Gaussian Process Response Surface Optimization

Dan Lizotte
Department of Statistics
University of Michigan

Russ Greiner, Dale Schuurmans
Department of Computing Science
University of Alberta
Response Surface Methods for Noisy Functions

- Review of response surface methods for optimizing deterministic functions
- New methodology for algorithm evaluation
- Applying our methodology to response surface methods for noisy functions
Methods for optimizing a function $f(x)$ that is
- At least somewhat continuous/differentiable/regular
 - i.e., not thinking about combinatorial problems
- Non-convex, multiple local optima
- Expensive to evaluate
Response Surface Methods

- Two main components:
 - Response Surface Model
 - Makes a prediction $\mu(x)$ about $f(x)$ at any point x
 - Provides uncertainty information $\sigma(x)$ about predictions
 - Acquisition Criterion
 - A function of $\mu(x)$ and $\sigma(x)$
 - Expresses our desire to observe $f(x)$ versus $f(z)$ next
 - Prefers points x that, with high confidence, are predicted to have larger $f(x)$ than we have already observed
Response Surface Methods

* **DO**
 * Construct a **model** of \(f(x) \) using Data, giving \(\mu(x) \) and \(\sigma(x) \)
 * Model is probabilistic; can accommodate noisy \(f \)
 * Find the optimum of the **acquisition criterion**, giving \(x^+ \)
 * Evaluate \(f(x^+) \), add observation to our pool of Data
* **UNTIL** “bored” (e.g. number of samples \(\geq N \)), or “hopeless” (e.g. probability of improvement less than \(\epsilon \))
Response Surface Methods
Response Surface Methods
Response Surface Methods
Response Surface Methods

![Response Surface Methods Graph](chart.png)
Response Surface Methods
Response Surface Methods
Response Surface Methods
Response Surface
Methods
Response Surface Methods
Response Surface Methods

Bored!
(samples >= 10)
Example Application: Robot Gait Optimization

- Gait is controlled by ~12 parameters
- “f(x)” is walk speed at parameters x
- Expensive - 30s per
We will consider Gaussian process regression.

- Subsumes linear and polynomial regression, Kriging, splines, wavelets, other semi-parametric models...

- But there are certainly other possible choices.

- Still many modeling choices to be made within Gaussian process regression.
Bayesian; have prior/posterior over function values

Posterior of \(f(z) \) is a normal random variable \(F_{z|\text{Data}} \)

\[
\mu(F_{z|F_x}) = \mu_0(z) + k(z, x)k(x, x)^{-1}(f - \mu_0(x))
\]

\[
\sigma^2(F_{z|F_x}) = k(z, z) - k(z, x)k(x, x)^{-1}k(x, z)
\]
Gaussian Process Regression

- The kernel $k(x,z)$ gives covariance between F_x and F_z
- $k(x,x)$ can be augmented to accommodate observation noise
- Prior mean $\mu_0(x)$ is ‘baseline’

\[
\begin{align*}
\mu(F_z|F_x) &= \mu_0(z) + k(z,x)k(x,x)^{-1}(f - \mu_0(x)) \\
\sigma^2(F_z|F_x) &= k(z,z) - k(z,x)k(x,x)^{-1}k(x,z)
\end{align*}
\]
Example Kernel

\[k(x, z) = \sigma_f \cdot e^{-\frac{1}{2} \sum_{i=1}^{d} \left(\frac{x_i - z_i}{\ell_i} \right)^2} \]

- Signal variance, length scales are free parameters
- Can use maximum likelihood, MAP, CV, to learn parameters
- Parametric form of \(k \) is one choice among many
Two main criterion choices:

- **MPI** - Maximum Probability of Improvement
 - Acquire observation at point x^+ where $f(x^+)$ is most likely to be better than $(\text{best}_\text{obs} + \xi)$

- **MEI** - Maximum Expected Improvement
 - Acquire observation at point x^+ where the expectation of $[\text{best}_\text{obs} - (F(x^+) + \xi)]_+$ is maximized.

In both cases, greater ξ means more ‘exploration’
Parameters So Far

- Parametric form of kernel function
 - Plus parameter estimation method
- Choice of acquisition criterion
 - Plus choice of ξ
Potential Drawbacks to the Response Surface Approach

- Model choice not obvious
 - Free parameters in the definition of the RS model
- Acquisition criterion not obvious
 - Different proposals, each with free parameters also
How do I choose these for my problem?

- Traditionally, such questions are answered with a small set of test functions
- Choices are adjusted to get reasonable behavior
- Alternative methodology: Use 1000s or 10000s of test functions, not 10s of test functions
Gaussian Process as Generative Model

- Can also draw sample functions from this model

\[F_x \sim \mathcal{N}(\mu_0(x), k(x, x)) \]

- In practice, we take a grid of \(x \), and sample \(F_x \)
- In this way, we can sample as many test functions as we wish.
- We hope algorithms designed by testing on many different objective functions will be more robust.
Grey: $\mu_0(x) = 0.00, \quad k(x, z) = 1.0 \cdot e^{-\frac{1}{2}(\frac{x-z}{0.13})^2}$

Red: $\mu_0(x) = 0.14, \quad k(x, z) = 0.77 \cdot e^{-\left(\frac{x-z}{0.22}\right)^2}$
Simulation Study Goals

We wanted good choices for:

- Kernel parameter learning
- ML, MAP
- Acquisition criterion
- MPI, MEI, ξ

Regardless of, or tailored to:

- Signal variance
- Vertical shifting
- Dimension
- Length scales
- Observation budget

Tests on over 100,000 functions
Results forthcoming
Acquisition Criterion for Noisy Functions

* **MEI - Maximum Expected Improvement**
 * Acquire observation at point x^+ where the expectation of $[\text{best}_\text{obs} - F(x^+)]_+$ is maximized.
 * No concern for producing an accurate estimate of the optimum

* **Augmented MEI**
 * Huang et al. (2006)
 * Find points that has a large predicted value, but penalize the uncertainty in that value
 * Introduces yet another parameter c
How do I pick c?
How do I pick c?

- Authors chose $c = 1.0$, ran test on 5 functions
- Results look encouraging
How do I pick c?

* Authors chose $c = 1.0$, ran test on 5 functions
* Results look encouraging

* We can apply our test problem generation strategy to explore the relationship between
 * Test model parameters
 * New parameter c
 * Measures of algorithm performance
Response Surface optimization seems well-suited to optimizing noisy functions.

Most work to date has focussed on deterministic functions.

Good ideas for the noisy case, but perhaps under-explored.

Our evaluation methodology can help to more rigorously identify where RS algorithms will work and not work.
Thank you

- Dan Lizotte, danjl@umich.edu
- Supported in part by NSERC of Canada and US NIH grants R01 MH080015 and P50 DA10075

- Daniel J. Lizotte, Russell Greiner, Dale Schuurmans. An Experimental Methodology for Response Surface Optimization Methods. (e-mail Dan)