Efficient Reinforcement Learning with

Multiple Reward Functions

for

Randomized Controlled Trial Analysis

Dan Lizotte, Michael Bowling, Susan A. Murphy University of Michigan, University of Alberta

Overview

- Why are we interested in multiple reward functions?
 - Medical research applications for RL
- Algorithm for discrete (tabular) case
 - More efficient than previous approaches
- Algorithm for linear function approximation
 - Previous approaches not applicable

Application: Medical Decision Support

- Our goal is to use RL as a tool for data analysis for decision support:
 - 1.Take comparative effectiveness clinical trial data2.Produce a policy (or Q-function) based on patient features (state)3.Give the policy to a clinician
- But really, a policy is too prescriptive.
 - Our data are noisy and incomplete, causing uncertainty in the learned policy other projects at Michigan and elsewhere.
 - Our output is intended for an "agent" whose reward function we do not know.

Example: Schizophrenia

- In treatment of schizophrenia, one wants few symptoms but good functionality. This is often unachievable.
 - 1. This is a chronic disease. Patient state changes over time.
 - 2. The effect of different treatments varies from patient to patient.
 - 3.Different people may have very different preferences about which to give up. Each has a different reward function/objective.
- Properties 1. and 2. make the problem amenable to RL. The goal of this work is to deal with 3. by not committing to a single reward function.
- Let's look at an idealized version of batch RL, and compare with the type of data we actually have.

Fixed-Horizon Batch RL, Idealized Version

- Get trajectories s_1^i , a_1^i , r_1^i , s_2^i , a_2^i , r_2^i , ..., s_T^i , a_T^i , r_T^i
- Find a policy that chooses actions to maximize expected sum of future rewards. (Note fixed horizon and knowledge of *t*.)
- One possibility: Fitted Q-iteration
 - Learn $Q_T(s_T, a_T) \approx E[R_T|s_T, a_T]$
 - Move backward through time:
 - $Q_t(s_t, a_t) \approx E[R_t + \max_{a'_{t+1}} Q_{t+1}(S_{t+1}, a'_{t+1})|s_t, a_t]$
- Expectations are approximated using data

Fixed-Horizon Batch RL, Realistic Version

- Get trajectories $o_0^i, a_1^i, o_1^i, a_2^i, o_2^i, ..., a_T^i, o_T^i$
- The o_t^i include many measurements, including symptoms, side-effects, genetic information, ...
- We must define (much like in state-feature construction)
 - $s_t^i = s_t^i(o_{0:t-1}^i, a_{1:t-1}^i)$
 - $r_t^i = r_t^i(o_{0:t}^i, a_{1:t}^i)$
- Now we have s_1^i , a_1^i , r_1^i , s_2^i , a_2^i , r_2^i , ..., s_T^i , a_T^i , r_T^i , can do fitted-Q
- How can we defer the choice of $r_t^i(o_{0:t}^i, a_{1:t}^i)$?

Multiple Reward Functions

- Consider a pair of important objectives. Suppose $r_t^{(0)}$ reflects level of symptoms and $r_t^{(1)}$ reflects level of functionality.
- Consider the set of convex combinations of reward functions, e.g.

 $r_t(s,a,\delta) = (1 - \delta) \cdot r_t^{(0)}(s,a) + \delta \cdot r_t^{(1)}(s,a)$

- Each δ identifies a specific reward function, and induces a corresponding $Q_t(\cdot, \cdot, \delta)$. Depending on δ , the optimal policy "cares more" about $r_t^{(0)}$ or $r_t^{(1)}$.
- Standard approach: "Preference Elicitation"
 - Try to determine the decision-maker's *true* value of δ via time tradeoff, standard gamble, visual analog scales,...

"Inverse" Preference Elicitation

- We propose a different approach
- Take $r(s,a,\delta) \equiv (1 \delta) \cdot r^{(0)}(s,a) + \delta \cdot r^{(1)}(s,a)$
- Run analysis to find optimal actions given all δ , i.e. learn $Q_t(s,a,\delta)$ and $V_t(s,\delta)$ for all $t \in \{1,2,...,T\}$ and for all $\delta \in [0, 1]$
- Given a new patient's state, report, for each action, the range of δ for which it is optimal.

Overview

- Why are we interested in multiple reward functions?
 - Medical research applications for RL
- Algorithm for discrete (tabular) case
 - More efficient than previous approaches
- Algorithm for linear function approximation
 - Previous approaches not applicable

Algorithm for Discrete State Space: Preview

- $r_T(s,a,\delta) = (1 \delta) \cdot r_T^{(0)}(s,a) + \delta \cdot r_T^{(1)}(s,a)$
- $Q_T(s,a,0)$, $Q_T(s,a,1)$ are average rewards, $Q_T(s,a,\delta)$ is linear in δ
- $V_T(s, \delta)$ is continuous and piecewise linear in δ
 - Knots introduced by pointwise max over a
- $Q_{T-1}(s,a,\delta)$ is continuous and piecewise linear in δ
 - Average of $V_{T}(s', \delta)$ over trajectories with s, a, s' tuples.

[WLOG considering terminal rewards only]

Value Backup: Max Over Actions

- $Q_T(s,a,0)$, $Q_T(s,a,1)$ are average rewards, $Q_T(s,a,\delta)$ is linear in δ
- $V_T(s, \delta)$ is continuous and piecewise linear in δ
 - Knots introduced by pointwise max over *a* found by convex hull

Value Backup: Max Over Actions

• Our value function representation "remembers" which actions are optimal over which intervals of delta

Value Backup: Expectation Over Next State

Q_{T-1}(s,a,δ) is continuous and piecewise linear in δ
 Average of V_T(s',δ) over trajectories with s,a,s' tuples.

Value Backups: Discrete State (tabular)

- $Q_T(s,a,\delta)$ is piecewise linear, with O(|A|) pieces
- $E_{S'|s,a}[V_T(S',\delta)]$ is piecewise linear, with O(|S||A|) pieces
- At *T*-*t*, for each *s*, $V(s,\delta)$ has $O(|S|^{T-t}|A|^{T-t+1})$ pieces
- Can compute in O(|S|^{T-t+1}|A|^{T-t+1}) time by operating directly on the piecewise linear functions
 Previous work took O(|S|^{2(T-t)+1}|A|^{2(T-t)+1}|Og |S|^{2(T-t)+1}|A|^{2(T-t)+1}) time
- $V_{t-1}(s, \delta)$ is convex linear combination of $V_t(s', \delta)$, therefore stays convex in δ

Dominated Actions

 \bullet Some actions are not optimal for any δ

Some actions are not optimal for any (δ,s)!
 Can enumerate s to check this.

Overview

- Why are we interested in multiple reward functions?
 - Medical research applications for RL
- Algorithm for discrete (tabular) case
 - More efficient than previous approaches
- Algorithm for linear function approximation
 - Previous approaches not applicable

Continuous State Space, Linear Function Approx.

- What if we want to generalize across state?
- Estimate $Q_T(s,a,0)$, $Q_T(s,a,1)$ using linear regression rather than sample averages. Use these to compute $Q_T(s,a,\delta)$ for other δ
- Recall: $r_T(s,a,\delta) = (1 \delta) \cdot r_T^{(0)}(s,a) + \delta \cdot r_T^{(1)}(s,a)$
- Construct design matrices S_a ($n_a \times p$), targets $r_a(\delta)$ ($n_a \times 1$) from our data set
- $Q_T(s,a,\delta;\beta) = \beta_a(\delta)^T s$, $\beta_a(\delta) = (S_a^T S_a)^{-1} S_a^T \boldsymbol{r}_a(\delta)$
 - $Q_T(s,a,\delta;\beta)$ linear in β , each element of β linear in r, and r linear in δ
- $Q_T(s,a,\delta;\beta) = ((1 \delta) \cdot \beta_a(0) + \delta \cdot \beta_a(1))^T [1, s]^T$

Movie of Q_T

• $Q_T(s,a,\delta;\beta) = ((1 - \delta) \cdot \beta_a(0) + \delta \cdot \beta_a(1))^T [1, s]^T$

Maximization Over Actions

- $V_T(s, \delta)$ is continuous and piecewise linear in both δ and s
- While learning, we only evaluate V_T(s,δ) at s_i we have in our dataset
- Knots found by convex hull

Regression Over Next State

- While learning, we only evaluate V_τ(s,δ) at s_i we have in our dataset
- Reg. coefficients for Q_{T-1}(s,a,δ;β) are weighted sums of V_T(s_i,δ)

 $Q_T(s,a_2,\delta;\beta)$

• Break problem into regions of δ -space where $V_T(s_i, \delta)$ are simultaneously linear

Value Backups: Continuous State

- $Q_T(s,a,\delta;\beta) = ((1 \delta) \cdot \beta_a(0) + \delta \cdot \beta_a(1))^T [1, s]^T$
 - $V_T(s,\delta) = \max_a Q_T(s,a,\delta;\beta)$ is piecewise linear in δ
- $Q_{T-1}(s,a,\delta;\beta) = \beta_a(\delta)^T s$, $\beta_a(\delta) = (S_a^T S_a)^{-1} S_a^T V_T(s',\delta)$ is not convex in δ
- Each element of $V_T(s', \delta)$ is piecewise linear in δ
- Where V_T(s',δ) are simultaneously linear, elements of β_a(δ)^T are linear. Must compute β_a(δ)^T at knot δs between linear regions
- O(n|A|) knots, *n* is number of trajectories. At time *T*-*t*, there could be $O(n^{T-t}|A|^{T-t})$ knots.

Dominated Actions: Continuous State

- Set of dominated actions can be determined analytically in O(|A|³·#knots) time for 1D state and 1D tradeoff
- Algorithm based on properties of boundaries between regions where different actions are optimal

Reality Check

- Must compute $\beta_a(\delta)^T$ at knot δ s between linear regions. At time *T*-*t*, there could be $O(n^{T-t}|A|^{T-t})$ knots, in the worst case.
- Is this even feasible? Consider 1000 randomly generated datasets,
 n = 1290, |A| = 3, T = 3, parameters similar to real data
- Maximum time for 1 simulation run is 6.55 seconds on 8 procs.

	Worst-case #knots	Observed Min	Observed Med	Observed Max
t=2	3870	687	790	910
t=1	1.5·10 ⁷	2814	3160	3916

Overview

- Why are we interested in multiple reward functions?
 - Medical research applications for RL
- Algorithm for discrete (tabular) case
 - More efficient than previous approaches
- Algorithm for linear function approximation
 - Previous approaches not applicable

Future Work - Computing Science, Statistics

- Allow more state variables
 - For backups: Easy! Each element of β is piecewise linear in δ
 - When checking for dominated actions, 2 reward functions plus 2 state variables is feasible. (Or 3 reward functions + 1 state variable.)
- Allow more reward functions
 - For backups: 3 reward functions feasible.
 Representing non-convex continuous piecewise linear functions in high dimensions appears difficult.
- Approximations, now that we know what we are approximating.
- Measures of uncertainty for preference ranges

Future Work - Clinical Science

1.Schizophrenia

- Symptom reduction versus functionality, or weight gain
- 2. Major Depressive Disorder
 - Symptom reduction versus weight gain, other side-effects

3.Diabetes

• Disease complications versus drug side-effects

Thanks!

- Supported by National Institute of Health grants R01 MH080015 and P50 DA10075
- Questions?
- Related work:

Barrett, L. and Narayanan, S. Learning all optimal policies with multiple criteria. In *Proceedings of the 25th International Conference on Machine Learning (ICML 2008)*, 2008.