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Abstract. Ensemble learning has been shown to be very successful in data min-
ing. However most work on ensemble learning concerns the task of classification.
Little work has been done to construct ensembles that aim to improve ranking.
In this paper, we propose an approach to re-construct new ensembles based on
a given ensemble with the purpose to improve the ranking performance, which
is crucial in many data mining tasks. The experiments with real-world data sets
show that our new approach achieves significant improvements in ranking over
the original Bagging and Adaboost ensembles.

1 Introduction

Classification is one of the fundamental tasks in knowledge discovery and data mining.
The performance of a classifier is usually evaluated by predictive accuracy. However,
most machine learning classifiers can also produce the probabilityestimation of the class
prediction. Unfortunately, this probability information is ignored in the measure of ac-
curacy.

In many real-world data mining applications, however, we often need the probability
estimations or ranking. For example, in direct marketing, we often need to promote the
most likely customers, or we need to deploy different promotion strategies to customers
according to their likelihoodof purchasing. To accomplish these tasks we need a ranking
of customers according to their likelihood of purchasing. Thus ranking is often more
desirable than classification in these data mining tasks.

One natural question is how to evaluate a classifier’s ranking performance. In re-
cent years, the area under the ROC (Receiver Operating Characteristics) curve, or sim-
ply AUC, is increasingly received attention in the communities of machine learning and
data mining. Data mining researchers [1, 2] have shown that AUC is a good summary in
measuring a classifier’s overall ranking performance. Hand and Till [3] present a simple
approach to calculating AUC of a classifier for binary classification.

Â = S0�n0(n0+1)=2
n0n1

; (1)

where n0 and n1 are the numbers of positive and negative examples respectively, and
S0 = ∑ ri, where ri is the rank of the ith positive example in the ranked list.

Ensemble is a general approach which trains a number of classifiers and then com-
bines their predictions in classification. Many researches [4–6] have shown that the en-
semble is quite effective in improving the classification accuracy compared with a single
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classifier. The reason is that the prediction error of an individual classifier can be coun-
teracted by the combination with other classifiers. Bagging [5] and Boosting [7] are two
of the most popular ensemble techniques.

Most previous work of ensemble learning is focussed on classification. To our knowl-
edge, there is little work that directly constructs ensembles to improve probability es-
timations or ranking. [8] compared the probability estimations (ranking) performance
of different learning algorithms by using AUC as the comparison measure and demon-
strated that Boosted trees and Bagged trees perform better in terms of ranking than Neu-
ral Networks and SVMs. [9] used the boosting technique on the general preference learn-
ing (ranking) problem and proposed a new ranking boosting algorithm: RankBoost.

In this paper, we propose a novel approach to improve the ranking performance over
a given ensemble. The goal of this approach is to select some classifiers from the given
ensemble to re-construct new ensembles. It first uses the k-Nearest Neighbor method to
find training data subsets which are most similar to the test set, then it uses the measure
SAUC (see Section 2.2) as heuristic to dynamically choose the diverse and well per-
formed classifiers. This approach is called DERC (Dynamic Ensemble Re-Construction)
algorithm. The new ensembles constructed by this approach are expected to have better
ranking performance than the original ensemble.

The paper is organized as follows. In Section 2 we give detailed description for our
new algorithm. In Section 3 we perform experiments on real world data sets to show the
advantages of the new algorithm.

2 DERC (Dynamic Ensemble Re-Construction) Algorithm

In an ensemble, the combination of the predictions of several classifiers is only useful
if they disagree to some degree. Each ensemble classifier may perform diversely during
classification. Our DERC algorithm is motivated by this diversity property of ensemble.
The diversity implies that each ensemble classifier performs best in probability estima-
tion (ranking) only in a subset of training instances. Thus given a test (sub)set, if we
use the k-Nearest Neighbor method to find some training subsets that are most similar
to it, the classifiers that perform diversely and accurately on those similar training sub-
sets are also expected to perform well on the test (sub)set. Therefore the new ensembles
constructed are expected to have better ranking performance than the original ensemble.

Our DERC algorithminvolves two basic steps: finding the most similar training (sub)sets,
and selecting the diverse and accurate classifiers.

Now we use Figure 1 to illustrate how DERC algorithm works. Suppose that we are
given an ensemble E with multiple classifiers built on a training set S, and we have an
unlabeled test set T at hand. Our goal is to select some classifiers from the ensemble E
to build one or more new ensembles to perform ranking on test set T .

2.1 Finding the Most Similar Training Subsets

The first step is to stratify the test set to some equal parts and find the most similar train-
ing subsets corresponding to test partitions. Since the labels of test instances are un-
known, we randomly pick a classifier from ensemble E to classify the test set T to obtain
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the predicted labels. Assume that we want to construct 3 new ensembles. According to
the predicted class labels we stratify (partition with equal class distributions) the test set
T into 3 equal sized parts: T1, T2, and T3. We want to select some classifiers from ensem-
ble E to build 3 different new ensembles which are responsible for ranking T1, T2 and T3
respectively.
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Fig. 1. An example for the similar sets.

For each stratified test subset we use the k-Nearest Neighbor method to find k subsets
of training set which are most similar to that test set part. For each instance of the test
subset, we compute the distances from this instance to all training instances and find
the nearest k instances. We use the following method to compute the distance between
two instances u and v, which are from the test subset and training dataset, respectively.
Suppose that an instance has k1 nominal attributes Ai and k2 numerical attributes Bi. We
use the simplified VDM measure proposed in [10] to compute the distance of all nominal
attributes.

VDM(u;v) = ∑
C

k1

∑
i=1
(NAi=au;C=c

NAi=au

� NAi=av ;C=c

NAi=av

)2

where NAi=au is the number of instances in test subset holding value au on attribute Ai,
NAi=au;C=c is the number of instances in test subset which are predicted belonging to
class c and hold value au on attribute Ai. Here note that since test set is unlabeled, we
use the class labels predicted in the first step.

We simply use the Euclidean distance to compute the difference of numerical at-
tributes. ED(u;v) = ∑k2

i=1(bui � bvi)2, where bui is instance u’ value on numerical at-
tribute Bi.

The distance of u and v is

d(u;v) =VDM(u;v)+ED(u;v)
After the distances are computed, we randomly pick one from the k nearest instances of
each test instance and use them to form a training subset. This subset is most similar to
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the test subset. We can use this method to find a desired number of most similar training
subsets. The distance between two similar data sets is simply the average distances of
each test subset instance with its corresponding nearest training instance. As shown in
Figure 1, assume that S11, S12, S13, S14 and S15 are T1’s 5 most similar training subsets.
Their distances to T1 are computed as d11, d12, d13, d14 and d15, respectively.

2.2 Selecting Diverse and Accurate Classifiers

After the most similar training subsets are found, we use the following strategy to select
diverse and accurate classifiers from original ensemble. Instead of directly using AUC
as the criterion to choose classifiers, we propose a new measure SAUC (Softened Area
Under the ROC Curve) as the heuristic.

For a binary classification task, SAUC is defined as

SAUC(γ) = ∑m
i=1 ∑n

j=1 U(p+i � p�j )γ

mn
(2)

U(x) =� x if x � 0
0 if x < 0

where γ � 0, p+i , p�j represent the predicted probabilities of being positive for the
ith positive and the jth negative examples in all m positive examples and n negative
examples, respectively.

We choose a series of measures SAUC(γ1), SAUC(γ2), � � �, SAUC(γn) as heuristics.
We use SAUCs as heuristics for two reasons. First, SAUC with different powers γ may
have different sensitivities and robustness to instance ranking variations. Thus using
SAUCs with varied power γ as heuristics can more reliably select diverse classifiers in
terms of ranking. Second, SAUC is a softened version of AUC and thus it is basically
consistent with AUC. From Equation 2 we can see that SAUC(0) = AUC. Thus using
SAUCs as criteria can select the classifiers with accurate ranking performance.

As shown in Figure 1 we use each classifier Ct of ensemble E to classify S11, S12, S13,
S14 and S15 to obtain the respective SAUC(γ1) as SA11, SA12, SA13, SA14, SA15. We then
compute a score for Ct , which is the weighted average of the SAUC(γ1) values obtained
above. It is St = ∑5

i=1
SA1i
d1i

. We choose the classifier with the highest score. We repeat the
above step n times by using a different SAUC(γi) each time to select a new classifier.

Finally we use all the classifiers selected to construct a new ensemble. This ensem-
ble is responsible for ranking T1. The new ensemble combination method is weighted
averaging, in which a classifier’s weight is its score computed above. Using the same
method we can construct two other ensembles which are responsible for ranking T2 and
T3, respectively. We give the pseudo-code of this algorithm in Table 1.

One natural question about the DERC algorithm is that how many new ensembles
should be constructed to give the best ranking performance. Since the number of test
set partitions equals to the number of new ensembles, this question is equivalent to how
to choose an optimal number of test set partitions. Clearly, a small number of partitions
generally means large partitioned test subsets, which corresponds to large similar train-
ing subsets. Thus the corresponding new ensemble may not specialize on all instances
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Table 1. The pseudo code for DERC algorithm

DERC(E;S;T;n)
Input:
E : An ensemble with classifiers C1; � � � ;CN
S : Training data set
T : Test data set
n : The number of test set partitions

choose a classifier from E to classify T
stratify T into T1;T2 ; � � � ;Tn
for each partition Ti do

E�
i  φ

find the most similar training subsets Si1;Si2; � � � ;Sik
compute the distances di1;di2; � � � ;dik from Ti to Si1; � � � ;Sik respectively
for each measure SAUC(γu) do

for each classifier Ct do
run Ct on Si1;Si2; � � � ;Sik
obtain the SAUC(γu) of Ct as SAti1 ; � � � ;SAtik
compute the ranking score for classifier Ct

rt  ∑k
j=1

SAti j

di j

endfor
choose the classifier CC with highest score rt
E�

i  E�
i [CC

endfor
endfor
return all E�

i

of the similar training subsets. Therefore our algorithm may not perform best on a small
number of partitions. On the contrary for very large number of partitions, the size of
similar training subsets will be very small. In this case there is a danger of overfitting.
Therefore we can claim that generally too small or too large number of partitions should
be avoided. We will perform experiments in the next section to confirm this claim.

3 Experimental Evaluation

To evaluate the performance of our algorithm, we extract 16 representative binary data
sets from UCI [11].

We use Bagging and Adaboost as the ensembling methods and Naive Bayes as the
base learner. We choose WEKA [12] as the implementations. In order to increase the en-
semble diversity, we randomly select half of the training data for each bootstrap in our
Bagging process. This can guarantee that the bagging classifiers are diverse to some de-
gree. We compare the performance of DERC with Bagging and Adaboost respectively.

In our DERC algorithm we use SAUC(γi) as criteria to select classifiers. We have
to determine the suitable number and scores of the powers γi by taking into account the
tradeoff between the quality of results and computational costs. We test the SAUC with a
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wide ranges of powers γ by using all the 16 datasets in the our experiments. The analysis
of these measures’ performance shows that the power range of [0,3] is a good choice for
SAUC. We choose 9 different SAUC with the powers of 0, 0.1, 0.4, 0.8, 1.0, 1.5, 2, 2.5,
3 in our experiment.

We follow the procedure below to perform our experiment:

1. We discretize the continuousattributes in all data sets using the entropy-based method
described in [13].

2. We perform 5-fold cross validation on each data set. In each fold we train an ensem-
ble with 15 classifiers using Bagging and Adaboost methods, respectively. We then
run our DERC algorithm on the ensemble trained. By varying the number of test set
partitions, we have a number of different DERC algorithm models.

3. We run the second step 20 times and we compute the average AUC for all the pre-
dictions.

We use a common statistic to compare the learning algorithms across all data sets.
We performed two tailed paired t-test with 95% confidence level to count in how many
datasets one algorithm performs significantly better, same, and worse than another algo-
rithm respectively. We use win/draw/loss to represent this.

The experimental results are listed in Table 2 and Table 3.

Table 2. Comparing the predictive AUC of DERC algorithms with Bagging

Dataset Bagging DERC(1) DERC(2) DERC(3) DERC(4) DERC(6)
breast 98.84� 0.56 98.84 � 0.53 98.83� 0.50 98.85 � 0.59 98.86� 0.55 98.81� 0.59
cars 93.56� 3.0 94.77� 2.2 94.9 � 2.7 94.83� 2.7 94.87� 2.9 95.02� 2.1

credit 92.89� 1.2 93.43� 1.1 93.36 � 1.2 93.32� 1.2 93.3� 1.4 93.3 � 1.1
echocardio 72.34� 8.4 72.34� 8.4 74.21 � 8.3 74.11� 8.4 74.11 � 8.4 73.09� 8.4

eco 99.28 �0.84 99.34� 1.1 99.34 � 1.0 99.32 � 0.84 99.3� 1.0 99.33� 0.84
heart 85.89� 0.45 86.01� 0.5 86.97� 0.5 86.81 � 0.64 86.06 � 1.7 85.92� 2.6

hepatitis 86.73� 2.6 87.06� 2.6 87.5 � 2.9 89.14� 2.6 88.59 � 2.4 88.2 � 1.8
import 97.75� 2.6 97.75� 2.6 97.59 � 2.8 97.72� 2.6 97.72 � 2.6 97.74� 2.6
liver 61.77� 1.6 61.33 � 0.45 61.64 � 0.6 61.4� 0.18 61.26 � 0.3 61.19� 3.7
pima 77.27� 8.9 79.33� 7.6 79.29 � 7.7 79.26� 8.0 79.14 � 8.6 79.22� 8.7

thyroid 95.12� 1.7 95.19� 1.6 95.10 � 1.6 95.16� 1.9 95.24 � 1.9 95.29� 1.5
voting 96.00 �0.36 96.08 � 0.36 96.07� 0.36 96.27 � 0.36 95.99� 0.36 96.01� 0.36
sick 96.84 �1.56 95.20�2.48 �94.27�2.11 �94.27�3.47 �93.99�2.79 �94.08�3.02

ionosphere 94.59 �3.21 94.80 � 3.22 95.96 �3.47 95.85�2.63 95.84�2.79 95.84� 3.92
german 84.26 �4.02 87.58 � 4.33 87.40 � 4.1 87.23 � 4.21 87.44 � 4.2 87.4 � 4.17

mushroom 99.89 �0.04 99.79 � 0.04 99.88� 0.04 99.90 � 0.04 99.89� 0.04 99.89� 0.04
w/d/l 4/12/0 7/8/1 8/7/1 8/7/1 7/8/1

Table 2 shows the AUC values for the Bagging algorithm and the DERC algorithms
with different settings on various data sets. We use DERC(i) to denote the correspond-
ing DERC algorithm which generate a number of i new ensembles. Each data cell rep-
resents the average AUC value of the 20 trials of 5-fold cross validation for the corre-
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sponding algorithm and data set. The data in bold shows the corresponding algorithm
performs significantly better than Bagging on the corresponding data set. The data with
a “�” means it is significantly worse than that of Bagging.

From this table, we can see that DERC outperforms the original Bagging algorithm.
The w/d/l statistics shows that all DERCs with different settings have much more wins
than losses compared with Bagging algorithm. If we rank them according to the w/d/l
number, we can see that the DERC with 3 or 4 partitions performs best, the DERC with
2 or 6 partitions the second best, while the DERC with 1 partition the worst.

We can also see how the partition numbers influences the dynamic re-construction
performance. We can observe that generally the dynamic re-constructions with the par-
tition numbers of 3 or 4 perform best. It shows that dynamic re-construction with inter-
mediate number of partitions outperforms that with large or small number of partitions.
This result confirms our discussion in the previous section.

We also compare our DERC algorithm with Adaboost and report the results in Table
3. The similar comparisons show that DERC also significantly outperforms Adaboost in
terms of AUC. DERC(3) wins in 5 datasets, ties in 10 datasets on loses only in 1 dataset.

Table 3. Comparing the predictive AUC of DERC algorithms with Adaboost

Dataset AdaBoost DERC(1) DERC(2) DERC(3) DERC(4) DERC(6)
breast 98.99 � 2.1 98.39� 2.4 98.41 � 2.1 98.46� 2.1 98.51� 2.1 98.53� 2.1
cars 91.74 � 5.0 93.21� 5.0 93.14� 5.0 94.72� 5.0 93.89� 5.0 93.21� 5.0

credit 92.06 � 3.7 92.04 � 3.7 92.06 � 3.5 92.08� 4.8 92.10� 5.3 91.77� 4.7
echocardio 72.02 � 4.8 73.94 � 4.8 73.94 � 4.8 73.94� 4.8 73.94� 4.8 73.94� 4.8

eco 99.30 � 1.0 99.13 � 1.0 99.02 � 1.0 99.24� 1.0 99.27� 1.0 99.62� 1.0
heart 88.03� 0.28 88.51� 0.31 90.39� 0.28 89.72� 1.22 89.34� 1.6 89.58� 1.24

hepatitis 85.25 � 8.6 �83.16�5.8 �83.03� 5.6 �83.24�8.6 �83.9�8.8 �83.84� 5.4
import 98.99 � 1.7 98.90 � 0.0 98.98 � 3.6 98.73� 0.0 98.68� 5.2 98.88� 0.0
liver 65.45 � 6.2 66.44 � 4.1 66.20 � 5.1 67.08� 5.1 67.77� 5.1 66.29� 5.1
pima 75.99 � 8.3 74.92 � 8.1 74.89 � 7.2 77.81� 8.3 77.99� 6.5 78.13� 8.4

thyroid 95.61�0.35 95.55 � 0.8 95.64� 0.27 95.65�0.18 95.58� 0.71 95.58� 0.35
voting 96.37�2.9 96.32�2.9 96.39 � 3.3 96.5 � 1.4 96.37� 1.4 96.37� 2.9
sick 97.02�1.56 97.08� 1.51 97.07� 1.43 97.02� 1.5 96.99� 1.24 97.08� 2.54

ionosphere 94.56�3.21 94.80� 3.47 95.96 �4.37 95.85�4.26 95.84�3.97 95.84� 3.68
german 86.41�4.02 88.24� 4.33 88.21 � 4.1 88.21�4.21 88.19�4.2 88.19� 4.17

mushroom 99.92�0.04 99.79� 0.04 99.88� 0.04 99.90� 0.04 99.89� 0.04 99.89� 0.04
w/d/l 3/12/1 4/11/1 5/10/1 5/10/1 4/11/1

4 Conclusions and Future Work

In this paper we propose a novel dynamic re-construction technique which aims to im-
prove the ranking performance of any given ensemble. This is a generic technique which
can be applied on any existing ensembles. The advantage is that it is independent of the
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specific ensemble construction method. The empirical experiments show that this dy-
namic re-construction technique can achieve significant performance improvement in
term of ranking over the original Bagging and Adaboost ensembles, especially with an
intermediate number of partitions .

In our current study we use Naive Bayes as the base learner. For our future work, we
plan to investigate how other learning algorithms perform with the DERC technique. We
also plan to explore whether DERC is also effective when it is applied on other ensemble
methods.
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