The Mathematics of gene descrambling

Mark Daley Depts. of Computer Science & Biology University of Western Ontario

A CS problem c. the 1980s...

How do we increase processing power?

An evolutionary problem c. 1 billion ya

How do we increase "processing" power?

Protozoa

Tree of life

Eukaryotic tree of life

Aside: "Missing link"

Ciliates

Habitat

Puddle dwellers

Fish Tank Dweller

Ciliate Life Cycle

Stichotrich Subtlety

A Scrambled Gene

MDS	MDS	MDS	
1	2	3	

 How does the ciliate turn a scrambled micronuclear gene into a functional macronuclear gene?

My Tools

 $\Sigma = \{a, b, c, d\}$

 $L = \{a, aab, bdcc, ddaa, cc\} \subseteq \Sigma^+$ $L = \{w \mid w \text{ has a even number of `a`s} \} \subseteq \Sigma^+$

Formal Language Theory

Topology

19 day St = dag f ihm SF: S -> S is a separto of the mp f: Sh->5h. Profi Let CS demte the core (S'EI)/(S'EI) Z base 5"=5"x0 CCS", so. CS"/5" is a sup. of5". The rop & induces Cf: (Cs",s") - ((s",s") = gudich Sf. Rabo Boundary mys in the les. of (CS', 5') => digrammates. Thus, if for is mall by d, so is Sfr. $\begin{array}{c}
\int Sf_{\star} & \int F_{\star} \\
\widetilde{\mathcal{H}}_{nrl}\left(S^{ml}\right) \xrightarrow{2} \widetilde{\mathcal{H}}_{n}\left(S^{n}\right)
\end{array}$ That is : JoSt > the frod

Many thushs are due to two anonyment reference for their valuable comments and engrations that greatly improved the carry dust of this paper. This work

Smoothings LIZAZ inverts a 1-x1+6 LIZOZ brats 17-2/007 c1* 2+ c2 d1+ L15007: P2 65 r, abTzcd ST, acTzbd L1701 10 - 007 Trad+Tzcb STration T, ab T, gd Ly T, ad +bT2c

The naïve model

n $\prod C(\gamma(i),2)$ i=1

• *S. lemnae* DNA pol. α gene, on average:

• **14,445,331,655,040** attempts to get a functional protein.

Kari & Landweber 1999

P =ordered set of all pointers while G_{seq} is not descrambled **do** Remove from *P* any pointers that appear in • G_{seq} in the form $p_n p_n$ $p = P_0$ excise(*p*) Find minimal i such that $p_i \in P - \{p\}, p_i \in G_{sea}$ and $p_i \in G_{plasmid}$ insert(p_i) append (p, p_i) to d-vector $P = P - \{p, p_i\}$ end while

hi/dlad/ld

Prescott, Ehrenfeucht & Rozenberg 1999

Figure 5: (a) The graph G_u in Example 2; (b) $hi_4(G_u)$; (c) $dlad_{2,3}(G_u)$

Template-guided Recombination

Prescott, Ehrenfeucht & Rozenberg 2003

RNA templates

branch migration

as one circular molecule

(E)

(D)

Angeleska, Jonoska, Saito & Landweber 2007

Formal TGR

Let $x, y \in \Sigma^*$. We define

 $x \pitchfork_T y = \{ u\alpha\beta\gamma v \mid x = u\alpha\beta d, y = e\beta\gamma v, \alpha\beta\gamma \in T, u, v, d, e \in \Sigma^*, \alpha, \beta, \gamma \in \Sigma^+ \}.$

(with I. McQuillan & M. Domaratzki)

We generalize \pitchfork_T to languages by $L_1 \Uparrow_T L_2 = \{x \Uparrow_T y \mid x \in L_1, y \in L_2\}.$

Let $\mathcal{L}_1, \mathcal{L}_2$ be language families. We denote by $\mathcal{L}_1 \pitchfork_{\mathcal{L}_2} \mathcal{L}_1 = \{L_1 \pitchfork_T L_2 \mid L_1, L_2 \in \mathcal{L}_1, T \in L_2\}.$

We say that a language family \mathcal{L}_1 is closed under $\pitchfork_{\mathcal{L}_2}$ if and only if $\mathcal{L}_1 \Uparrow_{\mathcal{L}_2} \mathcal{L}_1 \subseteq \mathcal{L}_1$.

Every concatenation-closed full trio L_1 is closed under \pitchfork_{L_2} iff L_1 is closed under \cap with L_2 (a trio).

$\mathcal{L}_1 \mid \mathcal{L}_2$	FIN	REG	LIN	CF	CS	RE
FIN	\checkmark					\checkmark
REG	\checkmark					
LIN						
CF	\checkmark	\checkmark				
CS						
RE	\checkmark	\checkmark	\checkmark		\checkmark	

Table 1: Closure properties of \mathcal{L}_1 under $\pitchfork_{\mathcal{L}_2}$.

Can ciliates be biocomputers?

• We proved that the TGR operation is actually *very weak* computationally.

 Starting with regular languages for both the 'base' and 'template' sets, you can *only* generate more regular languages. You get nowhere!

• (We showed that it *can* descramble MIC genes though).

Show me the thermodynamics!

Knot a problem

Supercoiled DNA

Rational Tangles

Figure 1: Diagrams of the tangles (a) $[\infty]$, (b) [0] and (c) $\frac{1}{[3]} + [2]$

Recombination

Sumners, D. 1995. Lifting the curtain: Using topology to probe the hidden action of enzymes. Notices of the AMS 42:528-537.

• What if the *topology* of the molecule juxtaposed the "next" MDSs to be descrambled?

Actin I (O. trifallax)

(a)

....

2

(g)

(f)

4 3 (h)

Uroleptus Gene

Bonus Actin I:

A modest proposal

• Templates guide recombination.

• Recombination induces supercoiling.

• Supercoiling induces topology.

• Topology guides recombination.

Thank you