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Overview

• Why are we interested in multiple reward functions?

• Medical research applications for RL

• Algorithm for discrete (tabular) case

• More efficient than previous approaches

• Algorithm for linear function approximation

• Previous approaches not applicable
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Application: Medical Decision Support

• Our goal is to use RL as a tool for data analysis for decision support:

1.Take comparative effectiveness clinical trial data

2.Produce a policy (or Q-function) based on patient features (state)

3.Give the policy to a clinician

• But really, a policy is too prescriptive.

• Our data are noisy and incomplete, causing uncertainty in the 
learned policy - other projects at Michigan and elsewhere.

•Our output is intended for an “agent” 
whose reward function we do not know.
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Example: Schizophrenia

• In treatment of schizophrenia, one wants few symptoms but good 
functionality. This is often unachievable.

1.This is a chronic disease. Patient state changes over time.

2.The effect of different treatments varies from patient to patient.

3.Different people may have very different preferences about which 
to give up. Each has a different reward function/objective.

• Properties 1. and 2. make the problem amenable to RL. The goal of 
this work is to deal with 3. by not committing to a single reward 
function.

• Let’s look at an idealized version of batch RL, and compare with the 
type of data we actually have.
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Fixed-Horizon Batch RL, Idealized Version

• Get trajectories 

• Find a policy that chooses actions to maximize expected sum of 
future rewards. (Note fixed horizon and knowledge of t.)

• One possibility: Fitted Q-iteration

• Learn 

• Move backward through time:

•  

• Expectations are approximated using data
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Fixed-Horizon Batch RL, Realistic Version

• Get trajectories

• The     include many measurements, including symptoms, 
side-effects, genetic information, ...

• We must define (much like in state-feature construction)

•  

•  

• Now we have                                                         , can do fitted-Q

• How can we defer the choice of                     ?
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Multiple Reward Functions

• Consider a pair of important objectives. Suppose rt(0) reflects level of 
symptoms and rt(1) reflects level of functionality.

• Consider the set of convex combinations of reward functions, e.g.

rt(s,a,δ) ≡ (1 - δ)⋅rt(0)(s,a) +  δ⋅rt(1)(s,a)

• Each δ identifies a specific reward function, and induces a 
corresponding Qt(⋅,⋅,δ). Depending on δ, the optimal policy “cares 
more” about rt(0) or rt(1).

• Standard approach: “Preference Elicitation”

• Try to determine the decision-maker’s true value of δ via time 
tradeoff, standard gamble, visual analog scales,...
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“Inverse” 
Preference Elicitation

• We propose a different approach

• Take r(s,a,δ) ≡ (1 - δ)⋅r(0)(s,a) + δ⋅r(1)(s,a)

• Run analysis to find optimal actions given all δ,
i.e. learn Qt(s,a,δ) and Vt(s,δ) for all t ∈ {1,2,...,T} 
and for all δ ∈ [0, 1]

• Given a new patient’s state, report, for each action, the range of δ 
for which it is optimal.

Care about
Symptoms

Care about
Functionality
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Algorithm for Discrete State Space: Preview

• rT(s,a,δ) ≡ (1 - δ)⋅rT(0)(s,a) + δ⋅rT(1)(s,a)

• QT(s,a,0), QT(s,a,1) are average rewards, QT(s,a,δ) is linear in δ

• VT(s,δ) is continuous and piecewise linear in δ
• Knots introduced by pointwise max over a

• QT-1(s,a,δ) is continuous and piecewise linear in δ
• Average of  VT(s’,δ) over trajectories with s,a,s’ tuples.

[WLOG considering terminal rewards only]
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• QT(s,a,0), QT(s,a,1) are average rewards, QT(s,a,δ) is linear in δ
• VT(s,δ) is continuous and piecewise linear in δ

• Knots introduced by pointwise max over a found by convex hull

Value Backup: Max Over Actions
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Value Backup: Max Over Actions

• Our value function representation “remembers” which actions are 
optimal over which intervals of delta
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• QT-1(s,a,δ) is continuous and piecewise linear in δ
• Average of  VT(s’,δ) over trajectories with s,a,s’ tuples.

Value Backup: Expectation Over Next State
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ES’|s,a[RT-1+Vt+1(S’,δ)]
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Value Backups: Discrete State (tabular)
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• QT(s,a,δ) is piecewise linear, with O(|A|) pieces

• ES’|s,a[VT(S’,δ)] is piecewise linear, with O(|S||A|) pieces

• At T-t, for each s,  V(s,δ) has O(|S|T-t|A|T-t+1) pieces

• Can compute in O(|S|T-t+1|A|T-t+1) time by operating directly on the 
piecewise linear functions 
Previous work took O(|S|2(T-t)+1|A|2(T-t)+1log |S|2(T-t)+1|A|2(T-t)+1) time

• Vt-1(s,δ) is convex 
linear combination of 
Vt(s’,δ), therefore stays 
convex in δ
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 Dominated Actions

• Some actions are not optimal for any δ
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• Some actions are not optimal for any (δ,s)!
Can enumerate s to check this.
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Continuous State Space, Linear Function Approx.

• What if we want to generalize across state?

• Estimate QT(s,a,0), QT(s,a,1) using linear regression rather than 
sample averages. Use these to compute QT(s,a,δ) for other δ

• Recall: rT(s,a,δ) ≡ (1 - δ)⋅rT(0)(s,a) + δ⋅rT(1)(s,a)

• Construct design matrices Sa (na×p), targets ra(δ) (na×1) 
from our data set

• QT(s,a,δ;β) = βa(δ)Ts,  βa(δ) = (SaTSa)-1SaTra(δ)

• QT(s,a,δ;β) linear in β, each element of β linear in r, and r linear in δ

• QT(s,a,δ;β) = ((1 - δ)⋅βa(0) + δ⋅βa(1))T [1, s]T
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• QT(s,a,δ;β) = ((1 - δ)⋅βa(0) + δ⋅βa(1))T [1, s]T

Movie of QT
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Maximization Over Actions

• VT(s,δ) is continuous 
and piecewise linear 
in both δ and s

• While learning, we 
only evaluate VT(s,δ) 
at si we have in our 
dataset

• Knots found by 
convex hull

QT(s,a1,δ;β)

QT(s,a2,δ;β)
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Regression Over Next State

• While learning, we 
only evaluate VT(s,δ) 
at si we have in our 
dataset

• Reg. coefficients for 
QT-1(s,a,δ;β) are  
weighted sums
of VT(si,δ)

• Break problem into regions of δ-space 
where VT(si,δ) are simultaneously linear

QT(s,a1,δ;β)

QT(s,a2,δ;β)
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• QT(s,a,δ;β) = ((1 - δ)⋅βa(0) + δ⋅βa(1))T [1, s]T

• VT(s,δ) = maxa QT(s,a,δ;β) is piecewise linear in δ

• QT-1(s,a,δ;β) = βa(δ)Ts,  βa(δ) = (SaTSa)-1SaT VT(s’,δ) is not convex in 
δ

• Each element of VT(s’,δ) is piecewise linear in δ

• Where VT(s’,δ) are simultaneously linear, 
elements of βa(δ)T are linear. Must 
compute βa(δ)T at knot δs between 
linear regions

• O(n|A|) knots, n is number of trajectories.
At time T-t, there could be O(nT-t|A|T-t) knots.

Value Backups: Continuous State
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Dominated Actions: Continuous State
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• Set of dominated actions can be determined analytically in 
O(|A|3⋅#knots) time for 1D state and 1D tradeoff

• Algorithm based on properties of boundaries between regions 
where different actions are optimal

• E.g., top-down view of Q-function, 
actions 2,3,5 are not optimal 
for any (s,δ).

Approach: 
Identify ‘triple points’
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• Must compute βa(δ)T at knot δs between linear regions. At time T-t, 
there could be O(nT-t|A|T-t) knots, in the worst case.

• Is this even feasible? Consider 1000 randomly generated datasets, 
n = 1290, |A| = 3, T = 3, parameters similar to real data

• Maximum time for 1 simulation run is 6.55 seconds on 8 procs.

Reality Check

Worst-case 
#knots

Observed
Min

Observed 
Med

Observed 
Max

t=2 3870 687 790 910

t=1 1.5⋅107 2814 3160 3916
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Future Work - Computing Science, Statistics

• Allow more state variables

• For backups: Easy! Each element of β is piecewise linear in δ

• When checking for dominated actions, 2 reward functions plus 2 state 
variables is feasible. (Or 3 reward functions + 1 state variable.)

• Allow more reward functions

• For backups: 3 reward functions feasible. 
Representing non-convex continuous piecewise linear functions in 
high dimensions appears difficult.

• Approximations, now that we know what we are approximating.

• Measures of uncertainty for preference ranges
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Future Work - Clinical Science

1.Schizophrenia

• Symptom reduction versus functionality, or weight gain

2.Major Depressive Disorder

• Symptom reduction versus weight gain, other side-effects

3.Diabetes

• Disease complications versus drug side-effects
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Thanks!

• Supported by National Institute of Health 
grants R01 MH080015 and P50 DA10075

• Questions?

• Related work:

Barrett, L. and Narayanan, S. Learning all optimal policies with 
multiple criteria. In Proceedings of the 25th International 
Conference on Machine Learning (ICML 2008), 2008.
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