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Abstract 

Enterprise software venders often have to release 
software products before all reported defects are 
corrected, and a small number of these reported 
defects will be escalated by customers whose 
businesses are seriously impacted. Escalated defects 
must be quickly resolved at a high cost by the software 
vendors. The total costs can be even greater, including 
loss of reputation, satisfaction, loyalty, and repeat 
revenue. In this paper, we develop an Escalation 
Prediction (EP) system to mine historic defect report 
data and predict the escalation risk of current defect 
reports for maximum ROI (Return On Investment). 
More specifically, we first describe a simple and 
general framework to convert the maximum ROI 
problem to cost-sensitive learning. We then apply and 
compare several best-known cost-sensitive learning 
approaches for EP. The EP system has produced 
promising results, and has been deployed in the 
product group of an enterprise software vendor. 
Conclusions drawn from this study also provide 
guidelines for mining imbalanced datasets and cost-
sensitive learning.  

 
1. Introduction 

 
Building large enterprise software is often a highly 

complex and lengthy process, during which numerous 
software defect reports can exist and some of them 
may not be resolved when the software products are 
released (usually against a tight deadline) [2, 3, 6]. 

The objective of the Escalation Prediction (EP) 
system is to assist human experts in the review process 
of software defect reports by modeling and predicting 
escalation risk using data mining technology [1, 10, 7]. 
If the EP system can accurately predict the escalation 
risk of known defect reports, escalations can be greatly 
reduced by correcting those high-risk defect reports 
with a much lower cost within the software 
development and testing cycle before release. This 

would save a huge amount of money for the enterprise 
software vendors [5].  

Indeed, the business goal of EP (and many 
industrial applications using data mining) is to 
maximize the ROI (Return on Investment), not the 
usual data-mining measures such as accuracy, AUC 
(area under the ROC curve), lift, or recall and precision 
combinations [14]. We have found little previous work 
that directly optimizes the ROI as the data mining 
effort.  

In this paper, we first set up a simple framework in 
which the problem of maximum ROI can be converted 
to minimum total cost in cost-sensitive learning [8, 9] 
under certain conditions (see Section 3). We then apply 
and compare several best-known cost-sensitive 
learning algorithms on a defect report dataset to see 
how they perform, in terms of maximum ROI (Section 
5). Conclusions drawn in this study not only help 
enterprise software vendors to improve profit in 
software production by reducing the cost of 
escalations, but also provide some general guidelines 
for mining imbalanced datasets [12, 13] and cost-
sensitive learning.  

 
2. The EP Solution Architecture 

 
The diagram in Figure 1 illustrates a general 

architecture of the Escalation Prediction System.  
Data is captured periodically from the software 
vendors’ Online Transaction Processing (OLTP) 
systems which collect defect report and escalation 
information. Data may be captured weekly and stored 
indefinitely in a data mart. While the information in the 
OLTP systems continues to change from moment to 
moment, the information in the data mart remain 
constant so as to provide the historical data required for 
training predictive models in EP. 

The historical data may be pre-processed before 
being fed into data-mining algorithms (see Section 5).  
Derived fields, historical information, and statistics are 



added to yield the set of available input fields. These 
fields or attributes may include data fields which come 
directly from the defect report tracking system and 
derived fields obtained from the data and other sources.  

The next step is to train and validate predictive 
models. See Sections 3-6 for details. Once one or more 
satisfactory models have been found, the most 
appropriate model may be selected and run against the 
most recent snapshot of defect report data.  The 
predicted escalations may be then reported to the 
product group for evaluation and proactive resolution. 
The product group may provide feedback to allow for 
ongoing improvement of the overall escalation 
prediction and prevention effort. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. The EP solution architecture.  

 
3. Maximum ROI and Cost-sensitive 
Learning 

 
As we have discussed in the Introduction section, 

correcting defects after an escalation occurs is much 
more expensive than correcting defects before they 
become escalated. If we treat defect escalations as 
positive examples, then the cost of false negative FN 
(correcting an escalated defect) should cost many times 
more than the cost of false positive FP (correcting a 
non-escalated defect). If the cost of FN and FP is 
known, like in our study, then this would seem to be a 
straightforward cost-sensitive learning problem, in 
which the weighted misclassification costs should be 
minimized.  

The problem is not that simple. The goal of the EP 
(Escalation Prediction) system (and many other real-
world data mining applications) is to maximize the 
Return on Investment (ROI) after data mining is 
deployed. However, ROI is not equivalent to the usual 
measures such AUC, which is often used as a general 
measure when the cost metric and classification 
distributions are unknown. Indeed, ROI is rarely used 

as an optimization goal in building data-mining 
models1. 

Let us first establish the formula for ROI. In our 
study, the cost of correcting an escalated defect is 
estimated to be as much as 7 times the cost of 
correcting a (non-escalated or would-be escalated) 
defect (we assume that after a defect is corrected it will 
never be escalated in the future). That is, FN = 7, and 
FP = 1 (we did not use the actual numbers here for 
confidentiality reasons but the cost figures used are the 
same modulo to a constant factor). When EP makes a 
prediction on a dataset, it will produce a number of true 
positive (tp), true negative (tn), false positive (fp), and 
false negative (fn) cases. Thus, the ROI is: 

  ROI=tp×(FN–FP)–fp×FP=6×tp–fp.   (1) PRODUCT 
GROUP 

DATA MINING TOOL 
As long as the ROI, such as (1), can be expressed 

as a linear formula of tp, fp, tn, and fn, we can negate 
its coefficients in the linear formula, and re-assign the 
cost metric by the negated coefficients. For example, 
the cost metric for ROI of (1) can be converted and 
represented in Table 1. In the rest of the paper, we will 
study EP under this cost metric.  

Train 

Validate Add Statistics Provide Feedback

Add History FixPredict 

Derive Values Report Evaluate

Through this simple conversion, the maximum ROI 
problem can be indeed solved by cost-sensitive 
learning algorithms.  

Mapping Process 
Mapping 
TablesData Mart 

Archiving Process Table 1: Cost metric converted from (1). OLTP DATA SOURCE  Actual 0 Actual 1 
Predict 0 0 0 
Predict 1 1 -6 

 
4. The Datasets 

 
Our dataset consists of historical defect reports 

from industry software projects of an enterprise 
software vendor. Defect reports change over time and 
so there is an opportunity to learn from multiple 
different versions of a single defect report.  Therefore, 
multiple data records in the dataset may belong to only 
one defect report.  The data was collected in late 
2004, and contains a total of about 400,000 records 
(defect report observations). The total number of 
attributes is 53, most of which are numerical attributes 
(including dates), and a few are nominal (such as 
product name). The system uses three types of inputs: 
1) raw inputs which correspond to field values which 
are reported by users and stored in the defect tracking 
database, 2) row-level transformations of raw values, 
such as concatenating two string-valued raw inputs into 
a derived new string-valued input, and 3) statistical 
inputs which are derived from statistical analyses of all 
rows which fall into a given time period, such as a 
fiscal quarter. 
                                                      
1 There are two common definitions of ROI: the amount of the 
benefit divided by, or subtracted by, the cost of investment. In this 
paper we take subtraction in the ROI calculation, and the investment 
is the cost of deploying data mining. 



Statistical inputs were particularly useful for string 
valued raw inputs because string-valued data is 
typically difficult to use for machine learning.  For 
example, a raw input for "CUSTOMER_NAME" may 
have 20,000 possible customer name values. Therefore, 
the system calculates statistics for string-valued inputs.  
These statistics include counts (number of defects 
submitted by customer "abc", and number of 
escalations raised by customer "abc"), means (number 
of escalations over number of defects submitted for 
hardware platform "xyz"), and the probability of an 
escalation, and so on. Further analysis of these inputs 
and their utility for prediction is of great interest but 
beyond the scope of this paper.   

The target attribute is binary (escalation or no 
escalation). The whole dataset is split up into training 
and test sets according to the defect report date. The 
training set contains about 165,000 records before a 
certain date, and the test set contains 232,000 records 
after that date. The dataset is very imbalanced, with 
slightly less than 1% of the positive examples 
(escalated defects). In the training set, there are only 
about 1,000 positive examples (escalated defects).  

 
5. Comparing cost-sensitive learning 
approaches for EP 

 
As we discussed in Section 3, maximum ROI is the 

ultimate measure to compare different data-mining 
approaches on the EP dataset. However, the original 
dataset is very large with many different learning 
algorithms used, some with bagging [4] and boosting 
[11, 16], it would be difficult to use exactly the same 
training and test datasets in all comparisons. To make 
the ROI result comparable, we use “unit” ROI, defined 
as the ROI divided by the number of records in our 
comparison. In the comparisons below, we will report 
the values of the unit maximum ROI. 

Note that even if a data mining method can obtain 
the unit maximum ROI of 1, the saving to the 
enterprise software vendors can be quite significant. If 
we assume that 1 represents $5,000 (a reasonable 
figure), then with 1,000 software defect reports against 
a software product to be released, a total saving with 
EP’s prediction is 1000×5000=5 million dollars. 

The first approach is to rebalance the data (to an 
equal portion between positive and negative examples) 
using under-sampling, applies regular (cost-insensitive) 
learning algorithms (such as J48 [19], which is similar 
to the decision tree algorithm C4.5 [17, 18]), and finds 
the best threshold for classification that produces the 
maximum ROI on the validation set. The best threshold 
is then applied to the test set to obtain the unit 
maximum ROI. This approach is simple to implement 
as any regular learning algorithms can be used, and is 
intuitive as maximum ROI is sought directly.  

The second approach, called costing, achieves true 
cost-sensitivity via an advanced sampling (rejection 
sampling) with a provable performance guarantee [20]. 
As the method is truly cost-sensitive, the classification 
results can be used directly to calculate the minimal 
total cost, which is equivalent to the (negated) 
maximum ROI. We apply costing (rejection sampling 
and bagging) with J48 used in the first approach, to see 
if it would outperform the first one. As the training set 
after rejection sampling contains about 30,000 
examples, much larger than the one in the first 
approach (only about 2,000), we only run bagging 1, 
10, and 100 times. Table 2 shows the unit maximum 
ROI for rebalance approach and costing.  

Table 2: Unit maximum ROI. 
Bagging Iterations  
1 10 100 

Rebalance 0 0 1.743 
Costing 1.262 1.955 1.779 

Comparing the two different sampling approaches, 
we can draw several interesting conclusions. First of 
all, rejection sampling with bagging is just a little 
better than the simple rebalancing with bagging when 
the bagging iterations reach 100. Second, similar to the 
conclusion drawn earlier, the results do not always 
improve with more bagging iterations. 

The third approach is the decision tree learning 
algorithm which uses directly the minimal total cost or 
maximum ROI as its split criterion [15]. Several 
improvements have been made, including post pruning.  

The unit maximum ROI for this approach is 
obtained as 1.67, comparable to the results with J48 in 
rebalancing and costing (Table 2). The tree directly 
predicts labels of the test examples without the need to 
search the best threshold, as this approach is also true 
cost-sensitive. The rules produced from this approach 
have been shown to the software vendor where the data 
come from, and are regarded as reasonable, useful, and 
interesting. Further analysis of the decision tree shows 
that the statistical inputs (see Section 4) were generally 
highly useful for modeling and that statistics about the 
customer (e.g., customer name and the role of the 
submitter) and the customer environment (such as the 
hardware platform of the OS version) were also highly 
useful. 

To see if bagging can be used to improve ROI 
further, we have also applied bagging to this approach. 
Indeed, the result is even better: the unit maximum 
ROI reaches over 2.4, the highest of all approaches we 
have tried. This model is used in the EP system for 
evaluation (see next Section).  

 
6. Deployment 

 
Our EP system has been in deployment for several 

months in the product group of an enterprise software 
vendor where the dataset comes from. It has been used 
to make suggestions on current defect reports with high 



risks of escalation. As the software vendor must wait to 
see which defect reports are actually escalated after the 
product is released, and the would-be escalations will 
not happen after they are accurately predicted by EP 
and corrected before software release, the final 
evaluation cannot be obtained until the software has 
been released and has been in use by customers for 
some period of time (in the order of one or more 
quarters).  

We have evaluated EP using the defect reports 
submitted or updated during the most recent three 
weeks in the test set. Any records corresponding to 
defect reports which had already been escalated at the 
time of preparing the data set were also removed. After 
EP makes its predictions, the results are compared to 
the actual escalations happened up to date. The EP 
prediction performance is quite good. The lift chart of 
EP’s prediction is well above the random diagonal line: 
at top 10 percentile (among top 10% of the most likely 
predicted escalations), about 70% of the actual 
escalations are predicted; at 20 percentile about 85%; 
and at 30 percentile about 90%. These results are of 
significant business value to the software vendor. In 
addition, the product group has provided positive 
feedback on the performance of the EP system, citing 
that it “catches” defect reports that, after thorough 
evaluation by specialist, are considered likely 
candidates for future escalations. For instance, some 
defect reports have been found to have been assigned a 
lower than appropriate priority. After a prediction of 
high escalation risk becomes available such a defect 
report can be upgraded to a higher priority which will 
lead to expedited evaluation and resolution.  

 
7. Conclusions 

 
In this paper, we have made a case for predicting 

and preventing escalations from known product defect 
reports for enterprise software vendors. By applying 
data mining technologies that have been used 
successfully in many other fields, enterprise software 
vendors can proactively predict and resolve known 
product defect reports with the greatest risk of 
escalation. This can save software vendors an 
enormous amount of software maintenance cost. 

An escalation prediction solution based on data-
mining for the maximum ROI has been proposed and 
tested, and is currently deployed at an enterprise 
software vendor. Preliminary results provide evidence 
that we can indeed make useful predictions about the 
escalation risk of product defects. In our future work, 
we plan to continue to improve the effectiveness of the 
EP system and track its results. 
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