
Chapter 4. Compiling and analysing field data

No experienced field biologist needs to be told what to do in compiling a list of species and 
abundances for a specific area. Yet the same biologist may be unaware of what biologists in quite 
different areas of biodiversity assessment may be doing. In fact, there is a general pattern or 
template that can be applied to all sampling activity of this kind. Laying out the template gives 
me the opportunity of linking the general activity with the specific requirements of the logistic-J 
distribution. 

When sampling in the field one invariably keeps records, whether the organisms being sampled 
are identified on the spot, through photographic records, DNA samples, or taken back to the lab.  
Normally the number of individuals within each species are counted. The raw counts may be 
used directly or converted to densities or percentages on an areal or volumetric basis. The 
logistic-J distribution is equally friendly to all forms of count or count surrogates.

In what follows I describe basic methodology for the arrangement and display of field data, as 
well as the two most widely used measures of fit for theoretical distributions versus field 
histograms. A method for estimating more accurately the true species overlap of two samples 
appears at the end of this chapter as an illustration of the potentially wider role to be played by 
the logistic-J distribution in the analysis of data.

4.1 Histograms and Distributions

A histogram is a compilation of data into categories for the purpose of revealing a shape or trend 
that might not be obvious from examining the data as a mere list of numbers. In the case of 
abundances appearing in a sample, the most natural categories are ranges of values into which the 
abundances may be sorted. Here, for example, is a set of abundances of Microlepidoptera taken 
in a light trap in The Netherlands in 2006 (Jansen 2008). The order of abundances is determined 
by the order of the respective species, taken in some canonical order, as in taxonomic synopses, 
or alphabetical order, or no particular order, the point being that the abundance counts (number of 
individuals per species) are usually not in order: 

1121, 6, 2, 2, 2, 10, 2, 8, 32, 31, 16, 21, 67, 9, 5, 103, 25, 1, 2, 1, 1, 1, 1, 13, 1, 2073, 
1, 20, 41, 1, 3, 5, 3, 7, 103, 2, 1, 136, 1, 1, 1, 1, 4, 2, 1, 11, 3, 7, 1, 4, 4, 30, 16, 8, 1 

Before constructing a histogram one must decide on categories, typically embracing a range of 
values. For present purposes, we will adopt the simplest, unitary categories such as 1, 2, 3, etc. 

There are several methods for compiling a histogram from data like these. The most direct is to 
count the species having abundances that fall into each category, as in Table 4.1 below:
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        Table 4.1. Tabulation of counts by number of species per abundance

The invariable result of such a compilation is that more and more categories with a zero entry 
appear as the abundance variable increases. At some point, best determined by the analyst, it 
becomes simpler and more economical to list the remaining abundances in increasing order. In the 
case at hand, one would then simply list the abundances not tabulated.

31, 32, 41, 67, 103, 103, 136, 1121, 2073
 
The foregoing table can be converted into a graphical histogram (bar chart form) by creating a 
column for each category. The height of the column will be proportional to the abundance entry 
for that category. Figure 4.1 shows such a histogram of this type derived from the data  just 
compiled numerically.

The two species sharing an abundance of 103 may strike some readers as improbable, as indeed it 
is. However such statistical coincidences are almost certain to occur in any reasonably large 
dataset. The probability of two species having the same abundance is close to 1 at abundance 1 
and falls off gradually for ever-higher abundances. 

This histogram in Figure 4.1 reveals the typical J-shape of field data, albeit with an unusually 
high unit category bar. In fact, although selected fortuitously and with no foreknowledge of how 
Jensen’s data might appear in histogram form, the result is relatively smooth. Often such histo-
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 incl. spp at:  2073 1121  136  103  103   67   41   32    31    30

Figure 4.1. Example of a field histogram for the data in Table 4.1

grams are more ragged than this, especially as one moves to higher abundances. There, one 
enncounters species gaps of wildly varying widths, accompanied by two (or more) species piled 
up at one abundance. Indeed, the Jansen data happens to have two species of abundance 103.

Much field data plots as a relatively shallow J-curve, with species gaps occurring even at low 
abundances. In such cases it may be desirable to group the data by twos or threes.  For example, 
the histogram of abundances shown in Figure 4,.2 represents numbers observed by Busby and 
Parmelee (1927) in their survey of herpetofauna in Kansas. It has the typically ragged shape of 
data in which fewer species, on average, inhabit the lower abundance categories.
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Figure 4.2. Field histogram of Herpetofauna

When the categories are changed by grouping, the shape implicit in the data is more clearly seen. 
Here we have grouped the abundances by fives. 

  

Figure 4.3. Histogram of Figure 3.2 after grouping operation [change numbers]

The remaining raggedness is normal, not only in unitary abundance categories but in grouped 
categories, as seen here. Often a field biologist will report abundance data in terms of densities of 
individuals per unit area. Densities are no different from whole number counts in being subject to 
compilation into categories. The logistic-J distribution, being continuous, works just as well with 
these data as with whole number counts.  In such a case, the abundance axis might well be labeled 
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with decimal numbers such as 0.1, 0.2, 0.3, etc.

4.2 Other Representations

In the previous sections of this chapter, indeed throughout this book, I have used what I call the 
standard axis suystem, with abundances playing the role of independent variable and numbers of 
species (richness within abundance categories) playing the role of dependent variable. This seems 
the natural place to point out that the standard axes are ideally suited to the logistic-J distribu-
tion, particularly in its dynamic aspects. Only in this axis system are population fluctuations so 
easily visualized as “vibrations” on the abundance axis. It is also ideally suited to the 
presentation of taxonomic abundance, as presented in Chapter Eight. There, we may substitute 
the abundances of genera, for example, for abundances of families, plotting the number of families 
per generic abundance, instead of the number of species per individual abundance. The spectrum 
of all such possibilities forms a seamless unity, with the standard axes appearing throughout.

4.2.1 Rank abundance 

The rank abundance diagram is obtained by placing observed abundances in monotonic 
decreasing order, taking their logarithms, then plotting the results in bar form.  For example, if one 
uses the abundance data from the first example of the foregoing section, take their logarithms (to 
the base e), place them in rank order and plot them, we obtain Figure 4.4.

      
Figure 4.4. Rank abundance diagram for the data of Figure 3.2
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Apart from the disadvantage of vertical scale compression, the rank abundance diagram is 
somewhat unwieldy mathematically speaking. The horizontal axis is not a metric axis, but an 
ordinal one, so metric operations such as grouping or scaling do not apply in any meaningful 
sense. Moreover, operations such as the insertion or deletion of a species, trivial to carry out in 
the standard abundance diagram, involve shifting all the species on the right hand side of the one 
deleted or inserted. In terms of the information stored in it, however, the rank abundance diagram 
is equivalent to the standard system -- which can be reconstructed by reversing the process. 

It might be asked at this pojnt if the logistic-J distribution can be cast in a similar form. The 
answer turns out to be “almost”. It happens that the logistic-J distribution in invertable, that is 
one ca exchange axes and the distribution has the same form. To invert the logistic-J pdf, one 
smply interchanges the variables x and y, along with their displacements:

x = c(1/(y+d) - e

The distribution function differs from the pdf in having the factor R included in the following 
manner: Instead or replacing x by y, replace it by y/R.  The replacement of y proceeds as before
In this inverted distribution, numbers of species label the horizontal axis and abundances label the 
vertical one, just as in rank abundance. 

F(y) = c(1/(y/R + d) - e

The distribution just described, however, ranks the abundances in a different way. The best 
interpretation I can give to the fingure requires the following definition: a k-tuplet is a set of k 
species that all have abundance k where k is the maximum such abundance over all k-tuplets. 
Under this interpretation, F(k) represents the average abundance of a k-tuplet. This notion 
specializes to the value k = 1 which happens to be the average maximum abundance, D or the 
appropriate modification of it. It strikes on e that for the time being, this distribution is hardly 
more than a curiousity

4.2.2 Logarithmic Abundance

The logarithmic abundance diagram does not contain the equivalent information to the standard 
axis system. In this scheme, abundance categories are grouped into “octaves,” the first octave 
consisting of the first or lowest abundance, the next octave consisting of the next two 
abundances, the octave following that one consisting of the next four abundances, and so on, with 
the kth octave consisting of the abundances 2k-1 to 2k-1. Plotted in this manner, the Jensen data 
appears in Figure 4.5. Normally such data has the appearance of a truncated hump without an 
initial spike, as here. I have labeled each category with the highest abundance in its group. If I 
used a base higher than 2, the hump may well appear. 
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Figure 4.5. Histogram of data in Figure 4.2 grouped by “octaves”

Although the logarithmic abundance system has undoubted advantages in the inclusion of very 
large numbers, it pays a heavy price in information loss. This system is not equivalent to either 
the standard system or the rank abundance diagram. Information is normally measured in binary 
digits or bits, but decimal digits may be used to carry the point in the present instance. If one 
simply counts up the digits in the biodiversity vector of the first example, one obtains a total of 
78 digits. But if one counts the total number of digits required to specify the logarithmic form of 
these data, one gets 15 digits. In this case, logarithmic grouping has destroyed about 81 percent of 
the information in the data. 

The supposed charm of the lognormal distribution arises from the bell-shaped curve, usually 
truncated on the left, that emerges when species abundance data is plotted by octaves. Sometimes 
(as above) the shape does not emerge with any great clarity. As I explained at the end of the 
previous chapter, however, if one subjects the log-series distribution to a logarithmic 
transformation, a truncated unimodal curve emerges. (Dewdney 1998). Moreover the bell-shaped 
curves that appear under these circumstances are completely indistinguishable, at least by visual 
inspection, from those that arise from the lognormal distribution. In other words, the appearance 
of a bell-shaped curve in this context does not permit one to conclude that the data subjected to 
the transformation have the lognormal distribution.   

Apart from the slight advantage of being able to represent higher abundances using either the log-
transformed representation or the rank abundance diagram, there is no particular advantage in 
using either distribution. All field data and theoretical curves are well represented by the standard 
axis system. Indeed, it has the additional advantage of being the conceptual theatre in which we 
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may visualize stochastic vibrations directly.

4.3. Estimating parameters of the logistic-J distribution

When the field biologist has taken one or more samples of the community under study, the first 
step in analysing the data is to plot the species abundance histogram as described in the previous 
section.  The next step, although not necessary for all purposes, is to find the best fit of the 
logistic-J distribution to the data as plotted.  
 
To find the best fit of field data to the logistic-J distribution, the easiest measure to use is the chi 
square goodness-of-fit test. For an exact best fit, there is no alternative to testing more than one 
combination of values for the parameters ! and ". A method for finding an optimum fit to the 
logistic-J is outlined in the next section. A reasonably good (suboptimal) fit may be obtained 
indirectly from the mean abundance µ and the height Fa of the minimum abundance peak in the 
field data. The height is the number of species in the minimum abundance category a, whether an 
integer or a fractional number, as explained in the previous chapter. Transfer equations 
(Appendix A.2), taking µ and Fa as input, may then be solved to yield ! and " as output. One 
may then plot the fit developed by either method and compare it directly to the field histogram.

The transfer equations may be solved by a variation of Newton’s method in which successive 
estimates for the two parameters converge to an exact solution. Although it is always possible to 
solve the equations by hand (with a calculator), a computer program is preferred. (See “Solveit” 
in Appendix A.10). Biologists who find this prospect daunting for whatever reason are invited to 
send their data to the author who can find optimal fits rather quickly. Later, by visiting the 
author’s website, they will find online software that does this.

4.3.1 The chi square test

When abundance data are compiled into a standard histogram it becomes possible to compare the 
resulting shape with various theoretical proposals, including the logistic-J distribution. However, 
comparisons based on visual similarities can be misleading and somewhat dangerous. Not just 
some but all of the abundance models developed prior to 1999 were “established” by this 
method, which may explain why there are so many.  

An objective method of comparison is entirely quantitative and does not depend on subjective 
judgments. Carl Pearson, who developed the chi square goodness-of-fit test, used a special 
statistic to measure the difference between an actual abundance ai and a corresponding theoretical 
abundance ti :

d(ai, ti) = (ai - ti)2/ti
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The sum of such differences is called the chi square test statistic and is compared with numbers in 
a chi square table to determine to what degree the empirical data matches the theoretical 
prediction. Each component in such a sum is considered as one “degree of freedom,” meaning that 
it contributes freely and independently to the overall sum. However, each parameter of the 
theoretical distribution under test amounts to a restriction on how freely the terms may vary.  
Pearson therefore subtracted the number of such parameters from the number of terms in the 
sum, yielding the degrees of freedom in the test being carried out. The logistic-J distribution has 
two parameters, ! and ", so that a test involving 12 abundance categories, for example, would 
have ten degrees of freedom.  
 
In computing a chi square test, there is a requirement that when theoretical frequencies fall below 
5.0, the corresponding consecutive abundance categories must be grouped so that their sum is ! 
5. For example, if the expected abundances at 31 and 32 are 4.22 and 3.90, respectively, while the 
empirical abundances are 3 and 4, respectively, the corresponding term in the chi square statistic 
would be:

(7 - 8.12)2 / 8.12,

where 7 = 3 + 4 and 8.12 = 4.22 + 3.90. Further out in the abundance axis, the last empirical 
abundance category with a nonzero entry may well exceed ". Whether or not this happens, the 
last (grouped) category will use the sum of all remaining theoretical values to be compared with 
the sum of all remaining empirical values.  

Figure 4.6.  The chi square distribution with five degrees of freedom

Under the null hypothesis, that the data observed actually arise from or follow the theoretical 
distribution in question, Pearson showed that chi square test scores must themselves have a 
certain distribution, which he called the chi square distribution, as shown in Figure 4.6. In other 
words, if one carried out 100 chi square goodness-of-fit tests (with five degrees of freedom) on 
data which one knew beforehand originated with the same logistic-J distribution, one would find 
that the test scores, when compiled into a histogram, would effectively match this outline. As 
one can see from Figure 4.6, there will always be “outliers,” instances of the distribution that fit 
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rather poorly and so give rise to a high score, possibly off the page in Figure 4.6. Such samples 
may even match another version of the theoretical distribution under test much better, yet they 
originated in the distribution at hand. 

As normally applied, the chi square test invokes a null hypothesis that the empirical data arise 
from the theoretical curve being matched to it. The resulting score is compared to a table of 
critical values, numbers that mark the boundaries between acceptance and rejection of the null 
hypothesis at various levels of significance. 

   
 15.51

 0.050

 13.36

 0.100
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 0.250

 7.344

 0.500

 5.071

 0.750

 3.489
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 8 df

  q 

Table 4.2.  Critical values for the chi square distribution

Suppose that a chi square test is carried out at 8 degrees of freedom on two different sets of 
empirical data, with resulting scores of 6.732 and 2.451 when compared to a particular theoretical 
distribution. Table 4.2 contains the critical values for eight degrees of freedom (Pearson & 
Hartley 1972).

The upper row contains a set of q-values. If a score exceeds a particular critical value, then the fit 
is rejected, with the corresponding probability q of being right. Thus the score 6.732, which is 
greater than 5.071, involves a rejection of the null hypothesis with a probability Q of 0.750 of 
being right. On the other hand, the null hypothesis would be “accepted” at the critical value of 
7.344, but here the probability of a correct rejection drops to 0.500. In this instance “acceptance” 
simply means non-rejection. It does not mean that the data under test actually originated with the 
theoretical distribution at hand.  

In normal use, the test statistic is compared with the critical value at the Q = 0.950 (95%) level of 
rejection;  one wants a fairly high probability of being right in rejecting an hypothesis. At this 
level, the score of 6.732 is greater than the critical value of 2.733 that corresponds to the 95% 
level and the null hypothesis is rejected, with a probability of 0.95 of being correct. However, the 
other test score of 2.451, being less than 2.733, is “accepted.” 

An important feature of the chi square test (and, indeed, most goodness-of-fit tests) is that it 
applies to any theoretical distribution whatever. It applies, of course, to the logistic-J 
distribution as well.

In Section 7.3.1 I shall be more specific in describing the relationship between the theoretical 
distribution and the histograms being matched to it. Under the null hypothesis one can be more 
specific about this relationship than saying that the data “arise from” or “follow” the 
distribution. In Section 7.3.1, I will describe the histograms as perturbations of the theoretical 
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distribution (called the source), obtained by varying the theoretical column heights in a specific 
random manner, the result closely resembling a sample of the theoretical distribution at intensity 
r = 1.0.

4.3.2 Finding an optimum chi square fit
 
Sometimes a chi square test is applied simply, as in the case when the parameters of a theoretical 
distribution are known (or estimated) beforehand. But sometimes one must apply the test many 
times (to the same field histogram) when the parameter values are unknown. In the latter case, 
different combinations of values must be tried to see which combination yields the lowest chi 
square score. If there is only one parameter in the theoretical distribution under test, finding an 
optimum setting of parameter values generally takes relatively few trials because the optimum 
setting is usually unique and amounts to a “valley” or low spot in the distribution of scores as a 
function of parameter value. One simply varies the parameter continuously in the direction of 
lower scores until no further improvement is possible.  

The same technique can be used to find optimum fits for a two-parameter distribution such as the 
logistic-J distribution. However, in both cases, there is a small caveat that must be inserted; the 
score values of the chi square test are not always continuous functions of the parameter values, 
owing to the “rule of five,” as described in the foregoing section. As parameter values change in 
the direction of decreasing scores, the chi square value can jump suddenly when the software 
regroups the categories, causing a discontinuity in score values. However, it can happen that by 
skipping over the discontinuity, lower scores are achieved once again. But such pockets (local 
minima) can occasionally bedevil the optimization process. The only surefire method of finding 
an optimal score is to scan across all possible combinations of parameter values.

example:  Study # 25  Estuarine Fish in Costa Rica (Winemiller & Mitchell 1992)

In this example, the search for an optimum fit began with the (more or less arbitrary) starting 
values of ! = 1.0 and " = 700. Table 4.3 records progress toward the optimum fit via a score 
function that was calculated by dividing the chi square score by the number of degrees of 
freedom. Because different parameter values may produce different numbers of categories and, 
consequently, different degrees of freedom, one may divide the chi square score by the degrees of 
freedom to obtain a score that enables one to compare outcomes for fits that involve differing 
degrees of freedom, especially in the critical neighbourhood of 1.0. Table 4.3 lists these scores, 
allowing the reader to keep track of progress.
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 19.155/18

 1.067  675   0.85

 1.067  670   0.85

 1.103  680   0.84

 1.100  680   0.83

 1.063  680   0.85

 1.073  680   0.87

 1.079  680   0.89

 1.080  690   0.89

 1.090  690   0.91

 1.099  690   0.93

 1.109  690   0.95

 1.110  700   0.95

 1.115  700   0.96

 1.208

 1.292

  700   0.98

  700   1.02

 1.213  700   1.00

  16

  15

  14

  13

  12

  11

  10

   9

   8

   7

   6

   5

   4

   3

   2

   1

 Chi square Score Delta Epsilon Iteration

Table 4.3 Progress toward a minimum chi square score

As the first row of Table 4.3 indicates, the fitting process produced an initial score of 1.213.  
Increasing ! to from 1.00 to 1.02 produced a higher score of 1.292, so obviously one wanted to 
decrease !, instead of increasing it. Thus a value of 0.98 resulted in a score of 1.208 and 
subsequent reductions in the value of ! down to 0.85, where the chi square score was 19.155 at 
18 degrees of freedom. The fit is a little higher than average, as best fits go. In the last four steps I 
checked optimality by bracketing the optimal score by higher adjacent ones. 

The optimization process runs more smoothly if one alternates between parameters in adjusting 
their values up and down. It turned out that a decrease in the value of " by 10 (row 6) produced a 
(slightly) lower score, en passant. The small size of the improvement told us that changes in " 
were having little effect on the score, so I returned to !, with three more decrements taking the 
score down to 1.080, where another decrease in " to 680 again had only a slight effect. 
Decrementing ! three more times ended with a slight increase in the score, so ! was incremented 
back to 0.85 and " decreased once more.  Further changes in either parameter resulted in no 
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improvement over the score already achieved (line 12), so the values of ! and " at line 12 were 
taken as the ones producing a minimum score. Since the response surface is basically bowl-
shaped, with the minimum score at the bottom of the bowl, the region in the neighbourhood of 
the minimum is nearly flat and small changes in either parameter result in little noticeable 
improvement.

4.4 The Kolmogoroff-Smirnov (K-S) test

The Kolmogoroff-Smirnov test (Hays & Winkler 1971) is somewhat simpler than the chi square 
test, as it does not employ sums of differences. It helps one determine if two sets of data follow 
the same distribution. Normally the datasets are both derived from the field, but the K-S test may 
be adapted to curve-fitting, if one of the “datasets” is in fact derived from a theoretical 
distribution with particular parameter values.  

If the two distributions have n categories, one first calculates the corresponding cumulative 
distributions by adding up, for each value of k, all the entries in the respective distributions up to 
k. We will denote the respective cumulative values by F(k) (the empirical data) and G(k) (the 
corresponding theoretical values) respectively.  The K-S statistic has a simple formula:

D = max {|F(k) - G(k)|; k = 1, 2, . . n}

In words, D is simply the maximum absolute difference that occurs over the entire range of 
abundance categories.  

Used in hypothesis testing mode, the results of a K-S test may be compared to a table of critical 
values, as was the case with the chi square test. If the test score exceeds the critical value for a 
confidence level of 95%, the hypothesis that the two sets of values arise from the same 
distribution is rejected.  When rejected at this level, one interprets the outcome as follows: “The 
two sets of data fail to follow the same distribution, with a 5% probability of being wrong.

In a Kolmogoroff-Smirnov table, there is a critical value for each possible size of sample; the 
larger the sample, the larger the critical value must be. “Acceptance” of the hypothesis has the 
same interpretation for the Kolmogoroff-Smirnov test as it does for the chi square test; 
acceptance does not actually imply that the hypothesis is true, as there may be many theoretical 
candidates that would produce better fits. To confirm the presence of a particular underlying 
distribution, one needs many (say 50) sets of data, testing each in turn and compiling the results.

We will return to the K-S test in Chapter 8, where it is applied to what might be called “fossil J-
curves,” namely taxonomic abundance distributions, where one replaces counts of individuals in 
the present theory by counts of a lower taxon, as distributed across a higher one. For example, in 
a given geographic region (possibly the entire planet) there might be 21 genera with only one 
species, 14 with two species, 5 genera with 3 species, and so on. In other words, in this extension 
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of the theory, the lower taxon plays the role of individuals, while the higher taxon plays the role 
of species.
 
4.5 Application example: sample overlap and similarity

The determination of sample overlap has its uses in field studies of richness, as in the studies 
cited below. It is statistically impossible to provide an unbiased estimate of overlap without 
knowing the underlying distribution of species over abundances.
 
Given two samples of the same community, how many species appear in both samples?  For 
example, in his classic study of the Savannah River, J. Cairns Jr. (1969) used sample overlap to 
determine the similarity of communities. While the degree of overlap between two unbiased 
samples must, in a statistical sense, reflect the degree of similarity between the respective 
communities, the degree of similarity does not have a straightforward interpretation. It turns out 
that two identical  communities will typically produce overlaps in the 70 - 80 percent range with 
typical sample sizes. Thus an overlap of 75 percent, far from indicating a 3/4 overlap, may 
indicate a near-identity between the respective communities.  

The similarity index, as derived in the analysis below, was used by the author (Dewdney 2010) 
in a study of benthic microbiota in a slow-moving river. The index is based on the empirical shape 
of the species/abundance distribution in the samples themselves and could therefore be called 
“parameter-free.” The combined samples described in the next paragraph could be replaced by a 
best-fit logistic-J distribution with some hope of performing even better, but the difference 
between the two approaches has yet to be tested. In any event, the distribution obtained from 
the combined samples had the logistic-J shape and it’s not clear that the results would be much 
different.

Suppose one takes two samples S1 and S2 of sizes N1 and N2 (number of individual organisms) 
from a community and suppose that the ith species appears ai times in the combined samples.  
The ratio ai/(N1+N2) then yields an unbiased estimate, pi, of the relative abundance of the ith 
species in the community. This represents an estimate of the probability that an individual of the 
ith species will appear if one draws a single organism from the area sampled.  

It follows that the probability of this species not appearing in such a drawing must be qi = (1-pi).  
Therefore the probability of this species not appearing in a sample of size N1 is qiN1 and the 
complementary probability, 

1- qiN1,

represents the probability that the species will appear at least once in a sample of size N1.  
Consequently, the probability of the ith species appearing at least once in another sample, this 
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one of size N2, is

1- qiN2,

and the probability of the ith species showing up in both samples is simply the product of the 
two expressions:

       (1- qiN2)(1- qiN1)  

The expected overlap of the community with itself would then be given by the formula  

E(S1, S2) = "(1- qiN2)(1- qiN1), (i)

where the summation is taken over the union of species in the two samples. Naturally, since the 
samples are taken from the same community, one would expect the numerical value of formula (i) 
to be close to the actual overlap. 

The same formula may now be applied to the case where the samples S1 and S2 are drawn from 
different communities, C1 and C2, respectively. In this case, the value of E will reflect what the 
overlap would be if the two communities were the same. In reality, to the extent that the 
communities are different, the observed overlap will fall below the expected figure, E. Thus the 
ratio of observed overlap to expected overlap gives a reasonable measure of the degree of real 
overlap of the communities themselves. Although one is tempted to call the resulting measure the 
“community overlap,” something like that is meant by the term “community similarity” or, more 
simply, the “similarity index.”

We define the similarity index for two samples, S1 and S2, by the formula,

SI(S1, S2) = O(S1, S2)/E(S1, S2),

where O(S1, S2) represents the observed overlap between S1 and S2, namely the number of 
species they have in common. This index represents essentially the true overlap normalized by 
the expected overlap to give a meaningful, full-scale (0 to 100, when expressed as a percentage) 
estimate of the degree of overlap of the respective communities.  

In the study just cited, the following overlaps between samples drawn from different sites were 
observed. The sites were labeled with a T (transect) code number, as shown in the following 
tables. Table 4.4 shows the raw overlap figures, the number of species in common between the 
pairs of samples indicated by the table entry position.  
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 Counts

    50

    28    27

    19    23    18

    21    25    19    17

    33    37    28    22    26

    T7A

    T6B

    T6A

    T5

    T4

    T7B    T7A    T6B    T6A    T5

           Table 4.4. raw overlap counts between samples

Note that in Table 4.5 the expected numbers of common species are generally higher than the raw 
overlaps shown in Table 4.4, owing to the fact that the communities are different.

       

 Expected

   57.6

   50.3   47.6

   47.6   44.4   29.1

   41.0   38.9   26.3   24.3

   58.9   56.0   38.8   35.9   29.9

    T7A

    T6B

    T6A

    T5

    T4

    T7B    T7A    T6B    T6A    T5

Table 4.5. expected numbers of  species in common

       

    %

   65.8

   55.7   56.7

   39.9   51.8   61.9

   51.2   64.3   72.2   70.0

   56.0   67.9   72.2   61.3   87.0

    T7A

    T6B

    T6A

    T5

    T4

    T7B    T7A    T6B    T6A    T5

Table 4.6. similarity indices for all pairs of samples

In Table 4.6 the similarity indices range from 39.9 to 87.0. It is permissible to interpret these as 
percentages, as in claiming that T4 and T5 are 87.0 % similar. It is consistent with the
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high degree of similarity between T4 and T5 that the similarity between either sample and the 
remaining ones should be relatively close together.  

The similarity index technique was not only applied to different communities at the same time, 
but the same community at different times, yielding a measure of change in the community over 
the period in question.  
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