all. However, even here some groups are 
easier than others. For example, a north temperate waste field in late July might present a sea of 
wildflowers such as goldenrod, aster, wild carrot, etc. with clumps or patches of species mixed 
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uniform-randomly throughout the field. The flowers are attended by several orders of insect, 
especially hymenoptera. The fact that bees, wasps, and ants are constantly moving from plant to 
plant may not matter, provided that the pattern of movement prevails over the whole field.  
Carrying out an intensive count within a number of randomly placed quadrats may give one a 
good estimate of the density d (individuals per square metre). This would lead to a reasonable 
estimate of the total size N of the hymenopteran meadow community and the intensity of the 
sample will be

r = n/N,

where n is the size of one’s sample. Variations on this technique may be applicable to other 
groups, the areal consideration being one component and the estimate of total population being 
the other. In general the technique calls for intensive sampling (census would be a better word) 
within a limited area or areas, then extrapolating the result to the area under study. A major 
conclusion of the work presented in this book is that one cannot hope to make accurate estimates 
of species richness in any sampling milieu without having a reasonably accurate estimate of r in 
hand.  (See The Isotropic Principle in Section 6.1.) The problem presented by varying sample 
intensities is also discussed in Section 9.4 in a chapter called Open Problems.

3.3 How samples have been used: calculating biodiversity

In the biosurvey literature one frequently finds authors who wish to go beyond the mere 
presentation of the abundance data they have so painfully gleaned from nature. They wish to say 
something meaningful about the sample, usually in terms of its ”biodiversity.” But to do so, they 
face a bewildering choice of “biodiversities” to choose from.
 
Although the term “biodiversity” has been much used in recent decades, it turns out to have no 
generally accepted definition. Instead, it has many. They illustrate once again the confusion that 
pervades theoretical ecology, as explained in Section 1.2.  Although these concepts of 
biodiversity are defined for sample data, they are frequently interpreted as descriptions of the 
communities from which the samples came. In the following we consider a community (or sample 
of it) with m species having abundances given by the integers a1, a2, a3, .  am.  Some of the 
following biodiversity measures (indices) use abundances in relative form p1, p2, p3, . . ., pm, 
where pi = ai/N, N being the total number of individuals in the community (or sample).  The 
maximum abundance max is defined as the largest integer in the set {p1, p2, p3, . . ., pm}

Simpson Index B1 = !pi2 (Simpson 1949)
Shannon Index B2 = - piln(pi) (Shannon 1949) 
Shannon-E* Index B3 = - B2/ln(max) (Pielou 1969)
Brillouin Index B4 = (ln(N!) - !ln(ai!))/N (Pielou  1969)
Margelef Index B5 = (R-1)/ln(N) (Clifford & Stephenson 1975)
Menhinick Index B6 = R/VN (Whittaker 1977)
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Berger-Parker Index B7 = max/N (Berger & Parker 1970)

There are still other measures of biodiversity, but they add nothing to the illustration. The first 
four indices use individual abundances, but the last three do not.  

I will now compute values for each index as applied to three different sample shapes, 
representing three distinct types of  “community.”  Figure 3.1 shows three histograms, each of 
which has 12 species and 36 individuals. The first histogram, albeit somewhat reduced for 
illustrative purposes, is typical of samples that commonly emerge from biosurveys. We will call 
it C1. The next two histograms are distinctly odd. In the univoltine distribution of Figure 3.1b all 
the species have the same abundance and in the extremal distribution of Figure 3.1c, one species 
has abundance 25, while the remainder all have populations of one individual each. 
 

Figure 3.1.a  A typical field histogram

Figure 3.1b A univoltine distribution
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           Figure 3.1c An extreme distribution

The table below displays the value taken on by each measure of biodiversity, for each of the 
three communities.

      
 2.000 2.000 2.000

 3.070 3.070 3.070

 0.694 0.083 0.222

 1.048 2.062 1.811

 3.697 29.81 1.443

 1.348 2.485 2.171

 0.493 0.084 0.116

  community:    C3   C2   C1

Menhinick

Margelef

Berger-Parker

Brillouin

Shannon E

Shannon

Simpson

       Table 2.1. Biodiversity indices versus three different communities: 
             bold numbers are maxima

Although community C1 is most typical, in overall shape, of real communities, none of the first 
five indices give it their highest biodiversity assessment. Instead both Shannon indices and the 
Brillouin index give the highest score to what can only be described as a distinctly pathological 
community, one where all species have the same abundance. Since these three indices regard such 
a shape as in some sense the ideal, their use has limited value. The Berger-Parker and Simpson 
indices award the palm to the extremal community, again indicating a lack of contact with data.
The remaining indices do not take individual abundances into account and so give the same score 
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to all three communities. Given that the intention behind the first five indices is to take not only 
the richness but the shape of a distribution into account, it must ba added that the project of 
developing a single numerical measure that embraces both aspects of a distribution is a losing 
proposition. It would be better to use at least two measures as a joint descriptor of 
“biodiversity.” Otherwise, let this term stand as a synonym for species richness. As though the 
failings and confusion created by so many indices were already apparent, most biologists already 
follow the latter practice.

Gaston (1966) has summarised the problem of defining “biodiversity” as follows: “However, the 
abstract concept of biodiversity as the ‘variety of life’, expressed across a range of hierarchical 
scales, cannot be encapsulated in a single variable. The complexity in this sense is irreducible, and 
the search for the all-embracing measure of biodiversity, however desirable it might seem, will be 
a fruitless one.” Gaston reminds us that “evenness” and “equability” were two of the goals of 
early biodiversity measures. Hurlburt (1971) has expressed similar views.

3.4 What is random?

In this section, I explore the concept of randomness with two applications in mind. The first 
concerns virtually all natural phenomena, including those that involve living organisms. The 
second aspect addresses randomness in samples. In order to conduct a successful sampling 
program, a field biologist must observe or collect individuals from the general (community) 
population “at random.” Statistical methods can only be applied to such samples.  

But what does the word “random” really mean? Most mathematical concepts are defined on the 
basis of the presence of certain properties. For example, a whole number is called even if it has 2 
as a divisor. If a 2 is present among the factors of a number, the number is called even. But a 
number is called random if it is obtained in the absence of any systematic procedure. Of course, 
no single integer can ever be “random” by itself.  Randomness is always defined in relation to a 
set of numbers, with an implicit, non-deterministic process of selecting individual numbers from 
the set -- over and over again, as necessary.

The only rigorous definition of randomness in relation to computers (and therefore deterministic 
processes generally) employs just such programs. According to the only widely accepted 
definition of randomness (Chaitin 2001), a sequence of length n is random if the minimum length 
of computer program that produces it increases as a function of n. In this definition, the sequence 
is potentially infinite. As (minimum-length) programs are found to generate longer and longer 
stretches of the sequence, it is found that the lengths of such programs grow in proportion to the 
lengths of the sequence. 

This definition has little practical value, as the implicit test (writing all possible computer 
programs that produce a given sequence, then selecting the simplest of these) is far too 
complicated even to contemplate. There is a simpler definition of ‘random’ which, although not 
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as general as the foregoing, has immediate practical application. The base set from which numbers 
are drawn in this context is the binary set, {0, 1}.

A procedure for selecting items from this set is effectively k-random if all sequences of length k 
have an equal probability of appearing in the (larger) sequence generated by the procedure. The 
following little observation tells us that effective randomness is a hierarchical property. The 
proof will be found in Appendix A.3: If a procedure is k-random, then it is also (k-1)-random, for 
k > 1. This little theorem paves the way for a full definition of effective randomness: A 
procedure is effectively random if it is effectively k-random for all values of k that apply.  

Any suitably long (truly) random sequence must be effectively random, but the converse is not 
true. However, the distinction makes little or no difference in practical applications.

In practice, the “random numbers” generated by a computer are produced by a deterministic 
program known as a pseudorandom generator, the sequences so produced being called 
pseudorandom. A traditional method of generating pseudorandom numbers is the linear 
congruential generator:

Xn+1 = (aXn + c) mod m

Starting with an initial or “seed” value X0 for X, the program simply reiterates this basic 
equation, using the output of one iteration as input for the next one.  The number m is called the 
modulus. Whatever the value that  (aXn + c) might have, it is divided by m and the remainder 
taken as Xn+1. The constants a and c are called the multiplier and the increment, respectively.

For example, if m = 8, X0 = 5, a = 3, c = 11, we have

Xn+1 = (3Xn + 11) mod 8

and the sequence produced will be 5, 3, 4, 7, 0, 3, 4, 7, 0, etc. Clearly, this sequence repeats itself 
very soon. With a much larger modulus, this problem is overcome. Linear congruential generators 
are not much used these days, but the pseudorandom number generators of choice are not much 
more complicated.  The random number generators in general use are effectively k-random for at 
least low values of k. They are presumably suitable for the experiments described in this 
monograph since they are suitable for commercial simulation (a multimillion dollar industry) as 
well as virtually all scientific simulation.

Whatever the status of (true) randomness in nature, effective randomness is very common, in the 
author’s opinion. The factors affecting the fall of a seed that ultimately germinates cannot be 
known or predicted, in general, and this amounts, in itself to a thumbnail definition of 
randomness. What brought the rabbit to forage on a particular patch of vegetation this evening, as 
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opposed to a dozen other equally good ones? Again, the factors affecting the rabbit’s decision are 
myriad and, for the most part, unknowable -- and unpredictable.  
.
One of the most influential sources of randomness in nature is the weather. Given that weather 
systems tend to be chaotic, weather parameters tend to vary unpredictably over time in any 
given area or region. Although weather systems appear to have a Lorenz attractor (Lorenz 1963) 
at their dynamical core, much simpler chaotic systems yield the same random effects. For 
example, one can even use the logistic map (May 1976, Verhulst 1938) to generate pseudo-
random numbers:

Xn+1 = !Xn(1 - Xn) (i)

The name “logistic map” requires an explanation. The word “map” (or “mapping”) refers to an 
alternate name used by mathematicians for a function. The word “logistic” has the same meaning 
as it does in the name of our distribution, the Logistic-J, both systems having a finite population 
limit. In a minimal version of the multispecies logistic (MSL) system, the same function drives 
the process: if two species A and B have populations n and N-n, respectively, where N is the  
total number of individuals in the system. The probability that the population of A will increase 
at the next iteration must be

p(A) = n(N - n)/N2,

since for each of the n ways of choosing an individual from A, there are (N - n) ways of choosing 
an individual from B. Replacing the notation n/N byX, one has,

p(A) = X(1 - X),

making the relationship clear. Unlike the MSL system, however, the logistic map leapfrogs over a 
myriad of incremental changes, whereas the MSL system fluctuates over a much finer time scale 
and with rather different results, in general. 

Verhulst and May both studied the logistic map as a potential source of insight into the 
behaviour of populations. Equation (i) governs the direction and extent of population changes 
over tme: If the the populations N1 and N2 of two organisms sum to a fixed number N (the 
logistic limit) the populations may be expressed as ratios X = N1/N and Y = N2/N. Equation (i) 
uses subscript to indicate successive values of the variable X and it uses as well the obvious 
relation, Y = (1 - X). 

In order for the equation to always produce values that lie in the interval [0, 1], we require that 

0 " ! " 4,
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since the function takes its maximum value, 0.25!, when X = 0.5. The parameter ! could be 
called the fecundity factor, as it strongly influences the rate at which either population may grow.  
At low values of ! the variable X quickly converges to a specific number and remains there. At 
higher values of !, the variable X alternates between two fixed numbers, then four, then eight, and 
so on, as ! is increased. The period-doubling behavior of the logistic map continues right up to a 
value of approximately 3.57 for !, where chaos sets in. The variable X bounces around inside the 
interval [0, 1] with no seeming rhyme or reason. This feature of the equation is responsible for its 
popularity as an early population model in Ecology. Its appeal lay in its seeming realism, at least 
yielding behavior that was just as unpredictable as that of real populations. 

A computer program that emulates the logistic map was used to generate 200 numbers in the 
interval [0. 1], of which a sample of  10 numbers are listed here by way of an example:

0.7681  0.6769  0.8310  0.5335  0.9457  0.1951  0.5966  0.9156  0.2971  0.7935 . . . 

The numbers were produced by the logistic system with the parameter ! set to 3.8. In order to 
illustrate the presence of effective randomness in such numbers in a binary setting, each number 
has been replaced by the parity (even or odd) of the sum of its digits: 1  1  0  0  0  1  1  0  1  1 . . .  

  13

  10

  13

  14

   11

   10

   01

   00

 frequency subsequence

     Table 3.2. frequencies of two-bit subsequences in the random sequence

Performing a spectral analysis of the resulting bits, the sequence produced 51 0-bits and 49 1-
bits, making it fairly 1-random, while the spectrum of consecutive pairs produced the frequencies 
shown in Table 2.2, again well within what might be expected from a 2-random source. Before 
going on to examine higher orders of effective randomness from such a source, the sequence of 
200 “chaotic” numbers would have to be doubled, then doubled again, as the analysis proceeded.
Most tests for randomness, from the poker test to the runs test, (Law and Kelton, 1999) are 
essentially specialized versions of the spectral test

3.5 Computer simulation of sampling

It is hard to see how anyone carrying out research in theoretical ecology, at least in the area of 
species abundance distributions, can expect to understand the sampling process without the 
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appropriate computational tools.  The most important such tool is obviously one that simulates 
the sampling process itself.  As a destroyer of hypotheses, it has no equal. The author has, on 
many occasions, seen a favorite hypothesis contradicted by simple computer experiments. Such 
experiences, as I have pointed out earlier, are the life blood of any genuine scientific enterprise. 

Although most field biologists will not be simulating the sampling process, they should 
understand the relationship between “real” sampling and simulated sampling. Ideally, they are the 
same, but in practice they may not be. The idealized sampling process described in this chapter is 
an exact match with standard statistics -- to within the powers of pseudorandom number 
generators. In the context of the analysis of natural communities the samples taken must be 
random enough to ensure that a meaningful sampling intensity figure can be calculated and 
applied. The tools described here are indispensable, however, for those who study sampling 
theory in an ecological context. 

Suppose we have in hand a distribution of N individuals from many species. This could be 
considered as a community, a portion thereof, or even a sample of a community. A random 
sample of N individuals completely ignores which species they may belong to. After the fact, one 
may construct a standard histogram, as described in the next chapter, and expect to see the 
community distribution reflected to some degree in the histogram.  

In what follows, all samples will be with replacement, i.e., not removing any of the items of the 
sample from the original population (community) of N individuals. In other words, some 
individuals may be sampled more than once, in effect, even as others are not sampled at all. This 
process is readily simulated by a computer program that uses a random number generator. 

In the context of simulated sampling, we will define a sample of intensity r as a random sample 
(with replacement) of rN individuals from the original population of N individuals.  In the case 
where r = 1, we will call the resulting sample a perturbation of the distribution. (but see Sections 
1.6.1 and 7.3.1 for more complete definitions.) A perturbation of a distribution may also be 
obtained by varying the entries in each abundance category according to the binomial distribution, 
a discrete version of the normal distribution.  

3.5.1 A sample simulation algorithm

To  simulate a direct sampling process is easy by computer.  It takes an abundance distribution 
as input, either theoretical in the form of an expression, or empirical in the form of a list or 
biodiversity array,

(a1, a2, a3, . . . aR),

where ai represents the abundance of the ith species and R is the number of species.  The 
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theoretical expression just mentioned can readily be converted into a biodiversity array, as used 
in the following algorithm. Random individuals are selected by generating a random number, then 
counting through all the species in the biodiversity array until that number is arrived at. Thus if 
the number 27 is chosen at random and the first five abundances in the array are

5, 9, 2, 8, 5, 5, 15,. . . ,

one would count through the array entries by adding up the abundances on the way. When the 
entry where the sum first equals or exceeds 27 is reached, the corresponding species is the one 
that individual #27 belongs to. Thus we have 

5+9+2+8+5 = 29, 

so the 27th individual belongs to the fifth species in the list. The algorithm that appears below 
uses two arrays, an array of species abundances that has the same structure as the biodiversity 
array and an array of species counts, both initialized to zero. 

1. Input biodiversity array, along with values for N and r.
2. Set all species counts to 0 in the abundance array.
3. Let n be the integer {rN}. (greatest integer not exceeding rN)
4. Repeat the following steps n times:

4.1. Choose a random number j from the interval [1, N].
4.2. Calculate the species s of j (as described above) in the biodiversity array.
4.3. Increment the count for species s in the abundance array.

5. For each species, 
5.1 Look up its abundance k as calculated in loop 4.

    5.2 Add 1 to the species count array at abundance k.
5. Print or display the array for use.

The sample simulation technique just described involves sampling with replacement. To convert 
it into a program that samples without replacement, one simply adds the additional sub-step,

4.4. decrement the count for that species in the biodiversity array
 
One may obtain a perturbation of a distribution in this manner by setting r = 1, as we have 
already seen. The algorithm just listed is the simplest possible. It may be adapted to any 
programming language one happens to be familiar with, but it is essential to follow the structure 
of calculations given here so as to ensure that individuals are sampled, and not species. 

3.6 The general theory of sampling

The most important thing to know about the sampling process from a theoretical point of view is 
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that it expresses what mathematicians call a transformation, in this case of a community 
distribution into an image set -- the sample. The transformation has the important property that 
it preserves abundance patterns in a special way. If the community abundances follow the 
distribution G, then so do the abundances within the sample, albeit with different parameter 
values. Strangely, there was no general sampling theorem in the literature before 2002 (Dewdney 
2002). If the theorem had been published earlier, say in the 1930s or 40s when it could have (and 
should) have been, much of the confusion resulting from multiple abundance distribution 
proposals could have been avoided. 

The Pielou transformation (named in honour of Elizabeth Pielou, an eco-theorist who used a 
similar tool) maps the abundances in a community with the distribution F into an 
“expected” sample  with distribution F’, where

 #

F’(k) = $(e-rx(rx)k/k!)F(x)dx, (ii)
             0

the integral being taken from 0 to #. The transformation is based on a statistically exact formula, 
the hypergeometric distribution, which involves a ratio of factorials that are somewhat 
cumbersome to work with mathematically or to program, for that matter.  

However, the hypergeometric distribution is very closely approximated by the Poisson 
distribution (Hays and Winkler 1971), as it appears in formula (ii). One could argue that “exact 
ecology” should not involve approximations, however reverting to the hypergeometric 
distribution is always possible and, if need be, one could determine the approximation error for 
specific cases. Thus exactitude, although slightly compromised, is always within reach. 

From a purely mathematical point of view (sampling theory aside for the moment), one may ask 
what form the function F’ has if we set F(x) = xn, the simplest form of polynomial, in the 
indefinite form of the integral:

F’(k) = $(e-rx(rx)k/k!)xndx,

         = r--n$(e-rx(rx)k+n/k!)dx,

         = r--n(k+n)!/k!$(e-rx(rx)k+n/(k+n)!)dx

Evaluated between its limits, the integral equals unity, leaving
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F’(k) = r--n(k+n)!/k!

If the expression (k+n)! is multiplied out, one obtains a new polynomial in k of degree n. For 
example, if F(x) = x2, we have   (k+2)(k+1)

F’(k) =    = r--2(k2 + 3k + 2)

In this particular case, one may describe the effect of the transformation as follows. The function 
x2 is an upward-opening parabola with its apex at the origin (0, 0), while F’(k) is an upward-
opening parabola with its apex at the point (- 1.5, - 0.25). Moreover, the factor r2, being less than 
unity, has the effect of reducing the height of the parabola. Summarizing the net effect, the Pielou 
transformation shifts the initial parabola 1.5 units to the left and flattens it in the process. 

The transformation of a general polynomial of degree m may be regarded as the transformation of 
a sum of terms xn, the result of which is a sum of polynomials of degree m. In turn, the sum of 
such polynomials of degree m is again a polynomial of degree m. The latter polynomial is a 
translated (horizontally) and a compressed (vertically) version of the former. Clearly, the Pielou 
transformation may operate on any continuous function, whether a distribution or not.

The general argument has two parts: The first part hinges on the recognition that the Pielou 
transform operates on distributions in which the objects drawn are individuals, rather than 
species. The function F must therefore have numbers of individuals in the ordinate position, 
unlike any distribution based on what I have called the “standard axis” in which abundances play 
this role. The simplest distribution to have this property is the rank abundance diagram. (See 
Section 4.3 for a fuller treatment.) This is simply a histogram in which the abscissa consists of 
integers 1, 2, 3, and so on, which denote the order of abundance. The height of the first column  is 
thus the number of individuals in the most abundant species. The height of the second column is 
the next lasrgest population, and so on.  

Each theoretical distribution G that is based on the standard axis may be inverted mathematically 
into an equivalent distribution F in which the roles of species and abundances are interchanged. 
The formula F may not have a convenient form but it will represent the initial distribution 
uniquely since inversion is a 1-1 operation. Moreover, if the starting function is smooth and 
continuous, the inverted form F will also have that property. Discrete functions like the log-
series are readily replaced with matching continuous counterparts. 

The sedond part of the argument proceeds by invoking the Weierstrass Uniform Approximation 
Theorem. (Hobson 1950) Any continuous function F can be approximated over its domain to an 
arbitrary precision by a polynomial expression, according to the Weierstrass uniform 
approximation theorem. One may therefore replace any distribution F(x) by a polynomial P(x) 
such that the inequality
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|F(x) - P(x)| < " 

holds over the domain of F for an arbitrarily small quantity ".  If we apply the Pielou 
transformation to the function P, we obtain a polynomial P’ that can be made (by choosing " 
small enough) to approximate F’ to any desired degree of precision, as the following inequality 
makes clear:

$(e-rx(rx)k/k!)|(F(x) - P(x)|dx  "  "$(e-rx(rx)k/k!)dx (iii)

           = ",

The integral on the right hand side of inequality (iii) is the area under the Poisson density 
function, namely unity. The degree of approximation of F(x) by P(x) is therefore inherited by 
F’(x) and P’(x). The inheritance of shape by P’(x) from P(x) therefore implies an inheritance by 
F’(x) from F(x). In the limit the approximation error is zero.

It now follows that for each value of k the following two integrals can be made arbitrarily close:

F’(k) = $(e-rx(rx)k/k!)F(x)dx and P’(k) = $(e-rx(rx)k/k!)P(x)dx

The functions F and F’ therefore have the same general form, differing only in the values of their 
(common) parameters.

Finally, when the two functions are inverted once again, the same statement may be made about 
G and G’.

The chief application of the sampling theorem to date has been to imply that the “veil line” 
proposed by Preston (1948) is incorrect; the lognormal distribution, as portrayed on our standard 
species/abundance axes, would be mapped into another lognormal distribution and not a truncated 
one. In this particular case, the use of the a logarithmic transformation of the abundance axis 
serves to keep the lognormal concept alive. Analysed on standard axes, I doubt that it would 
survive, so to speak, especially in view of the observation in the next section. How would the 
logistic-j distribution survive in the logarithmic milieu?

3.6.1 effect of a log transformation on the logistic-J distribution

It may be asked what happens if one subjects the theoretical form of the logistic-J distribution to 
a logarithmic transformation of the abundance axis, as used in connection with the lognormal 
distribution. (See Section 4.2) The answer came as a surprise to me. (Dewdney 1998) A 
truncated, unimodal curve emerges that in many cases will appear bell-shaped, albeit semingly 
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truncated on the left.. 

To put the answer on a solid footing, the principal tool will be the general integral of the logistic-J 
distribution over the arbitrary interval [a, b]: Here, R’ will represent the area under the curve 
which yields the number of species having abundances in this interval. 

  b

R’ = Rc$(1/(x+#) -$)
a

      = Rc(ln((b+#)/(c+#)) - $(b-a))

Values for the integral may be calculated for the subintervals [0, 1], [1, 3], [3, 7], and so on, 
according to the scheme of Preston, but this time applied to a continuous function. It would yield 
essentially the same result if I used a discrete version of the distribution; the integral is simply a 
lot less work, with only one calculation per octave. Figure 3.2 displays the result when the log 
transformation is applied to the distribution LJ[2.0, 20.0] x 50.

Figure 3.2. log transform applied to abundance axis of the logistic-J distribution

According to logistic-J theory, samples subjected to this treatment would resemble a perturbed 
version of the histogram of Figure 3.2. The species that go missing from a sample are “veiled” by 
a sigmoidal curve when viewed on standard axes (Dewdney 1998) and not by the veil “line” of 
Preston (1948). Researchers, such as Hubbell (2001), who use this representation run the risk of 
mistaking the logistic-J distribution for the lognormal. Indeed, Gaston (2005) has pointed out that 
the shape that results from logarithmic axis compression cannot be Gaussian (i.e., normal). The 
example in Figure 3.2 illustrates the dangers inherent in a representation that destroys 
information.   
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