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Given a new patient’s state, report, for each action, the range of δ for which it is optimal.

Say to patient in state s: “Take treatment 9 if you would trade up to 
7 points of symptom reduction for 
1 point of functionality improvement.”
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We have a batch of trajectories like this:
The     include many measurements, including symptoms, side-effects, genetic markers, ...
We must define (much like in state-feature construction)

 
 

Using these definitions, we can do fitted-Q iteration over the finite horizon, i.e. 
learn                                                    , then move backward through time:
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Standard approach: “Preference Elicitation”: Determine the decision-maker’s value of δ. 
We propose a different approach:
Take r(s,a,δ) ≡ (1 - δ)⋅r(0)(s,a) + δ⋅r(1)(s,a). Run analysis to find optimal actions given all δ, 
i.e. learn Qt(s,a,δ) and Vt(s,δ) for all t ∈ {1,2,...,T} and for all δ ∈ [0, 1]

Goal: Represent Qt(s,a,δ) and Vt(s,δ) in a way that reveals these preference ranges.

Consider combining a pair of important objectives into a single reward. Suppose rt(0) 
reflects level of symptoms and rt(1) reflects level of functionality. Consider the set of convex 
combinations of reward functions,

rt(s,a,δ) ≡ (1 - δ)⋅rt(0)(s,a) +  δ⋅rt(1)(s,a)
Each δ identifies a specific reward function, and induces a corresponding Qt(⋅,⋅,δ). 
Depending on δ, the optimal policy “cares more” about rt(0) or rt(1).

Our goal is to use RL as a tool for data analysis for decision support:
1.Take comparative effectiveness clinical trial data
2.Produce a policy (or Q-function) based on patient features (i.e. state)
3.Give the policy to a clinician

But really, a policy is too prescriptive. Our output is intended for an “agent” whose reward 
function we do not know.

In treatment of schizophrenia, one wants few symptoms but good functionality.  Different 
people may have very different preferences about which to give up. Each has a different 
reward function.
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Max Over Actions

QT(s,a,δ) is linear in δ
VT(s,δ) is continuous and 
piecewise linear in δ
Knots introduced by 
pointwise max over a found 
by convex hull

Expectation Over 
Next State
QT-1(s,a,δ) is continuous 
and piecewise linear in δ
Average of  VT(s’,δ) over 
trajectories with s,a,s’ 
tuples.
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Max Over Actions
QT(s,a,δ) is linear in δ
VT(s,δ) is continuous and piecewise 
linear in δ. Knots introduced by 
pointwise max over a found by 
convex hull

Regression Over Next State
While learning, we only evaluate VT(s,δ)
at si we have in our dataset. Regression 
coefficients for QT-1(s,a,δ;β) are weighted 
sums of VT(si,δ). Break problem into 
regions of δ space where VT(si,δ) are 
simultaneously linear.

Discrete States

Continuous States
Estimate QT(s,a,0), QT(s,a,1) using linear regression rather than sample averages. 
Use these to compute QT(s,a,δ) for other δ. Expectations for backups also use regression.

Complexity
Worst case, at time T-t, there could be O(nT-t|A|T-t) knots. In practice, there are far fewer. 
Empirical studies on typical clinical trial dataset sizes (n = 1290, |A| = 3, T = 3) induce 
~3000 knots when worst case bounds indicate 1.5⋅107 knots. Runtime: 6.55 seconds.
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