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A PARALLEL NUMERICAL 
ALGORITHM FOR FREDHOLM 

INTEGRO-DIFFERENTIAL TWO-POINT 
BOUNDARY VALUE PROBLEMS 

R. E. SHAW*?~, L. E. CAREY+ and D. J. LIZOTTE 

University of New Brunswick, P.O. Box 5050, Saint John, NB, 
Canada EZL 4L5 

(Received 27 September 1999) 

Numerical methods for second order differential equations with two-point boundary conditions 
are incorporated into a three part method for the solution of a second order nonlinear 
Fredholm integro-differential equation. The interest in this paper is the development of an 
algorithm for parallel processing the discrete nonlinear system. Numerical examples are given. 

Keywords: Fredholm boundary value problems; Parallel processing; Toeplitz systems 

C. R. Category: G.1.9 

1. INTRODUCTION 

In a paper by Carey, Gilmore and Gladwin [4], direct methods for both non- 
singular and singular Fredholm type problems with two-point boundary 
conditions for linear problems were considered. A follow up paper [6] con- 
sidered the nonlinear singular problem using an adaptation of the method 
in [3]. In this article, the work in [8] leads to the implementation of an 
iterative process for solving a nonlinear problem of the form of Eq. (1). Here 
the coefficient matrix for the numerical approximation. is nonsymmetric 
but can be identified with a banded symmetric coefficient matrix and an 

*Corresponding author. 
' ~ u ~ ~ o r t e d  by NSERC. 
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306 R. E. SHAW et al. 

additional sparse matrix. Taking advantage of this leads to the application 
of a parallel algorithm for the numerical solution. First, let us state the 
problem: 

Consider a nonlinear second order Fredholm integro-differential equation 
(FIDE) of the form 

where 

The function y(x) is unknown and f and K are given. For equations of the 
form (1) and defined for points S and T, where 

and 

we assume: 

(i) f and K are uniformly continuous in each variable 
(ii) for all (x, y, z), (x, y, z), and (x, y, 2) in S, f satisfies 

(iii) for all (x, t ,  y) and (x, t,?) in T, K satisfies 

and 
(iv) the functions f , , f ,  and K,, are continuous and satisfy f, > 0, f, 2 0 and 

K, 1 0 for a l~ .~o in t s  in s and 7. 

To obtain numerical approximations, [O, a] is partitioned with 

IN = {x,: X, = nh, n = 0(1)N, h > 0, Nh = a ) .  
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FREDHOLM B. V. PROBLEMS 

A general k-step method of solution is defined by 

with 

where yi  denotes an approximation to y(xi)  and where {wj) denote the 
weights of the quadrature rule, s is related to the order of the method and 
(ai) and {Pi} are, respectively, the coefficients of the characteristics polyno- 
mials (p, u). For Eq. (2) ,  

Methods for integro-differential equations are denoted by triples (@, r), 
Q, IP) where Q denotes the quadrature rule to approximate the integral and 
IP is the iteration procedure chosen. Here we consider, as an example, 
the five point rule [l, 21 for solving differential equations defined by 

To approximate the integral term, the quadrature rule is chosen to be a 
Newton-Cotes or Newton-Gregory rule which is compatible with the 
order of the method defined by (p, a ) .  For this method and in addition to 
the two boundary conditions, two auxiliary conditions are required. From 
[9], the natural auxiliary conditions for this method are given by 

and 

With these equations added, respectively, as the first and (N- 1)th equa- 
tion in the system, we have the following 
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where 

R. E. SHAW et al. 

Here, we have an N- 1 x N- 1 system as the boundary conditions have 
been substituted, leading to the terms in R on the right hand side. We note 
that the above method solves the problem in its gwen form. Expressing the 
problem (1) as a system of two first order equations and subsequently 
finding a numerical approximation to the unknown function y(x)  and its 
derivative are considered in [6]. System (3) is solved by an iteration 
procedure (ZP). The coefficient matrix C is banded and near Toeplitz. A 
number of recent articles have appeared which discuss the solution of linear 
systems which are banded and Toeplitz. A paper by Yan and Chung [12] 
provides a LU factorization into a pair of Toeplitz matrices following a 
perturbation of the given system. Another method based on the method of 
oddleven reduction [l l]  offers an approach to solve the system by parallel 
processing. In addition, we see in [5] a treatment of five-band systems which 
can be factored. Once factored, the possibilities for solution include both 
the oddleven method and a parallel version of the work in [12]. For this 
iteratively solved problem, the work by Shaw [lo] provides some insight 
regarding the processing of the right hand side of system (3). In the 
following sections, we consider how the iterative solution of system (3) is 
enhanced in these two ways-processing the approximations to the integral 
terms on the right hand side and implementing a parallel version of the 
method in [12] as part of the iterative solution of the factored system. Two 
numerical examples are presented and solved in the final section. 
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FREDHOLM B. V. PROBLEMS 

2. THE PARALLEL ALGORITHM 

Let us consider a system to be solved iteratively of the form 

all a12 a13 a14 a15 
P a P r O  

015 a14 a13 a12 a11 

where A is nonsingular. The matrix A can be written as A = B+ E with 

and 

where a' = a - y. B is a near-Toeplitz, symmetric, sparse and banded matrix. 
In our example, y = 1. In general, for y # 0, let yD = B and write 

where D
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310 R. E. SHAW et al. 

It is known (see [ 5 ] )  that D can be factored into two tridiagonal matrices 
Dl = ( 1 ,  d l ,  1 )  and D2 = (1, d2, l} with 

For the coefficient matrix C in system (3), we have C l  = { -  1,2, - 1 )  and 
C2 = ( 1 ,  - 1 4 , l ) .  For the matrix D, let D2 be a diagonally dominant Toeplitz 
matrix. Then 

~ ~ ~ , $ i + l )  = 6. 

and we solve a pair of systems 

r + l )  A D ~ x ! '  = bi 

and 

D -(i+l) - ( i + l )  
I X  - X I  

The matrix D2 can be written in the form 

where 

and 
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FREDHOLM B. V. PROBLEMS 

Again, a perturbed system is to be solved 

By its description, this can be written as two systems and they can be solved 
in parallel. Each diagonal block in D21 is taken to be of size k if n =  2k, 
otherwise the sizes are m and k, where m = k+ 1. Thus, we have 

Each system is solved independently. 
With reference to the FIDE, recall that the vth component of bi is given 

by 

with 

Note that $) = yo and y$) = y,Vi. 
The two systems in (8) can be solved separately, but the solution 

components must be shared before the process is repeated. The idea of 
splitting the system can be extended to four or more subsystems to be solved 
separately and in parallel. As we shall see in the next section, correcting for 
the perturbations requires that each subsystem be of a certain size in order 
to accommodate the desired accuracy of the final approximation. 

3. CORRECTING THE PERTURBED SYSTEMS 

Two systems have been perturbed. We consider first correcting for D22. 

Denoting the solution for the pair of systems (8), by fi'+'), we have 

- 1+1) -(i+l) 
2x1' = D21x1 + ~ ~ 2 j 2 Y ~ )  

and 

D -(I+')  = 
2x1 

D2X j'+') + D22jZ l i+ l ) .  

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
C
a
n
a
d
i
a
n
 
R
e
s
e
a
r
c
h
 
K
n
o
w
l
e
d
g
e
 
N
e
t
w
o
r
k
]
 
A
t
:
 
1
8
:
0
9
 
1
4
 
M
a
r
c
h
 
2
0
1
1



312 R. E. SHAW et al. 

When this method is used, we express x Y 1 )  in terms of tp') and a 
correction term before the second system involving Dl is solved. Multiplying 
through by D;' yields 

The matrix has only four nonzero elements so we can write 

To avoid calculating D:', vectors p ,  q and r need to be determined such that 

To this end, let 

= { b ,  b 2 , .  . . , b', 0,. . . , OIT 

where lbl < 1. 
We determine that 

D2p = -el + b'(er+l - be,) .  

Details are given in [12]. For the vectors q and r ,  let 

and 

From [8], we find 

and 

D2r = -ern+l + be, + b'(e,+r+l - be,,,). 
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FREDHOLM B. V. PROBLEMS 

By considering expressions for 

and 

we can write the approximate solution as 

( I )  - ( I )  ( i + l )  1 x1 - x1 - bZl,, p -- 
1 - b2 

- (i+ 1 )  -(i+l) 
((bsi",?, - xl ., ) (r + bq) - x1 ,.+, (q + br) )  . (9) 

Multiplying through by D2 and collecting the terms which give 
(Dzl + Du)Pi'+'), we can replace this by b; and write 

Proof See [8] for details. 
The second correction relates to the matrix E in system (4). With that 

system, The solution x('+') coming from Eq. (6)  is the solution to 

Consider 

and recall that AX('+') = b(x('))  and BX('+') = b(?di)) so that (10) can be 
rewritten 
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314 R. E. SHAW er al. 

From the definition of E, EX('+') contains only nonzero elements in the first 
and last row. Thus 

where e l  and en are the usual n-dimensional unit vectors and 

and 

As in the case of the earlier correction, we attempt to find vectors P and 
Q satisfying A P  = e l  and AQ =en. Starting with P = (PI,  P2,. . . , Pn},  we 
note that it must satisfy each equation in the system and 

All equations with the exception of the first two and last two are satisfied 
by taking 

for arbitrary constants kj and where r,, j= l(1)s are the characteristic roots 
of 

By choosing the arbitrary constants so that the remaining four equations are 
satisfied, the definition of P is complete. For the example in this paper, the 
four roots are 1,1,7 f 4 4 .  In fact we only require three of these because 
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FREDHOLM B. V. PROBLEMS 315 

the second and (n- 1)st equations are dependent, so the largest root 
7 + 4& is not used. 

In a similar manner, we can choose a vector Q such that AQ =en. It is 
easily seen that the components of Q are the same as those of P but in 
reverse order. As a result, Eq. (1 1) becomes 

The values for kj, j=  1,2,3 are only calculated once although they are used 
repeatedly with each iteration. 

Remarks With reference to Eq. (6),  we saw that D = D 1 D 2  where 
- D l  = (1, - 2 , l )  and D2 = (1, - 14,l). This iteration procedure con- 
verges if 

where L is a Lipschitz constant. From this we see that convergence follows if 

In particular, we note that D ,  and - D 2  are monotone matrices with 
))D?')) < ) ) D i 1 ) )  5 (n2/8) (see [I, p. 360-371). 

4. NUMERICAL EXAMPLES 

In this section, the five-band method is used to solve two nonlinear 
examples. Two methods are employed to solve the systems that arise in the 
iteration process. The weights for the integration of the integral term are the 
Newton-Gregory fourth order weights. 

Example I 

Exact solution: y(x) = 1 /(x + 1). 
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Example 2 

R. E. SHAW er a1 

2 x - ( 2 x + 1 ) $ + 3  
yll = y + 

4$ 

~ ( 0 )  = l , y ( l )  = l l e  

Exact solution: y(x) = e - X .  

4.1. Algorithm: Solving a Nonlinear FIDE 

Given: The non symmetric coefficient matrix A 
The right hand vector expression-nonlinear in the unknown vector y 
Determine: The symmetric 5-band matrix B from (5) 

Factor B =  0 2 0 1 ,  Dl = { l ,d l ,  1), D2= {l,d2, I )  
For D2, calculate 

Rewrite D2 = D21 + D22 
Select a tolerance r and determine 

For i = 0, select an initial vector y(') = 
Loop: 

Evaluate in parallel 

Solve in parallel 

- ( i + l )  Correct yl  using 

1 - - ( ( b y ( t + l )  - ( i + ~ )  -(i+l) 
1-b2 I . ~ + I  - y,., ) (r + bq) - yI.,, (q + br)) . 
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FREDHOLM B. V. PROBLEMS 

Test the Approximation 
if (/y(i+')-y(zl~ 2 T), 

i+ i+1  
y(') + y(') 
Repeat from Loop 

else 
+ y(i+ 1) 

Table I contains some results for these two numerical examples. Each was 
solved for three different values of N and the iteration procedure terminated 
using a tolerance of h4 .  In addition, the problems were solved sequentially 
and using the parallel processing ideas in this article. The last column gives 
us the efficiency of the implemented algorithm. The algorithms were coded 
in Fortran 77 and parallel processed using the Portland Group's pgf 77 
compiler on a Linux operating system. The multiprocessor is a Hewlett 
Packard four processor Pentium Pro. The method of solution was 
essentially based on a parallel implementation of the Yan and Chung [I21 
work. Although the split discussed in this work was based on a partition of 
the system into two parts, the four processor computer allowed us to test up 
to a four part split. It must be added that the right hand side of the system 
(3) involved the integration of the integral term over [0, 11 for each equation 
in the system. This allowed us the opportunity to implement a parallel 
approach for processing the integral terms as well. 

In summary, the original system (3) has been replaced by a two part 
procedure consisting of Eqs. (6) and (12). In particular, (6) has been solved 
by a parallel version of Yan and Chung's [12] method and the final 
correction followed using (12). In [8], it was argued that for linear systems 

TABLE I Sequential verses parallel 

Example N Max. error Seq. time Par. time Eficiency 
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318 R. E. SHAW et al. 

this was more efficient. Here a two part approach has provided an iterative 
solution for the nonlinear examples. 
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