
Active Learning with Generalized Queries

Jun Du

Department of Computer Science
The University of Western Ontario

London, ON, Canada
jdu42@csd.uwo.ca

Charles X. Ling

Department of Computer Science
The University of Western Ontario

London, ON, Canada
cling@csd.uwo.ca

Abstract—Active learning can actively select or construct
examples to label to reduce the number of labeled examples
needed for building accurate classifiers. However, previous
works of active learning can only ask specific queries. For
example, to predict osteoarthritis from a patient dataset with
30 attributes, specific queries always contain values of all these
30 attributes, many of which may be irrelevant. A more natural
way is to ask “generalized queries” with don’t-care attributes,
such as “are people over 50 with knee pain likely to have
osteoarthritis?” (with only two attributes: age and type of pain).
We assume that the oracle (and human experts) can readily
answer those generalized queries by returning probabilistic
labels. The power of such generalized queries is that one
generalized query may be equivalent to many specific ones.
However, overly general queries may receive highly uncertain
labels from the oracle, and this makes learning difficult. In this
paper, we propose a novel active learning algorithm that asks
generalized queries. We demonstrate experimentally that our
new method asks significantly fewer queries compared with the
previous works of active learning. Our method can be readily
deployed in real-world tasks where obtaining labeled examples
is costly.

Keywords-active learning, generalized queries, supervised
learning.

I. INTRODUCTION

Active learning may hold the key for solving the data

scarcity problem, i.e., the lack of labeled data, in supervised

learning. Indeed, labeling a large set of data is often a

costly and time-consuming process, but necessary to build

an accurate classification model. For example, in webpage

(image, news article, or face) classification, labels are often

given by human experts, and thus, it is costly and time-

consuming. Active learning, on the other hand, is able to

actively request labels of a small number of selected or

constructed examples, and thus, reducing the labeling cost

significantly.

However, all previous works of active learning (see Sec-

tion II for a detailed review) can only ask specific queries

with all attribute values provided, and assume that the oracle

could only answer such specific queries. For example, if the

task is to predict osteoarthritis based on a patient dataset with

30 attributes, the previous active learners could only ask the

specific queries as: does this patient have osteoarthritis, if ID

is 32765, name is Jane, age is 35, gender is female, weight is

85 kg, blood pressure is 160/90, temperature is 98F, no pain

in the knees, no history of diabetes, and so on (for all 30

attributes). Many of these 30 attributes may not be relevant

to osteoarthritis in this case. Not only could specific queries

like this confuse the oracles, but the answers returned are

also specific: each label given is only for one specific query.

In real-world situations, the oracles (usually human ex-

perts) are often more readily to answer generalized queries,

such as “are people over 50 with knee pain likely to have

osteoarthritis?” Here only two relevant attributes (age and

type of pain) are mentioned, and the other 28 are don’t-

care’s. We have discussed with some experts in heart-

disease diagnosis and used-car sale, and they regard this

type of generalized queries intuitive and easy to comprehend.

Thus, in this paper, we assume that the oracle is more

powerful; it can answer generalized queries by returning

probabilistic labels. Not only are such generalized queries

more natural and relevant, answers from the oracle also

provide much more information, as one generalized query is

often equivalent to many specific queries. In this example,

the answer for this query is for all people over 50 with

knee pain. This allows the active learner to improve learning

effectively and quickly.

The difficulty of the generalized queries is that the an-

swers from the oracle can often be uncertain.1 For example,

the answer to the above generalized query can be “Yes with

a 90% probability”. An overly general query, such as “are

people over 50 likely to have osteoarthritis?” (age only),

might receive yes with only a 60% probability. Indeed, the

experts in the heart-disease diagnosis and used-car sale also

sometimes have to reply with low certainties in their an-

swers. Highly uncertain answers can make learning difficult

as they may introduce noise into the training data; or, they

can cause a waste of queries if these answers are directly

discarded.

In general, the more general a query is (with more don’t-

care attributes), the more powerful it is (representing more

specific instances), but usually the more uncertain the answer

1This is true even if we assume that answers for specific queries are
always 100% certain. However, in some real-world applications, answers
for specific queries may also be uncertain. We will study this issue in our
future work.



is from the oracle. Our task is to design an active learner

that attempts to ask generalized queries with highly certain

answers from the oracle. The task is not trivial. As far as

we know, no previous work of active learning can deal with

such generalized queries. See Section II for details.

In this paper we assume that the oracle is capable of

answering generalized queries, and we propose a novel

active learning paradigm in which such generalized queries

can be asked and answered. We design a new algorithm

called AGQ, for Active learner with Generalized Queries.

AGQ can construct generalized queries with don’t-care

attributes, for either the pool-based or the membership-query

active learner. See Section III for details. Experiments

on synthetic and real-world datasets show that AGQ asks

significantly fewer queries compared with the traditional

active leaner. See Sections IV for details. To the best

of our knowledge, this is the first work proposing active

learning with generalized queries, and showing that it is

highly effective.

II. RELATED WORK

Most previous works of active learning can be divided

into two paradigms: the pool-based active learning and the

membership query.2 In the pool-based active learning, a pool

of unlabeled examples is given, and the learner can only

choose examples to label from the pool [3]. Briefly speaking,

the pool-based active leaner first evaluates each example in

the pool, to decide which one can maximumly improve the

performance of the current model. Then the learner acquires

its label from oracle to update the labeled training set and the

learning model, and the process repeats. On the other hand,

active learning with membership queries (or direct query

construction) can construct examples (without the need of

the pool) and request labels [4], [5]. Previous experiments

show that both of these active learning methods reduce the

number of labeled examples needed, compared with labeling

examples randomly.

The essence of active learning lies in the “goodness”

measurement of the unlabeled examples with respect to the

current model. Many criteria have been proposed in the

literatures. Uncertainty sampling [3] considers the most un-

certain example as the most valuable one, and has been thor-

oughly studied and widely used in many previous researches

[6], [7], [2], [8], [9]. Query-by-committee (QBC) [10] is

a more theory-based approach, and considers the example

minimizing the version space as optimal. [11] implements

QBC by constructing committees from ensemble methods

(bagging, boosting, etc.), thus essentially transforms it to a

variant of uncertain sampling. Besides, other criteria, such as

variance reduction [12], Fisher information ratio [13], and

estimated error reduction [14], are also elaborately designed

2Stream-based active learning [1] is considered as another paradigm in
some literatures. In essence, it could be viewed as an online version of the
pool-based active learning [2].

and well accepted in active learning research area. In this

paper, the proposed AGQ algorithm can be integrated with

any of the above criteria, and the most widely used uncertain
sampling is chosen for illustration and empirical study in the

rest of the paper.

All previous works of active learning assume that the

oracle could only answer specific queries, with all attribute

values provided. To the best of our knowledge, our AGQ

algorithm in this paper is the first work proposing active

learning with generalized queries. Previously, [15] proposed

active learning with feature labeling, which queries the

label for one specific feature (for example, “𝑝𝑢𝑐𝑘” −→
“ℎ𝑜𝑐𝑘𝑒𝑦”), and is mainly used in natural language pre-

cessing. Although feature labeling is considered similar to

the generalized query, our AGQ algorithm is significantly

different in the following three aspects. First, instead of

querying label for one specific feature, our AGQ could

query the labels for multi-feature combinations (for example,

“𝑝𝑢𝑐𝑘” + “𝑖𝑐𝑒” + “𝑝𝑙𝑎𝑦𝑒𝑟” −→ “ℎ𝑜𝑐𝑘𝑒𝑦”). Thus, feature

labeling is essentially a special case of our AGQ. In other

words, our generalized query is a generic paradigm for both

instance-based queries and feature-based queries. Second,

AGQ always finds the most uncertain example (when in-

tegrated with uncertain sampling) and generalizes it to a

query. Labeling such uncertain examples has been proved

to be very effective in improving predictive accuracy (see

Section IV-B for details). On the other hand, feature labeling

generally finds the most predictive (or most frequent) feature

for querying, thus the answer from the oracle may not

provide much new information to improve the model. Third,

and most importantly, as feature labeling always queries

label for only one feature, the answer from the oracle could

be very uncertain. To deal with this problem, it is assumed in

[15] that the oracle could “skip” the uncertain queries. But

in fact, the oracle has “worked” on those queries, and the

oracle’s effort is wasted. On the other hand, AGQ makes a

minimal generalization of a specific query, thus the answers

from the oracle tend to be certain. Our experiments show that

the average certainty of the replies is 90% (see Section IV-B

for details). In any case, every query of AGQ is counted,

regardless of the certainty of the reply.

III. AGQ: ACTIVE LEARNING WITH GENERALIZED

QUERIES

In this paper we propose a new active learning paradigm

in which the learner can ask generalized queries, and we

assume that the oracle can answer such generalized queries.

In this section, we will describe a novel active learning

algorithm called AGQ (Active learning with Generalized

Queries). AGQ can generalize attributes (nominal or nu-

meric) with specific values to don’t-care attributes.

As most previous works of active learning are pool-based,

and use uncertain sampling to choose the most valuable

unlabeled examples, in this paper, we will also describe



AGQ using uncertain sampling in pool-based paradigm.

However, as our AGQ is a meta-learning method, it can

be equally applied to the membership query active learning,

or integrated with any other query strategy. We assume that

examples are described by 𝑛 nominal or numeric attributes

𝑋1, 𝑋2, ..., 𝑋𝑛 and the label 𝑌 of examples is binary, with

values positive (1) and negative (0). The active learner is

given an initial labeled training set 𝑅, and an unlabeled set

𝑈 , from which the learner may choose examples to query

for their labels from an oracle. A test set 𝑇 is given but

set aside to evaluate the accuracy of the learner during label

acquisition.

The AGQ algorithm can be broken down into the follow-

ing four major steps:

1) The first step is the same as in the previous pool-based

active learning algorithms [6], [16], [9]. An initial

learner 𝐿 is built using the current labeled training

dataset 𝑅. Then, 𝐿 is used to predict each example in

the pool 𝑈 . The most uncertain example from the pool

is chosen. (If the membership active learning is used,

then the most uncertain example would be constructed

in this step.)

As an example, the specific example from the pool

could be [1, 0, 1, 1, 0, 1], with the predicted probability

of 52% for the class 1 (and 48% for the class 0),

according to the current model 𝐿. This is the most

uncertain (the probability of the majority class is

closest to 50%) among all examples in the pool.

2) AGQ then finds irrelevant attributes in the most un-

certain example above, and substitute them with “∗”
(representing don’t-care values).

For example, the generalized query based on the

example [1, 0, 1, 1, 0, 1] could be [1, ∗, 1, ∗, 0, 1].
3) AGQ submits this generalized query to the oracle,

which will return a label with a probability distribu-

tion.

For example, the oracle may return a probability of 0.9

for positive (and 0.1 for negative) for the generalized

query [1, ∗, 1, ∗, 0, 1].
4) AGQ will utilize the label and the probability distri-

bution to update the training data, and iterate to Step

1 (to continue learning actively).

For example, from the generalized query

[1, ∗, 1, ∗, 0, 1] and the probability distribution

for the class (0.9 for class 1 and 0.1 for class 0),

four specific examples, [1, 0, 1, 0, 0, 1], [1, 0, 1, 1, 0, 1],
[1, 1, 1, 0, 0, 1], and [1, 1, 1, 1, 0, 1], each with a

probability label (0.9 for 1 and 0.1 for 0), could be

added into the training set. This represents the power

of generalized queries: each can represent effectively

a set of specific queries. This would be useful if the

probability of the majority class is high (close to

1). Otherwise, noise is introduced into the training

set, and as we will show later, accuracy can even be

worse. (We will study other strategies of utilizing the

probabilistic labels in our future work.)

We will discuss each step in detail in the following

subsections.

A. Finding the Most Uncertain Example

Similar to the previous works of the pool-based active

learning, AGQ first builds a predictive model based on the

current set of labeled examples, and uses it to predict each

example in the pool. The most uncertain example from the

pool, the one with the probability of the majority class

closest to 50%, is chosen as the result of this first step.3

As the probability of the prediction is crucial in choosing

the most uncertain example, we use an ensemble of decision

trees in AGQ. Specifically, the bagging [19] of 100 j48

decision trees (implemented in Weka [20]) is used. The

probability distribution of the prediction is estimated by

the prediction of the 100 trees in the ensemble. Such an

ensemble of many trees improves the probability estimation,

compared with a single tree [21]. The standard decision tree

algorithm is chosen because it tends to build small trees; this

facilitates us to find irrelevant attributes in the next step.

B. Constructing the Generalized Query

After finding the most uncertain (specific) example from

the pool in the first step, AGQ needs to discover the

irrelevant attributes (don’t-care attributes).

If the set of 𝑚 attributes are irrelevant, then the examples

with any combination of their values would have the same

prediction with similar probability estimation. The reverse

may not be true, but it can be used as a heuristic to find the

set of irrelevant attributes. However, there are
(
𝑛
𝑚

)
subsets

of 𝑚 attributes (given a total of 𝑛 attributes), and for each

subset, 2𝑚 value combinations (for binary attributes) must

be tested. The task is clearly computationally expensive.

A heuristic, similar to the process of finding the largest

itemsets in mining association rules [22], [23], is designed.

More specifically, let 𝐷 be the current don’t-care attribute

list, and let 𝑥𝑢 be the current most uncertain example. We

gradually expand 𝐷 by adding more irrelevant attributes via

greedy search, as follows. For each attribute 𝑋𝑖 not currently

in 𝐷, we generate a fixed number (100 in our experiments)

of examples with randomly assigned values for attributes in

𝐷 and 𝑋𝑖, all based on 𝑥𝑢. The number of examples is fixed

to prevent combinatorial explosion of attribute values when

𝐷 grows. The attribute value is randomly chosen according

to the distribution of that attribute values in the original data

set. This most accurately reflects the distribution of examples

3For highly imbalanced and cost-sensitive data, an optimal threshold for
classification can be calculated [17], or found via cross-validation [18], and
the example with the probability closest to the threshold is chosen as the
most uncertain one. Thus, our algorithm can also deal with imbalanced and
cost-sensitive data.



Algorithm 1: find don’t-care attributes

Input: 𝑥𝑢, the most uncertain example; 𝜃, predefined

threshold.

Output: 𝐷, don’t-care attribute list.

Initialize 𝐷 = ∅;
Initialize 𝑝𝑢 = probability of majority class for 𝑥𝑢;

Initialize 𝑛𝑜𝐶ℎ𝑎𝑛𝑔𝑒 = 𝑡𝑟𝑢𝑒;
repeat

foreach 𝑋𝑖 ∕∈ 𝐷 do
for 𝑛 = 1 to 100 do

begin // Generate 𝑥𝑛
𝑥𝑛 = 𝑥𝑢;

Randomly assign 𝑋𝑗 for all 𝑋𝑗 ∈ 𝐷;

Randomly assign 𝑋𝑖;
end
𝑝𝑛 = probability of majority class for 𝑥𝑛;

𝑆𝑖 =
∑100

𝑛=1(𝑝𝑛 − 𝑝𝑢)2/100;

Choose 𝑋𝑖 with the smallest 𝑆𝑖;
if 𝑆𝑖 < 𝜃 then

Add 𝑋𝑖 in 𝐷;

else
𝑛𝑜𝐶ℎ𝑎𝑛𝑔𝑒 = 𝑓𝑎𝑙𝑠𝑒;

until 𝑛𝑜𝐶ℎ𝑎𝑛𝑔𝑒 is 𝑓𝑎𝑙𝑠𝑒 ;

in the domain.4 The attribute 𝑋𝑖 with the smallest change

in the probability distribution of all 100 examples is then

regarded as irrelevant, and added into 𝐷 if the smallest

change is less than a pre-defined threshold. The process

continues until 𝐷 cannot be grown further. The generalized

query is the one with don’t-care (i.e., “∗”) for all attributes

in 𝐷. This process is depicted with the pseudo code in

Algorithm 1.

Clearly, this can generate most general queries (i.e.,

queries with most don’t-care attributes) based on the current

learning model. However, queries with too many don’t-care

attributes can be overly general, and labels from the oracle

can be highly uncertain. Thus, we demand the threshold 𝜃 in

Algorithm 1 to be a very small number (0.0001 in our case).

This would allow AGQ to find the most general queries

that, hopefully, also include all relevant attributes. Still, as

the initial labeled training set can be very small, the current

learning model can be inaccurate. Thus, AGQ may produce

generalized queries with don’t-care for relevant attributes

(see Table I in Section IV-A). This will be especially true

when the initial labeled training set is very small. This

would increase the uncertainty of the labels given by oracle.

It would be an interesting future research to see how this

can be prevented.

4The same random sampling method is used in Sections III-C and III-D.

C. Asking Generalized Queries to Oracle

In our work, we assume that the oracle can answer

generalized queries with don’t-care attributes just as easily

as specific queries (without don’t-care attributes). We be-

lieve that in most real-world situations, human experts can

easily answer such generalized queries with an estimated

probability.

In Section IV-B we will test AGQ on the UCI datasets

[24], comparing it with the traditional pool-based active

learner. An interesting question arises: as we do not know

the target functions of the UCI datasets, nor do we have

human oracles for them, how can such generalized queries

be answered?

We design the following method to simulate human

oracles to answer the generalized queries. We first train

a model based on the original dataset to represent the

target function. This is the best model we can get as it

is built from the whole dataset. Specifically, we use the

bagging of 100 j48 decision trees on the whole dataset

to represent the target model. But still, this target model,

as a black-box, cannot answer generalized queries directly.

Since each generalized query effectively represents a set of

specific queries, a set of such specific queries (in which

the don’t-care attributes are replaced with specific values

sampled randomly) is generated. To avoid combinatorial

explosion when the generalized query has too many don’t-

care attributes, the size of the set is fixed at 100. The target

model then returns the predicted probability distribution of

these 100 examples in the set.

One may argue that the generalized queries could be

unrealistic thus hard to be answered by oracle (as in mem-

bership query). In the pool-based paradigm, AGQ chooses

a specific example from the pool and generalizes it to a

query. If the example is realistic, the generalized query is

always realistic as well, so the oracle should be able to

answer. For example, if the specific example is [𝑛𝑎𝑚𝑒 =
𝐽𝑎𝑛𝑒, 𝑔𝑒𝑛𝑡𝑙𝑒 = 𝑓𝑒𝑚𝑎𝑙𝑒, 𝑝𝑟𝑒𝑔𝑛𝑎𝑛𝑡 = 𝑦𝑒𝑠, 𝑎𝑔𝑒 = 30, . . .],
then the generalized query could be [𝑛𝑎𝑚𝑒 = ∗, 𝑔𝑒𝑛𝑡𝑙𝑒 =
∗, 𝑝𝑟𝑒𝑔𝑛𝑎𝑛𝑡 = 𝑦𝑒𝑠, 𝑎𝑔𝑒 = ∗, . . .]. Unrealistic generalized

queries (such as [𝑛𝑎𝑚𝑒 = ∗, 𝑔𝑒𝑛𝑡𝑙𝑒 = 𝑚𝑎𝑙𝑒, 𝑝𝑟𝑒𝑔𝑛𝑎𝑛𝑡 =
𝑦𝑒𝑠, 𝑎𝑔𝑒 = ∗, . . .]) will never be constructed.

The next key step of AGQ is to utilize the generalized

queries and their labels from the oracle to further improve

learning.

D. Updating the Training Dataset

Given the probability distribution to the generalized query

from the oracle, we need to utilize it to expand the training

dataset and to build a better classifier. Again, because each

generalized query effectively represents a set of specific

queries, more than one specific example can be added into

the original labeled training set. There are two issues to

be resolved, however. One is how large the set of specific



queries should be; the second is how to label those examples

in the set.

The first question is relatively easy to answer. Again

to avoid combinatorial explosion, a set with a fixed size

(100 in our experiments) of specific examples is generated

first, in which each don’t-care attribute is replaced randomly

by a specific value of that attribute. However, experiments

(Section IV-B) indicate that the number of new examples

added may influence adversely the distribution of the initial

training set. If the initial training set is too small, then

the new examples added may be overwhelming, and thus

changing the distribution of examples in the training set.

Thus, the number of examples added into the training set is

the minimum of 100, half of the size of the initial training

set, and the number of value combinations of all don’t-care

attributes.

How should each specific query be labeled? As the

oracle returns probability distribution of labels (such as 0.9

for positive, 0.1 for negative) for the generalized queries,

specific examples can simply carry weighted labels if the

learning model (bagging of 100 j48 trees here) can take

weighted examples directly. Most learning algorithms (such

as decision trees, naive Bayes, instance-based learning) can

indeed take weighted examples naturally. Thus, in the above

situation, every specific example carries a positive label with

weight 0.9, and a negative label with weight 0.1.

Thus in AGQ, the labeled training set is usually increased

by adding multiple labeled examples (with probability la-

bels), rather than by adding just one labeled example in the

traditional pool-based active learning. If examples added are

mostly valid, and the probability of the majority class is

near 1 (a highly certain label), the learning can be improved

dramatically, as we will show in the experiments.

IV. EXPERIMENTS WITH GENERALIZED QUERIES

In this section, we conduct experiments on a synthetic

dataset and 14 UCI [24] datasets to compare AGQ with the

previous active learning algorithm that asks specific queries.

A. AGQ on Synthetic Dataset

In this subsection, we use synthetic data to empirically

study the performance of AGQ, compared with the tradi-

tional pool-based active learning with uncertain sampling.5

In addition, we also present the performance of the

optimal AGQ, which represents the best performance that

AGQ could possibly achieve. Specifically, for each gen-

eralized query, the optimal AGQ gradually specifies the

original attribute values for the don’t-care attributes, till the

oracle provides a certain answer (𝑃 (𝑌 = 1∣𝑋) ≥ 0.95 or

5Note that, as we also use a bagging of 100 decision trees for the
traditional pool-based active learning (as same as for AGQ), the most
uncertain example can also be considered as the example with the maximum
disagreement for the current committee (constructed by the current 100
decision trees). Thus, uncertain sampling in this case can also be regarded
as an implementation of QBC.

𝑃 (𝑌 = 0∣𝑋) ≥ 0.95 in our experiments). The training

set is thereafter expanded according to this query and the

answer. That is, the training set is only updated when the

oracle returns highly certain labels (≥ 0.95). However, some

extra queries may still be asked to the oracle when the

answer is not highly certain, which makes optimal AGQ not

realistic. Here, we simply do not count those extra queries,

and only count the “effective” ones — those with certainty

great than (or equal to) 0.95. Thus, it could reflect the fewest

number of queries that AGQ can ask, which indicates the

best performance AGQ can ever achieve.

We choose the target function as a decision tree with five

relevant attributes, 𝑋1 - 𝑋5, and six leaves, 𝐿1 - 𝐿6, as in

Figure 1. To simulate the real-world dataset, we add another

five irrelevant attributes,𝑋6 -𝑋10, to generate the synthetic

data. We assume that all these attributes are binary, so is

the class label. Therefore, with 10 binary attributes, we can

generate 210 = 1024 different examples, and label them with

the target function. With this synthetic data, we know what

the target function is and what the irrelevant attributes are.

We can also directly use the target function as the oracle to

answer the generalized queries.

��

��

�� ��

��

��	
��

�

�

�

��	
��

��	
�� ��	
��

��	
�� ��	

�

�

�

�

�

�

�

�

Figure 1. Target tree used to generate synthetic data.

The experiment is repeated on the synthetic dataset 20

times. Each time, the whole dataset is randomly split into

three disjoint subsets: the training set, the unlabeled set, and

the test set. The training set and the test set are always 2%

and 25% of the whole dataset respectively, and the rest is

the unlabeled set.

Figure 2 plots the average error rates of the optimal AGQ

(“AGQ-Opt” in short), AGQ and the traditional pool-based

active learning (“Pool” in short). We can see clearly from

Figure 2 that, AGQ’s performance is quite close to the

(unrealistic) optimal AGQ, and is much better than “Pool”.

This indicates that the strategies we designed for AGQ

(Section III) is quite effective — AGQ asks generalized

queries with certain labels; that is, they are not overly

general.

To further compare AGQ and “Pool”, we extract a typical

series of queries from them during the active learning pro-

cess. Table I tabulates these queries (Query in the table), as



0 1 2 3 4 5 6 7 8 9

0.06

0.11

0.16

0.21

0.26

Artificial Data

AGQ-Opt

AGQ

Pool

Iteration

A
v
e

ra
g

e
 E

rr
o

r 
R

a
te

Figure 2. Comparison of the average error rate among “AGQ-Opt”, AGQ
and “Pool” on the synthetic data.

well as leaf(ves) in the target tree that these queries fall into

(Classified by Leaf(ves)), ideal query according to the target

tree (Ideal Query), answer from the oracle (Answer), number

of specific examples generated to update the training set (No.

of Examples), and error rate of the updated classifier (Error

Rate). We can see from Table I that AGQ always constructs

generalized queries with don’t-care attributes while “Pool”

can only choose the most specific queries. These generalized

queries from AGQ may not be as general as the ideal queries

(constructed directly from the target tree; see Figure 1),

but they still contain most irrelevant attributes. Only one

query (Query 2) is overly general (falling into two leaves),

thus the answer to this query is highly uncertain (54%).

However, such overly general queries rarely occur in AGQ

learning. (Thus, the performance of AGQ is quite similar

to the optimal AGQ, as we showed earlier.) In this case,

answers for the other four queries from the oracle are highly

certain (100%). Thus, AGQ can often include more examples

with correct labels into the training set in each iteration,

and obtain significantly lower error rates (compared with

“Pool”).

To summarize from the experiment on the synthetic data,

AGQ can often identify correctly the irrelevant attributes

and construct correctly the generalized queries with highly

certain answers from the oracle. Thus the performance of the

classifier is significantly improved when the corresponding

multiple specific examples (with correct labels) are included

into the training set. This yields the outstanding performance

of AGQ (similar to the optimal AGQ) on the synthetic

dataset, compared with the traditional pool-based active

learning.

B. AGQ on UCI Datasets

In this subsection, we use 14 real-world datasets from the

UCI Machine Learning Repository [24] to compare AGQ

with the optimal AGQ and the pool-based active learning

algorithm. All of these datasets have binary class and no

missing values. Information on these datasets is tabulated in

Table II.

Each whole dataset (𝐷) is first split randomly into three

disjoint subsets: the training set (𝑅), the unlabeled set (𝑈 ),

and the test set (𝑇 ). The test set 𝑇 is always 25% of 𝐷.

To make sure that active learning can possibly show im-

provement when the unlabeled data are labeled and included

into the training set, we choose a small training set for each

dataset such that the “maximum reduction” of the error rate6

is large enough (greater than 10%). The training sizes of

the 14 UCI datasets range from 1/200 to 1/5 of the whole

datasets, also listed in Table II. The unlabeled set (𝑈 ) is

the whole dataset (𝐷) taking away the test set (𝑇 ) and the

training set (𝑅).

The experiment is repeated on each dataset 20 times (i.e.,

each dataset is randomly split 20 times), when comparing

“AGQ-Opt”, AGQ and “Pool”. We stop training when the

error rate of “Pool” is reduced by 3/4 of the “maximum

reduction”.

Figure 3 plots the average error rates of “AGQ-Opt”, AGQ

and “Pool” on a typical UCI datasets (“Hepatitis”), and the

comparison on all the 14 datasets will be presented later.

We can see from Figure 3 that, AGQ performs only slightly

worse than “AGQ-Opt” but significantly better than “Pool”,

similar to the result on the synthetic dataset. This again

clearly demonstrates the advantage of AGQ: AGQ performs

almost as well as “AGQ-Opt”, and significantly outperforms

“Pool”.

0 2 4 6 8 10 12 14 16 18 20 22 24

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

Hepatitis

AGQ-Opt

AGQ

Pool

Iteration

A
v
e

ra
g

e
 E

rr
o

r 
R

a
te

Figure 3. Comparison of average error rate among “AGQ-Opt”, AGQ,
and “Pool” on “Hepatitis”.

In addition, the t-test (the paired two-tailed t-test with

a 95% confidence level) on the average error rates based

on the 14 UCI datasets shows that, AGQ wins on 9, ties

on 4, and loses on 1 dataset, compared with “Pool”. This

clearly indicates that, with the same number of queries (same

6The “maximum reduction” of the error rate is the error rate on the
initial training set 𝑅 alone (without any benefit of the unlabeled examples)
subtracts the error rate on 𝑅 plus all the unlabeled data in 𝑈 with correct
labels. Thus, the “maximum reduction” reflects the upper bound on error
reduction that active learning can achieve.



AGQ Pool
Query 1 [1, 1, 1, 0, *, *, *, *, *, *] [1, 1, 1, 0, 1, 1, 1, 1, 0, 0]
Classified by Leaf(ves) L2 L2
Ideal Query [*, 1, 1, 0, *, *, *, *, *, *] [*, 1, 1, 0, *, *, *, *, *, *]
Answer 0, 100% 0
No. of Examples 10 1
Error Rate 0.18 0.27
Query 2 [0, *, 0, 1, *, *, *, *, *, *] [1, 0, 1, 1, 0, 0, 1, 0, 0, 1]
Classified by Leaf(ves) L5, L6 L3
Ideal Query - [*, 0, 1, *, *, *, *, *, *, *]
Answer 0, 54% 0
No. of Examples 10 1
Error Rate 0.21 0.22
Query 3 [0, 1, 0, 1, 1, 0, 0, *, 1, *] [1, 1, 1, 1, 0, 1, 1, 1, 0, 1]
Classified by Leaf(ves) L5 L1
Ideal Query [0, *, 0, *, 1, *, *, *, *, *] [*, 1, 1, 1, *, *, *, *, *, *]
Answer 1, 100% 1
No. of Examples 8 1
Error Rate 0.16 0.26
Query 4 [0, 1, 0, 1, 0, 1, *, *, 0, *] [1, 0, 1, 1, 0, 1, 0, 0, 1, 1]
Classified by Leaf(ves) L6 L3
Ideal Query [0, *, 0, *, 0, *, *, *, *, *] [*, 0, 1, *, *, *, *, *, *, *]
Answer 0, 100% 0
No. of Examples 8 1
Error Rate 0.17 0.26
Query 5 [1, *, 0, *, 0, *, 1, *, *, *] [1, 1, 1, 0, 0, 1, 0, 0, 1, 1]
Classified by Leaf(ves) L4 L2
Ideal Query [1, *, 0, *, *, *, *, *, *, *] [*, 1, 1, 0, *, *, *, *, *, *]
Answer 1, 100% 0
No. of Examples 10 1
Error Rate 0.13 0.2

Table I
COMPARISON OF FIVE CONSECUTIVE QUERIES BETWEEN AGQ AND “POOL” ON SYNTHETIC DATA.

Dataset Type of Attributes No. of Attributes No. of Examples Class Distribution Training Size
breast-cancer nominal 9 277 196/81 1/5
breast-w numeric 9 699 458/241 1/10
colic nominal/numeric 22 368 232/136 1/5
credit-a nominal/numeric 15 690 307/383 1/20
credit-g nominal/numeric 20 1000 700/300 1/100
diabetes numeric 8 768 500/268 1/10
heart-statlog numeric 13 270 150/120 1/10
hepatitis nominal/numeric 19 155 32/123 1/5
ionosphere numeric 33 351 126/225 1/20
kr-vs-kp nominal 36 3196 1669/1527 1/100
mushroom nominal 22 8124 4208/3916 1/200
sonar numeric 60 208 97/111 1/5
tic-tac-toe nominal 9 958 332/626 1/10
vote nominal 16 435 267/168 1/20

Table II
THE 14 UCI DATASETS USED IN THE EXPERIMENTS.

number of iterations), the error rate of AGQ decreases much

faster than “Pool”.

To further analyse the performance of AGQ and “Pool”,

we extract some important statistics during the active learn-

ing process. They include the average number of don’t-

care attributes (and its percentage of the total attributes) in

each query (Don’t-care Attributes in the table), the average

certainty of the oracle (Certainty of Oracle)7, average num-

ber of specific examples generated to update the training

set in each iteration (Number of Examples), the average

number of iterations of AGQ and “Pool” when their error

rates are reduced by 3/4 of the “maximum reduction”

(Iteration of AGQ and Iteration of “Pool”), percentage of

iteration reduction between AGQ and “Pool” (% of Iteration

7The certainty of oracle, calculated from the oracle described in Section
III, is always about the majority class (which can be either 1 or 0). Thus,
the certainty value is between 0.5 and 1.



Reduction), and AGQ wins/ties/loses compared with “Pool”

(AGQ w/t/l). Table III presents these statistics based on the

14 UCI datasets.

From Table III we can see that, on average, AGQ discov-

ers 12.5 don’t-care attributes, and includes 16.5 examples

into the training sets in each iteration. Moreover, the cer-

tainty of the oracle for the constructed generalized queries

is as high as 90.21% on average. This explains the good

performance of AGQ: it can ask generalized queries, most

with certain answers from the oracle. In the three datasets

(“breast-w”, “ionosphere” and “sonar”) where AGQ ties with

“Pool”, we can notice that the certainties of the oracle

are relatively low (87%, 86% and 73% respectively); this

probably introduces more noise in the training sets, thus

degrading the performance. In the dataset “tic-tac-toe” where

AGQ also ties with “Pool”, though the certainty of the oracle

is high (100%), AGQ could only discover 0.07 don’t-care

attribute (on average), and include only 1.3 examples (on

average) in each iteration. This is probably why AGQ is

not much different from the traditional pool-based active

learner. For the dataset “kr-vs-kp” where AGQ loses, the

certainty of the oracle is relatively high (94%), and 39% of

the attributes are discovered as don’t-care in each query. So

why does AGQ still lose to “Pool”? A detailed study shows

that, “kr-vs-kp” is the Chess end-game board-positions, thus

the attributes are highly constrained. As there are a total of

36 attributes, the dataset (containing about 3,000 examples)

is very sparse; that is, only a small fraction of the attribute

value combinations is valid. Thus, the examples generated

by AGQ from the generalized queries and included into

training set (Section III-D) are mostly invalid examples (i.e.,

meaningless board positions). These invalid examples may

severely change the distribution of the original dataset thus

degrading the performance of AGQ. We will study this issue

further in our future work.

From Table III we can compare the number of iterations

(queries) that AGQ and “Pool” have required to achieve 3/4

of the “maximum reduction” on the error rate. We notice

that, on the four datasets where AGQ ties with “Pool”, the

two methods require almost the same number of iterations

(queries). However, on the nine datasets where AGQ wins

over “Pool”, AGQ asks 61% fewer queries compared with

“Pool”. Over all 14 datasets, AGQ asks, on average, 36%

fewer queries compared with “Pool”. This clearly shows

the advantage of AGQ: it requires much fewer queries than

“Pool” on the tested UCI datasets.

To summarize, AGQ performs significantly better than

“Pool” on most UCI datasets (9 out of 14). Moreover, on

those datasets where AGQ wins, it requires 61% fewer

queries needed for “Pool” to achieve the same error rate

reduction. This clearly demonstrates the power of the gen-

eralized queries and the advantage of AGQ.

V. CONCLUSIONS AND FUTURE WORKS

Previous active learning algorithms assume that the or-

acle can only answer specific queries that represent single

examples. However, in real-world applications, the oracles

are often more readily to answer “generalized queries” with

don’t-care attributes. Answers to such generalized queries

can provide more information to improve learning. The

difficulty of generalized queries is that the answers from

the oracle can be uncertain, thus noisy labels might be

introduced and performance might be degraded. This easily

happens especially when the initial labeled training set is

small. In this paper, we propose a novel active learning

algorithm (AGQ) to ask as general queries as possible with

still highly certain labels. Our experiments show that,

compared with the traditional pool-based active learning,

AGQ can achieve the same error rates with significantly

fewer queries (36% fewer on average). We also show that

AGQ’s performance is similar to the (unrealistic) optimal

AGQ. AGQ can be readily deployed in real-world data

mining tasks where obtaining labeled examples is costly.

In our future research, we will study the performance of

AGQ with different base learning algorithms (we only use

the bagging of decision trees in this paper). Strategies for

dealing with highly uncertain answers from the oracle, and

for preventing dramatic changes of data distribution when

new examples are included in the training set are also in-

teresting research issues to further improve the performance

of AGQ.

ACKNOWLEDGMENT

The authors acknowledge the valuable assistance of other

members of the Data Mining and E-Business Lab of The

University of Western Ontario in this research.

REFERENCES

[1] D. A. Cohn, L. Atlas, and R. E. Ladner, “Improving gen-
eralization with active learning,” Machine Learning, vol. 15,
no. 2, pp. 201–221, 1994.

[2] Y. Baram, R. El-Yaniv, and K. Luz, “Online choice of active
learning algorithms,” Journal of Machine Learning Research,
vol. 5, pp. 255–291, 2004.

[3] D. D. Lewis and J. Catlett, “Heterogeneous uncertainty sam-
pling for supervised learning,” in Proceedings of ICML-94,
11th International Conference on Machine Learning, W. W.
Cohen and H. Hirsh, Eds. New Brunswick, US: Morgan
Kaufmann Publishers, San Francisco, US, 1994, pp. 148–156.

[4] D. Angluin, “Queries and concept learning,” Machine Learn-
ing, vol. 2, no. 4, pp. 319–342, April 1988.

[5] C. X. Ling and J. Du, “Active learning with direct query
construction,” in KDD ’08: Proceeding of the 14th ACM
SIGKDD international conference on Knowledge discovery
and data mining. New York, NY, USA: ACM, 2008, pp.
480–487.



Dataset Don’t-care Attributes Number of Certainty of Iteration Iteration % of Iteration AGQ
(% of Total Attributes) Examples Oracle of “Pool” of AGQ Reduction (w/t/l)

breast-cancer 2.7 (30%) 14.54 95% 35 18 49% W
breast-w 5.35 (59%) 32.31 87% 18 18 0% T
colic 13.15 (60%) 35.68 91% 15 8 47% W
credit-a 6.38 (43%) 16.43 88% 12 5 58% W
credit-g 8.54 (43%) 4.97 87% 50 12 76% W
diabetes 3.02 (38%) 27.31 89% 50 16 68% W
heart-statlog 5.92 (46%) 12.52 89% 50 25 50% W
hepatitis 13.47 (71%) 14.96 96% 24 5 79% W
ionosphere 27.15 (82%) 8 86% 29 29 0% T
kr-vs-kp 14.89 (39%) 14.48 94% 38 50 -32% L
mushroom 17.81 (81%) 20 94% 10 6 40% W
sonar 48.27 (80%) 20 73% 41 34 17% T
tic-tac-toe 0.07 (1%) 1.28 100% 108 108 0% T
vote 7.28 (46%) 8.31 94% 12 5 58% W
Average 12.53 (51.36%) 16.49 90.21% 35.14 24.21 36% 9/4/1

Table III
IMPORTANT STATISTICS OF AGQ AND COMPARISON WITH “POOL” ON THE 14 UCI DATASETS.

[6] S. Tong and D. Koller, “Support vector machine active
learning with applications to text classification,” Journal of
Machine Learning Research, vol. 2, pp. 45–66, 2002.

[7] M. Saar-Tsechansky and F. Provost, “Active sampling for
class probability estimation and ranking,” Machine Learning,
vol. 54, no. 2, pp. 153–178, February 2004.

[8] M. Lindenbaum, S. Markovitch, and D. Rusakov, “Selective
sampling for nearest neighbor classifiers,” Machine Learning,
vol. 54, no. 2, pp. 125–152, February 2004.

[9] D. D. Margineantu, “Active cost-sensitive learning,” in the
Nineteenth International Joint Conference on Artificial Intel-
ligence, Edinburgh, Scotland, 2005.

[10] H. S. Seung, M. Opper, and H. Sompolinsky, “Query by
committee,” in COLT ’92: Proceedings of the fifth annual
workshop on Computational learning theory. New York,
NY, USA: ACM Press, 1992, pp. 287–294.

[11] N. Abe and H. Mamitsuka, “Query learning strategies using
boosting and bagging,” in ICML ’98: Proceedings of the
Fifteenth International Conference on Machine Learning.
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.,
1998, pp. 1–9.

[12] D. A. Cohn, Z. Ghahramani, and M. I. Jordan, “Active learn-
ing with statistical models,” Journal of Artificial Intelligence
Research, vol. 4, pp. 129–145, 1996.

[13] T. Zhang and F. J. Oles, “A probability analysis on the value
of unlabeled data for classification problems,” in Proc. 17th
International Conf. on Machine Learning, 2000, pp. 1191–
1198.

[14] N. Roy and A. Mccallum, “Toward optimal active learning
through sampling estimation of error reduction,” in Proc.
18th International Conf. on Machine Learning. Morgan
Kaufmann, San Francisco, CA, 2001, pp. 441–448.

[15] G. Druck, G. S. Mann, and A. McCallum, “Learning from
labeled features using generalized expectation criteria,” in
SIGIR, S. H. Myaeng, D. W. Oard, F. Sebastiani, T. S. Chua,

M. K. Leong, S. H. Myaeng, D. W. Oard, F. Sebastiani, T. S.
Chua, and M. K. Leong, Eds. ACM, 2008, pp. 595–602.

[16] L. S. Dasgupta, “Coarse sample complexity bounds for active
learning,” in Neural Information Processing Systems, 2005.

[17] C. Elkan, “The foundations of cost-sensitive learning,” in
Proceedings of the 17th International Joint Conference on
Artificial Intelligence, 2001, pp. 973–978.

[18] V. S. Sheng and C. X. Ling, “Thresholding for making
classifiers cost-sensitive,” in Proceedings of the Twenty-first
National Conference on Artificial Intelligence (AAAI-06),
2006.

[19] L. Breiman, “Bagging predictors,” Machine Learning, vol. 24,
no. 2, pp. 123–140, 1996.

[20] I. H. Witten and E. Frank, Data Mining: Practical Ma-
chine Learning Tools and Techniques, 2nd ed., ser. Morgan
Kaufmann Series in Data Management Systems. Morgan
Kaufmann, June 2005.

[21] F. Provost and P. Domingos, “Tree induction for probability-
based ranking,” Machine Learning, vol. 52, no. 3, pp. 199–
215, September 2003.

[22] R. Agrawal, T. Imielinski, and A. N. Swami, “Mining associ-
ation rules between sets of items in large databases,” in Pro-
ceedings of the 1993 ACM SIGMOD International Conference
on Management of Data, P. Buneman and S. Jajodia, Eds.,
Washington, D.C., FebruaryJune–FebruaryAugust˜ 1993, pp.
207–216.

[23] B. Liu, W. Hsu, and Y. Ma, “Integrating classification and
association rule mining,” in Knowledge Discovery and Data
Mining, 1998, pp. 80–86.

[24] A. Asuncion and D. J. Newman,
“UCI machine learning repository
[http://www.ics.uci.edu/˜mlearn/mlrepository.html],” 2007.


