
Predicting Software Escalations with Maximum ROI

Charles X. Ling1, Shengli Sheng1, Tilmann Bruckhaus2, Nazim H. Madhavji1
1Department of Computer Science, The University of Western Ontario

London, Ontario N6A 5B7, Canada
{cling, madhavji, ssheng}@ csd.uwo.ca

2Customer Network Services, Sun Microsystems, Inc.
USCA22-104, 4220 Network Circle, Santa Clara, CA 95054

Tilmann.Bruckhaus@Sun.Com

Abstract

Enterprise software venders often have to release
software products before all reported defects are
corrected, and a small number of these reported
defects will be escalated by customers whose
businesses are seriously impacted. Escalated defects
must be quickly resolved at a high cost by the software
vendors. The total costs can be even greater, including
loss of reputation, satisfaction, loyalty, and repeat
revenue. In this paper, we develop an Escalation
Prediction (EP) system to mine historic defect report
data and predict the escalation risk of current defect
reports for maximum ROI (Return On Investment).
More specifically, we first describe a simple and
general framework to convert the maximum ROI
problem to cost-sensitive learning. We then apply and
compare several best-known cost-sensitive learning
approaches for EP. The EP system has produced
promising results, and has been deployed in the
product group of an enterprise software vendor.
Conclusions drawn from this study also provide
guidelines for mining imbalanced datasets and cost-
sensitive learning.

1. Introduction

Building large enterprise software is often a highly

complex and lengthy process, during which numerous
software defect reports can exist and some of them
may not be resolved when the software products are
released (usually against a tight deadline) [2, 3, 6].

The objective of the Escalation Prediction (EP)
system is to assist human experts in the review process
of software defect reports by modeling and predicting
escalation risk using data mining technology [1, 10, 7].
If the EP system can accurately predict the escalation
risk of known defect reports, escalations can be greatly
reduced by correcting those high-risk defect reports
with a much lower cost within the software
development and testing cycle before release. This

would save a huge amount of money for the enterprise
software vendors [5].

Indeed, the business goal of EP (and many
industrial applications using data mining) is to
maximize the ROI (Return on Investment), not the
usual data-mining measures such as accuracy, AUC
(area under the ROC curve), lift, or recall and precision
combinations [14]. We have found little previous work
that directly optimizes the ROI as the data mining
effort.

In this paper, we first set up a simple framework in
which the problem of maximum ROI can be converted
to minimum total cost in cost-sensitive learning [8, 9]
under certain conditions (see Section 3). We then apply
and compare several best-known cost-sensitive
learning algorithms on a defect report dataset to see
how they perform, in terms of maximum ROI (Section
5). Conclusions drawn in this study not only help
enterprise software vendors to improve profit in
software production by reducing the cost of
escalations, but also provide some general guidelines
for mining imbalanced datasets [12, 13] and cost-
sensitive learning.

2. The EP Solution Architecture

The diagram in Figure 1 illustrates a general

architecture of the Escalation Prediction System.
Data is captured periodically from the software
vendors’ Online Transaction Processing (OLTP)
systems which collect defect report and escalation
information. Data may be captured weekly and stored
indefinitely in a data mart. While the information in the
OLTP systems continues to change from moment to
moment, the information in the data mart remain
constant so as to provide the historical data required for
training predictive models in EP.

The historical data may be pre-processed before
being fed into data-mining algorithms (see Section 5).
Derived fields, historical information, and statistics are

added to yield the set of available input fields. These
fields or attributes may include data fields which come
directly from the defect report tracking system and
derived fields obtained from the data and other sources.

The next step is to train and validate predictive
models. See Sections 3-6 for details. Once one or more
satisfactory models have been found, the most
appropriate model may be selected and run against the
most recent snapshot of defect report data. The
predicted escalations may be then reported to the
product group for evaluation and proactive resolution.
The product group may provide feedback to allow for
ongoing improvement of the overall escalation
prediction and prevention effort.

Figure 1. The EP solution architecture.

3. Maximum ROI and Cost-sensitive
Learning

As we have discussed in the Introduction section,

correcting defects after an escalation occurs is much
more expensive than correcting defects before they
become escalated. If we treat defect escalations as
positive examples, then the cost of false negative FN
(correcting an escalated defect) should cost many times
more than the cost of false positive FP (correcting a
non-escalated defect). If the cost of FN and FP is
known, like in our study, then this would seem to be a
straightforward cost-sensitive learning problem, in
which the weighted misclassification costs should be
minimized.

The problem is not that simple. The goal of the EP
(Escalation Prediction) system (and many other real-
world data mining applications) is to maximize the
Return on Investment (ROI) after data mining is
deployed. However, ROI is not equivalent to the usual
measures such AUC, which is often used as a general
measure when the cost metric and classification
distributions are unknown. Indeed, ROI is rarely used

as an optimization goal in building data-mining
models1.

Let us first establish the formula for ROI. In our
study, the cost of correcting an escalated defect is
estimated to be as much as 7 times the cost of
correcting a (non-escalated or would-be escalated)
defect (we assume that after a defect is corrected it will
never be escalated in the future). That is, FN = 7, and
FP = 1 (we did not use the actual numbers here for
confidentiality reasons but the cost figures used are the
same modulo to a constant factor). When EP makes a
prediction on a dataset, it will produce a number of true
positive (tp), true negative (tn), false positive (fp), and
false negative (fn) cases. Thus, the ROI is:

 ROI=tp×(FN–FP)–fp×FP=6×tp–fp. (1) PRODUCT
GROUP

DATA MINING TOOL
As long as the ROI, such as (1), can be expressed

as a linear formula of tp, fp, tn, and fn, we can negate
its coefficients in the linear formula, and re-assign the
cost metric by the negated coefficients. For example,
the cost metric for ROI of (1) can be converted and
represented in Table 1. In the rest of the paper, we will
study EP under this cost metric.

Train

Validate Add Statistics Provide Feedback

Add History FixPredict

Derive Values Report Evaluate

Through this simple conversion, the maximum ROI
problem can be indeed solved by cost-sensitive
learning algorithms.

Mapping Process
Mapping
TablesData Mart

Archiving Process Table 1: Cost metric converted from (1). OLTP DATA SOURCE Actual 0 Actual 1
Predict 0 0 0
Predict 1 1 -6

4. The Datasets

Our dataset consists of historical defect reports

from industry software projects of an enterprise
software vendor. Defect reports change over time and
so there is an opportunity to learn from multiple
different versions of a single defect report. Therefore,
multiple data records in the dataset may belong to only
one defect report. The data was collected in late
2004, and contains a total of about 400,000 records
(defect report observations). The total number of
attributes is 53, most of which are numerical attributes
(including dates), and a few are nominal (such as
product name). The system uses three types of inputs:
1) raw inputs which correspond to field values which
are reported by users and stored in the defect tracking
database, 2) row-level transformations of raw values,
such as concatenating two string-valued raw inputs into
a derived new string-valued input, and 3) statistical
inputs which are derived from statistical analyses of all
rows which fall into a given time period, such as a
fiscal quarter.

1 There are two common definitions of ROI: the amount of the
benefit divided by, or subtracted by, the cost of investment. In this
paper we take subtraction in the ROI calculation, and the investment
is the cost of deploying data mining.

Statistical inputs were particularly useful for string
valued raw inputs because string-valued data is
typically difficult to use for machine learning. For
example, a raw input for "CUSTOMER_NAME" may
have 20,000 possible customer name values. Therefore,
the system calculates statistics for string-valued inputs.
These statistics include counts (number of defects
submitted by customer "abc", and number of
escalations raised by customer "abc"), means (number
of escalations over number of defects submitted for
hardware platform "xyz"), and the probability of an
escalation, and so on. Further analysis of these inputs
and their utility for prediction is of great interest but
beyond the scope of this paper.

The target attribute is binary (escalation or no
escalation). The whole dataset is split up into training
and test sets according to the defect report date. The
training set contains about 165,000 records before a
certain date, and the test set contains 232,000 records
after that date. The dataset is very imbalanced, with
slightly less than 1% of the positive examples
(escalated defects). In the training set, there are only
about 1,000 positive examples (escalated defects).

5. Comparing cost-sensitive learning
approaches for EP

As we discussed in Section 3, maximum ROI is the

ultimate measure to compare different data-mining
approaches on the EP dataset. However, the original
dataset is very large with many different learning
algorithms used, some with bagging [4] and boosting
[11, 16], it would be difficult to use exactly the same
training and test datasets in all comparisons. To make
the ROI result comparable, we use “unit” ROI, defined
as the ROI divided by the number of records in our
comparison. In the comparisons below, we will report
the values of the unit maximum ROI.

Note that even if a data mining method can obtain
the unit maximum ROI of 1, the saving to the
enterprise software vendors can be quite significant. If
we assume that 1 represents $5,000 (a reasonable
figure), then with 1,000 software defect reports against
a software product to be released, a total saving with
EP’s prediction is 1000×5000=5 million dollars.

The first approach is to rebalance the data (to an
equal portion between positive and negative examples)
using under-sampling, applies regular (cost-insensitive)
learning algorithms (such as J48 [19], which is similar
to the decision tree algorithm C4.5 [17, 18]), and finds
the best threshold for classification that produces the
maximum ROI on the validation set. The best threshold
is then applied to the test set to obtain the unit
maximum ROI. This approach is simple to implement
as any regular learning algorithms can be used, and is
intuitive as maximum ROI is sought directly.

The second approach, called costing, achieves true
cost-sensitivity via an advanced sampling (rejection
sampling) with a provable performance guarantee [20].
As the method is truly cost-sensitive, the classification
results can be used directly to calculate the minimal
total cost, which is equivalent to the (negated)
maximum ROI. We apply costing (rejection sampling
and bagging) with J48 used in the first approach, to see
if it would outperform the first one. As the training set
after rejection sampling contains about 30,000
examples, much larger than the one in the first
approach (only about 2,000), we only run bagging 1,
10, and 100 times. Table 2 shows the unit maximum
ROI for rebalance approach and costing.

Table 2: Unit maximum ROI.
Bagging Iterations
1 10 100

Rebalance 0 0 1.743
Costing 1.262 1.955 1.779

Comparing the two different sampling approaches,
we can draw several interesting conclusions. First of
all, rejection sampling with bagging is just a little
better than the simple rebalancing with bagging when
the bagging iterations reach 100. Second, similar to the
conclusion drawn earlier, the results do not always
improve with more bagging iterations.

The third approach is the decision tree learning
algorithm which uses directly the minimal total cost or
maximum ROI as its split criterion [15]. Several
improvements have been made, including post pruning.

The unit maximum ROI for this approach is
obtained as 1.67, comparable to the results with J48 in
rebalancing and costing (Table 2). The tree directly
predicts labels of the test examples without the need to
search the best threshold, as this approach is also true
cost-sensitive. The rules produced from this approach
have been shown to the software vendor where the data
come from, and are regarded as reasonable, useful, and
interesting. Further analysis of the decision tree shows
that the statistical inputs (see Section 4) were generally
highly useful for modeling and that statistics about the
customer (e.g., customer name and the role of the
submitter) and the customer environment (such as the
hardware platform of the OS version) were also highly
useful.

To see if bagging can be used to improve ROI
further, we have also applied bagging to this approach.
Indeed, the result is even better: the unit maximum
ROI reaches over 2.4, the highest of all approaches we
have tried. This model is used in the EP system for
evaluation (see next Section).

6. Deployment

Our EP system has been in deployment for several

months in the product group of an enterprise software
vendor where the dataset comes from. It has been used
to make suggestions on current defect reports with high

risks of escalation. As the software vendor must wait to
see which defect reports are actually escalated after the
product is released, and the would-be escalations will
not happen after they are accurately predicted by EP
and corrected before software release, the final
evaluation cannot be obtained until the software has
been released and has been in use by customers for
some period of time (in the order of one or more
quarters).

We have evaluated EP using the defect reports
submitted or updated during the most recent three
weeks in the test set. Any records corresponding to
defect reports which had already been escalated at the
time of preparing the data set were also removed. After
EP makes its predictions, the results are compared to
the actual escalations happened up to date. The EP
prediction performance is quite good. The lift chart of
EP’s prediction is well above the random diagonal line:
at top 10 percentile (among top 10% of the most likely
predicted escalations), about 70% of the actual
escalations are predicted; at 20 percentile about 85%;
and at 30 percentile about 90%. These results are of
significant business value to the software vendor. In
addition, the product group has provided positive
feedback on the performance of the EP system, citing
that it “catches” defect reports that, after thorough
evaluation by specialist, are considered likely
candidates for future escalations. For instance, some
defect reports have been found to have been assigned a
lower than appropriate priority. After a prediction of
high escalation risk becomes available such a defect
report can be upgraded to a higher priority which will
lead to expedited evaluation and resolution.

7. Conclusions

In this paper, we have made a case for predicting

and preventing escalations from known product defect
reports for enterprise software vendors. By applying
data mining technologies that have been used
successfully in many other fields, enterprise software
vendors can proactively predict and resolve known
product defect reports with the greatest risk of
escalation. This can save software vendors an
enormous amount of software maintenance cost.

An escalation prediction solution based on data-
mining for the maximum ROI has been proposed and
tested, and is currently deployed at an enterprise
software vendor. Preliminary results provide evidence
that we can indeed make useful predictions about the
escalation risk of product defects. In our future work,
we plan to continue to improve the effectiveness of the
EP system and track its results.

8. References

[1] Berry, M.J.A., and Linoff, G. 1997. Data Mining
Techniques: For Marketing, Sales, and Customer Support.
John Wiley & Sons.
[2] Beohm, B.W., and Basili, V. 2001. Software Defect
Reduction Top 10 List. Computer 34(1): 135-137.
[3] Boehm, B.W. 1981. Software Engineering Economics.
Prentice-Hall Advances in Computing Science & Technology
Series.
[4] Breiman, L. 1996. Bagging Predictors. Machine Learning
24(2): 123-140.
[5] Bruckhaus, T., Ling, C.X., Madhavji, N.H., and Sheng, S.
2004. Software Escalation Prediction with Data Mining.
Workshop on Predictive Software Models (PSM 2004), A
STEP Software Technology & Engineering Practice.
[6] Chulani, S., and Boehm, B.W. 1997. Modeling Software
Defect Introduction. California Software Symposium, Nov.
1997.
[7] Dai, H. (editor). 2003. Proceedings of The International
Workshop on Data Mining for Software Engineering and
Knowledge Engineering.
[8] Drummond, C., and Holte, R.C. 2003. C4.5, Class
Imbalance, and Cost Sensitivity: Why under-sampling beats
over-sampling. Workshop on Learning from Imbalanced
Datasets II.
[9] Elkan, C. 2001. The Foundations of Cost-Sensitive
Learning. International Joint Conference of Artificial
Intelligence (IJCAI 2001), 973-978.
[10] Fayyad, U., Piatetsky-Shapiro, G., Smyth, P., and
Uthurusamy, R.(editors). 1996. Advances in Knowledge
Discovery and Data Mining, AAAI/MIT Press.
[11] Freund Y. and Schapire, R.E. 1996. Experiments with a
New Boosting Algorithm. Proceeding of International
Conference on Machine Learning (ICML), 148-156.
[12] Japkowicz. N. 2001. Concept-Learning in the Presence
of Between-Class and Within-Class Imbalances, Proceedings
of the Fourteenth Conference of the Canadian Society for
Computational Studies of Intelligence (AI'2001).
[13] Joshi, M.V., Agarwal, R.C., and Kumar, V. 2001.
Mining needles in a haystack: classifying rare classes via
two-phase rule induction. In SIGMOD’01 Conference on
Management of Data.
[14] Ling, C.X., and Li, C. 1998. Data Mining for Direct
Marketing: Specific Problems and Solutions. Proceedings of
Fourth International Conference on Knowledge Discovery
and Data Mining (KDD-98), 73-79.
[15] Ling, C.X., Yang, Q., Wang, J., and Zhang, S. 2004.
Decision trees with minimal costs. Proceedings of
International Conference on Machine Learning (ICML).
[16] Niculescu-Mizil, A., and Caruana, R. 2001. Obtaining
Calibrated Probabilities from Boosting. AI Stats.
[17] Quinlan, J.R. 1986. Induction of decision trees. Machine
Learning, 1(1): 81-106.
[18] Quinlan, J.R. 1993. C4.5: Programs for Machine
Learning. Morgan Kaufmann.
[19] Witten, I.H., and Frank, E. 2000. Data Mining:
Practical machine learning tools with Java implementations.
Morgan Kaufmann, San Francisco.
[20] Zadrozny, B., Langford, J., and Abe, N. 2003. Cost-
Sensitive Learning by Cost-Proportionate Example
Weighting. Proceedings of International Conference of Data
Mining (ICDM).

http://www.informatik.uni-trier.de/~ley/db/conf/ijcai/ijcai2001.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/z/Zadrozny:Bianca.html

	1. Introduction
	2. The EP Solution Architecture
	3. Maximum ROI and Cost-sensitive Learning
	4. The Datasets
	5. Comparing cost-sensitive learning approaches for EP
	6. Deployment
	7. Conclusions
	8. References

