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Abstract. Sequential randomized trials are becoming an increasingly important
mechanism for gathering data to aid in clinical decision making, particularly in
the study of chronic illnesses. The sequential nature of the resulting data ne-
cessitates an analysis that respects the principles of optimal sequential decision
making. Reinforcement learning provides several well-studied algorithms that are
appropriate for this type of data, but most of these do not provide measures of con-
fidence in the learned policy. We present a regularized voting procedure based on
the bootstrap that enables us to assess our confidence in the stability of our choice
of optimal treatment, i.e., our confidence that we would discover the same optimal
treatment if we were to re-run the study and the analysis. These confidence mea-
sures help us to identify when a subset of treatments are essentially equivalent.
We present an example of this type of analysis using data from the Sequenced
Treatment Alternatives to Relieve Depression (STAR*D) clinical trial.

1 Introduction

In a sequential randomized trial [1], participants are offered a sequence of treatments
over the course of the trial which consists of a series of k stages. As in a traditional
one-stage randomized trial, each offering is selected uniformly randomly from a small
set of appropriate treatments. As each participant progresses through the study, obser-
vations are recorded that will later allow us to assess which treatment or treatments are
most preferable for different types of patients at each stage. Experimenters record both
observations related to treatment outcomes (e.g. symptom relief and side-effects) and
also observations which we may later use to tailor treatments to specific patients (e.g.
demographic information and concomitant disorders.) Of course, some observations
may serve both purposes; for example, the treatment offered at the next stage could be
chosen based on the efficacy of the treatment offered at the previous stage.

At the end of such a trial, we have a dataset T consisting of trajectories t1, t2, ...tn,
one for each of n participants. These are analogous to n training examples in the su-
pervised machine learning setting; we use the term “trajectory” here to emphasize the
sequential nature of the acquired data. We call T our training set. Given T , we would
like to recover an optimal policy that completely specifies which treatment we should
offer a new patient, conditioned on our most current information about that new pa-
tient. This information will be of the same type as the observations made during the
sequential randomized trial. A policy is “optimal” relative to an outcome (e.g. time to
remission) if it optimizes the expected future value of that outcome.



Recovering an optimal policy from data is a well-studied problem in artificial intel-
ligence, addressed in particular by the field of reinforcement learning. However, com-
monly used methods, including fitted Q iteration [2] which we use in our example, do
not provide any measure of solution stability, i.e. they do not indicate whether we would
discover the same optimal treatment if we were to re-run the study and the analysis. This
gives cause for concern, particularly when T is small relative to the number of features
used in learning and overfitting is a danger. One technique used to assess supervised
learning techniques that is applicable in our situation is the bootstrap [3, 4]; however,
we will show that naı̈ve application of the bootstrap can result in inconsistent estima-
tors of treatment choice stability when treatments are equivalent. We then give a novel
modification of the bootstrap called the “adaptive bootstrap” – a voting mechanism that
avoids the inconsistency problem in this case. We then illustrate its use on data from the
Sequenced Treatment Alternatives to Relive Depression (STAR*D) study.

1.1 Reinforcement Learning

We now formalize the idea of optimizing expected outcomes using the language of
Reinforcement Learning (RL) [5]. The problem of recovering optimal policies from
data has been studied extensively by the RL community. In the field of reinforcement
learning, treatments are termed actions, outcome and tailoring observations are together
termed observations, and rewards are a function of the next observation in the sequence.
The n training trajectories t1, t2, ..., tn in our dataset T , from a reinforcement learning
perspective, are each a sequence of the form (o1, a1, r1, o2, a2, r2, ..., ok, ak, rk, ok+1)
comprised of the observations, actions, and rewards, starting from stage 1 and continu-
ing to stage k.

Given this data, reinforcement learning seeks to recover an optimal policy. A policy
π is a function1 that maps the space of observations to the space of actions. (I.e., it maps
the space of patient observations to the space of treatments.) The value of seeing an ob-
servation oi, taking an action a and then following a policy π (i.e. choosing aj = π(oj)
for i+1 ≤ j ≤ k) is defined to be the expected sum of rewards ri, ri+1, ..., rk obtained
using this strategy. Each reward rj is a specified function of the tuple (oj , aj , oj+1).
The expected sum of rewards is denoted Qπi (oi, a), which is given by

Qπi (oi, a) = EOi+1|oi,a[ri +Qπi+1(Oi+1, a)] (1)

Here, the expectation is taken over Oi+1|oi, ai which is the conditional distribution of
Oi+1 given the realizationsAi = ai, Oi = oi, as defined by the underlying dynamics of
the system. In the clinical trial setting, these dynamics define how a participant responds
to different treatments. A policy π∗ is optimal if and only if [5]

max
a

Qπ
∗

i (o, a) ≥ max
a

Qπi (o, a) for all i, o and π. (2)

1 More generally, π could be a collection of conditional distributions to allow random action
choices at each step. For example, during a sequential randomized trial, we effectively follow
a policy πrand|o that is uniformly distributed over possible actions.



To see how we might estimate an optimal policy, consider the final stage, where we take
one last action. At stage k, we have

Qk(ok, a) = EOk+1|ok,a[rk]. (3)

This quantity does not depend on π, since a is the last action in the trajectory; we
therefore write Qk with no superscript. Suppose we can estimate Qk(ok, a) well for
any ok and a. We could accomplish this by regressing rk on ok and a using our dataset
of trajectories T , giving an estimated Qk function Q̂k(ok, a; T ). We then estimate the
optimal stage-k action as follows:

π̂∗(ok) , argmax
a

Q̂k(ok, a; T ). (4)

We choose the action that gives us the highest expected reward according to our estimate
Q̂k. Having chosen the final action ak = π̂∗(ok), we can now estimateQπ

∗

k−1(ok−1, a; T )
by regressing rk−1+Q̂k(ok, π̂∗(ok); T ) on ok−1 and a, again using the trajectories from
T , giving Q̂π

∗

k−1(ok−1, a; T ). We then estimate the optimal action at stage k − 1 by

π̂∗(ok−1) , argmax
a

Q̂π̂
∗

k−1(ok−1, a; T ). (5)

We continue backward through the stages in this manner, alternately computing Q̂π̂
∗

i (oi, a; T )
by regression and then π̂∗(oi) by maximization for k ≥ i ≥ 1. This process in general is
known as fittedQ iteration [2]. Various regression models could be be used to construct
the Q̂i depending on the particular application we have in mind, e.g. lookup tables,
linear regression, neural networks, etc. For the remainder of the text we will drop the
superscript π̂∗ and write Q̂i(oi, a; T ) to represent an estimated optimalQ-function con-
structed in this manner from a dataset T , since we can recover π̂∗(oi) as needed using
the argmax operator.

1.2 The Bootstrap

Originally introduced by Efron [6], the bootstrap is a resampling method that simu-
lates samples from the true data generating distribution F by sampling instead from
the empirical distribution F̂n defined by our observed dataset T . We assume the train-
ing trajectories in T are independent and identically distributed (IID), drawn from the
distribution F , so that T1, T2, ..., Tn ∼ F . We define the empirical distribution F̂n to
have point mass 1/n at each of the the n trajectories in T . Having done so, we define a
bootstrap sample T ∗ to be a sample of n trajectories from F̂n, i.e. T ∗1 , T

∗
2 , ..., T

∗
n ∼ F̂n.

Such a dataset is constructed by sampling from the trajectories in T uniformly randomly
with replacement.

The main utility of the bootstrap lies in its use in approximating quantities that
would otherwise require samples from (or explicit knowledge of) F , the data generating
distribution. We now show how it can be used to estimate the probability that our fitted
Q iteration procedure will decide that a particular action is optimal.



2 “Voting Estimators”: Bootstrap Estimates of Indicator Averages

Suppose we have a dataset T from a 1-stage trial (i.e. k = 1) that consists of n pairs
ti = (ai1, r

i
1). Here, ai1 ∈ {1, 2} and ri1 ∈ R. There are no observations in this example

and it has only one stage, so we have one Q-function that depends only on a1 which
we write as Q1(a1). We simply wish to determine which action produces the higher ex-
pected reward. Fitted Q iteration would tell us to first compute Q̂1(1; T ) and Q̂1(2; T )
using sample averages for example, and then choose the argmax over a ∈ {1, 2} as the
optimal action. Suppose then that we wish to assess the stability of our action prefer-
ence: What is the probability that, given a new dataset T ∼ F , we would find action 1
to be optimal? Call this quantity ν(1). Estimating ν(1) is an instance of the “problem
of regions” [7]. If we were able to sample b datasets T1, T2, ..., Tb from F , we could
estimate ν(1) by learning a Q̂1 for each one, choosing the optimal action as described
above, and finding the proportion of the b datasets that “voted” for action 1. Our esti-
mate of the probability of preferring action 1 is therefore

ν̂b(1) =
1
b

∑
1[Q̂1(1; Ti)− Q̂1(2; Ti) > 0] (6)

where 1(p) = 1 if p is true, and 0 otherwise. Of course we cannot sample b datasets from
F ; this would entail running b more sequential randomized trials. We could, however,
draw b bootstrapped datasets T ∗1 , T ∗2 , ..., T ∗b from F̂n and use

ν̂∗b(1) =
1
b

∑
1[Q̂1(1; T ∗i )− Q̂1(2; T ∗i ) > 0] (7)

as our estimate. One uses this procedure in the hope that F̂n ≈ F , and that therefore
ν̂∗b(1) ≈ ν̂b(1), which itself converges to ν(1) as b grows. Unfortunately, however, this
hope is unfounded when Q1(1) − Q1(2), the difference in the true Q1 values, is at or
near zero. We illustrate this problem using a simple example.

Suppose that r1 is normally distributed with variance 1 and mean 0, independent of
a1. In this scenario, the action choice has no impact on the expected value of r1, and
Q1(1) − Q1(2) = 0. Given this generative model, we can compute ν̂b(1) for various
b and see that it converges to 0.5 as one would expect given the law of large num-
bers. However, if we turn our attention to ν̂∗b(1) the situation is much worse. Suppose
we examine the distribution of ν̂∗b(1) for b = 1000 as follows: We draw 100 datasets
T1, T2, ...T100 from F , each with 10000 trajectories, 5000 using action 1 and 5000 us-
ing action 2. For each Ti, we draw b = 1000 bootstrapped datasets T ∗i,1, T ∗i,2, ...T ∗i,1000,
each with 10000 trajectories and use them to compute ν̂∗b(1). Figure 1 (top) shows the
resulting distribution of ν̂∗b(1): it is essentially uniform across the 100 datasets. Even
though the true probability of finding action 1 to be optimal is ν(1) = 0.5, our bootstrap
estimate ν̂∗b(1) is equally likely to be anywhere between 0 and 1, and provides us with
no information about the value of ν(1). Worse, ν̂∗b(1) is likely to lead us to believe that
one action is preferable to the other even when no such evidence exists.

This problem, a symptom of “non-regularity”, arises in various situations where av-
erages of indicators or other non-smooth functions of the data are estimated using the
bootstrap [3, 8]. Furthermore, it is not alleviated by increasing n or b; the bootstrap does



not produce a consistent estimator in these settings when there is significant mass con-
centrated at the point of non-smoothness—in our case, when Q1(1)−Q1(2) = 0. This
problem can be mitigated, however, by modifying the indicator function to “regularize”
it as we now show.

2.1 Regularized Voting

For convenience, we define ∆(1, 2) , (Q1(1) − Q1(2)), ∆̂(1, 2) , (Q̂1(1; T ) −
Q̂1(2; T )), and ∆̂∗i (1, 2) , (Q̂1(1; T ∗i )− Q̂1(2; T ∗i )). Using this notation, our original
bootstrap estimator is given by ν̂∗b(1) = 1

b

∑
1[∆̂∗i (1, 2) > 0]. We now introduce a

regularized estimator ν̌∗b(1) that behaves properly when ∆(1, 2) ≈ 0:

ν̌∗b(1) =
1
b

∑
1

[
∆̂∗i (1, 2)− ∆̂(1, 2) + ∆̂(1, 2) · 1

[
|∆̂(1, 2)|

ŝe(∆̂(1, 2))
> zα/2

]
> 0

]
(8)

The outermost indicator function in this estimator imposes different requirement on
∆̂∗i (1, 2) to obtain a “1” vote from a bootstrap sample. Rather than requiring it be larger
than zero, as ν̂∗b(1) does, this estimator can require instead that ∆̂∗i (1, 2) be larger than
∆̂(1, 2), the difference in Q1 values estimated from the original dataset T , effectively
re-centering the indicator function at ∆̂(1, 2). This re-centering is adaptive: It is im-
posed when the inner indicator function is “off”, that is, when ∆̂(1, 2)/ŝe(∆̂(1, 2)) is
small. Here, ŝe is an estimate of the standard error which is also computed using the
bootstrap [9]. If ∆̂(1, 2) is approximately normal, then this ratio is approximately nor-
mal with unit variance and will be small when there is not sufficient evidence to support
the belief that ∆(1, 2) 6= 0. On the other hand, if there is sufficient evidence to believe
∆(1, 2) 6= 0, we do not need to regularize, the third term will cancel with the second
term, and ν̌∗b(1) = ν̂∗b(1). Note that we can easily extend (8) from a max operator over
two alternatives to a max operator over m alternatives by expressing the max as m
products of (m− 1) regularized indicators, of which at most one will be on at a time2.

Figure 1 (bottom) shows the distribution of ν̌∗b(1) using our simple example. Its
distribution is concentrated around ν(1) = 0.5, as it should be. We chose zα/2 =
1.96, meaning we would expect about 0.05 of our estimators to be non-regularized,
and therefore equivalent to ν̂∗b(1). In our test experiment, 7 of our 100 datasets had
|∆̂(1, 2)|/ŝe(∆̂(1, 2)) > zα/2, each of which resulted in a ν̌∗b(1) far from 0.5.

This example tells us that any estimator of the same form as (8) will provide the
regularization we need so long as the third term in (8) goes to zero when ∆̂(1, 2) is
close to zero. Using this as our guideline, we have chosen one such estimator – the
“adaptive bootstrap” estimator – that appears to work well in practice.

2 In situations where there is not sufficient evidence for any of the alternatives to be the maxi-
mum, none of the indicators in the regularized max operator will be on. In such cases we count
a 1/m of a vote for each alternative.
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Fig. 1. Comparison of histograms of ν̂∗b(1) (top) and ν̌∗b(1) (bottom).

3 Case Study: STAR*D

The Sequenced Treatment Alternatives to Relieve Depression (STAR*D) study [10] is
a four-stage sequential randomized clinical trial in which participants received different
treatments for depression. (In this study the word “level” is used to describe a stage.) In
the Level 1, all participants were offered the same first-line antidepressant. Those who
remitted left the study, and the remainder stayed on for up to three more Levels of treat-
ment, with progression to the next Level always contingent on non-remission. At Levels
2 and 3, each participant was allowed to choose a subset of “Switch” treatments where a
new drug was substituted for the previous one, or a set of “Augment” treatments where
the new drug was added to the current treatment. Participants were only randomized
to treatments compatible with their selected preference class. In Level 4 there were no
preference classes and participants were randomized to one of two treatments.

As the participants progressed through the study, measurements were made of their
symptom relief and side effects at weeks 0, 2, 4, 6, 9, and 12 within each level. Symptom
relief, measured by the Quick Inventory of Depressive Symptoms (QIDS, range 0-27,
lower is better) was used to determine if a participant had remitted (defined as QIDS
≤ 5) or not. If a participant remitted in a level, they proceeded to a follow-up phase
where no further treatments were offered. If a participant did not remit, they were to
continue on to the next level. While participants were encouraged to remain in each
level for the full 12 weeks, they were permitted to move to the next level early if they
felt their results were unsatisfactory3.

From a reinforcement learning perspective, the STAR*D data represent a collection
of sample trajectories of agents moving through observation space, following a random
policy at each step. However, the STAR*D data have a significant amount of miss-
ingness, because many participants did not follow the protocol originally set forth. In

3 This is a highly simplified description; further details on the study and treatments are described
by Rush et al. [10].



reality, many participants dropped out of the study prior to remission. For these partici-
pants, we have observations from when they enter the study up until the time they drop
out, and none thereafter. By comparing the observations we do have from participants
who dropped out with those who did not drop out, we have found that the STAR*D
data are not missing completely at random (MCAR) [11]. On the other hand, we have
observed data that are predictive of drop-out, like the side-effects measurements. We
therefore use a multiple imputation procedure [11] to build a Q-function that is condi-
tioned on the entire observed portion of the STAR*D data, thus avoiding bias induced
by drop-out.

The only thing not explicitly defined by the STAR*D data is reward. Developing a
meaningful reward for STAR*D is a complex question in itself, but for this example we
consider only time to remission (in weeks) as determined by QIDS score. Of course,
time to remission is a quantity we would like to minimize, not maximize; we will there-
fore construct our rewards to reflect negative time to remission and maximize their
expectation. We are interested in those participants who remit within 30 weeks of start-
ing their Level 2 treatment, and define TTR30 , max(Time to remission after L2, 30);
we will use the negative of this quantity to construct our rewards.

Table 1. Observations, actions, and rewards used in the STAR*D analysis.

Level 2 Level 3
Observation Last QIDS observed in Level 1 Last QIDS observed in Level 2

Switch/Augment preference Switch/Augment preference

Action Switch: SER,VEN,BUP Switch: MIRT, NTP
Augment: +BUP,+BUS Augment: +Li,+THY

Reward Remitted in L2: −TTR30 Remitted in or after L3: −TTR30

Otherwise: 0 Otherwise: 0

Table 1 describes the observations, actions, and rewards we use at each of the two
stages we consider in this analysis. We limit our use of observations to the Switch/Augment
preference and the most recent QIDS score of a participant in order to explore how the
most recent QIDS score can be used to tailor treatments to patients. Using these defini-
tions, we build Q̂ functions as described in Sect. 1.1 using linear regression, and we also
construct estimates of the probabilities ν(a) for each action using both the regularized
adaptive bootstrap and the non-regularized bootstrap estimators presented in Sect. 2.

Figure 2 shows the results of our analysis for participants at Level 2. The top row of
graphs shows the analysis for patients with a preference to Augment treatment, and the
bottom row shows the analysis for those with a preference to Switch treatment. Each
graph shows the estimated optimal cost (i.e. negative value) marked in black diamonds
as a function of the observed QIDS score at the end of Level 1. The size of each diamond
indicates how many observations we have at different points on the QIDS axis. Behind
the diamonds are stacked bar graphs indicating what proportion of the b = 1000 boot-
strapped datasets voted for each action. The left column uses the ν̂∗b estimator, while the
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Fig. 2. STAR*D Level 2 Augment analyses with TTR30 rewards, presented here as costs. Votes
on the left are non-regularized; votes on the right are regularized with the adaptive bootstrap.
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and σ = 5. Votes on the left are non-regularized; votes on the right are regularized with the
adaptive bootstrap.



right column uses the ν̌∗b estimator. One can see that for the Augment group, although
there appeared initially to be stable preference for the CIT+BUS action for participants
with lower QIDS, this predicted stability does not persist if we use the adaptive boot-
strap estimator, suggesting that the evidence for the preference is not very strong. For
the Switch group, we again see significant effects from regularization, though a stable
preference against BUP for very low QIDS and against SER for very high QIDS per-
sists even when using the adaptive bootstrap. Based on this analysis, our Level 2 policy
for those with a Switch preference would be:

π∗(Switch,QIDS) =


SER or VEN if QIDS ≤ 6
SER or VEN or BUP if 7 ≤ QIDS ≤ 15
VEN or BUP if 16 ≤ QIDS ≤ 27

(9)

Figure 3 shows part of a simulated analysis that uses the same observations from
the STAR*D dataset but with randomly generated rewards. All rewards for all actions
at all stages for the example shown were normally distributed with mean 15 and stan-
dard deviation 5. Thus, we would expect all actions to appear to be equivalent and we
would hope that any estimate of treatment preference stability would reflect this. The
non-regularized voting estimator, shown on the left, shows a very strong (and incorrect)
stability of the preference for CIT+BUP for low QIDS and a strong stability of the pref-
erence for CIT+BUS for high QIDS. These are even stronger than the non-regularized
preference stabilities shown in the real data. The adaptive bootstrap estimator shown on
the right correctly estimates the probability of preferring one action over the other to be
approximately 0.5.

4 Discussion and Future Work

We have presented a method for assessing the stability of the optimal action choice
made by applying fitted Q iteration to a dataset T . We have shown how the naı̈ve ap-
proach to estimating stability can lead to erroneous results when actions have equal
expected reward, and presented the adaptive bootstrap estimator as a regularized alter-
native to the naı̈ve estimator that produces correct results in this case.

Our motivation for this work stems from the fact that we are using training sets
that are very expensive to collect, and thus are small relative to the signal (and effect)
size. We therefore need robust measures of confidence to ensure that our findings are
not spurious. Furthermore, it is a priori very likely for there to be no real difference in
treatment effect in a sequential randomized trial, simply because the goal of a sequential
randomized trial is to differentiate between treatments that have already been shown to
be clinically useful, i.e. that we are in a state of clinical equipoise. Thus, when reasoning
about data from sequential randomized trials, we want strong protection from problems
that arise when the difference in expected treatment effects is zero.

Achieving this protection comes at a cost, however. Our method is aggressive in its
regularization. While we gain in that we now correctly estimate ν(1) when∆(1, 2) = 0,
we also lose in that we will not be able to detect cases where ∆(1, 2) is non-zero but
small relative to the standard error of our estimate. However, as we mentioned, any



estimator that causes the third term in (8) to go to zero when ∆̂(1, 2) goes to zero will
provide protection against non-regularity as n grows. We may be able to construct a
more “gentle” regularized estimator by replacing the inner indicator function of (8) with
a continuous function that smoothly interpolates between regularizing at ∆̂(1, 2) = 0
and non-regularizing when ∆̂(1, 2) is sufficiently large.

One approach that could inform the search for a better regularized estimate would
be a more thorough investigation of the implications of simultaneously obtaining regu-
larized estimates of several dependent variables. In choosing our regularized estimator,
we drew inspiration from the single superimposed pair-of-Gaussians example. How-
ever, the differences in the effect of STAR*D treatments at different levels of QIDS
are dependent, even though we computed the ν̌∗b estimator at each level of QIDS sepa-
rately. In one sense this approach is appealing, since it does not rely on any knowledge
of the underlying approximation space and could have been used equally well with a
non-linear or even non-parametric regressor. On the other hand, using knowledge of
the behaviour of the underlying regression algorithm could provide a way of pooling
evidence at different levels of QIDS, for example, to aid in making finer distinctions
between treatments.

Regardless, we have shown that any way forward in assessing the stability of opti-
mal action choices must be cognisant of the potential problems caused by irregularity,
and must take steps to avoid false confidence induced by these problems.
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