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Motivation

Evidence-Based Medicine

• “It’s about integrating individual clinical expertise
and the best external evidence.”1

1D.L. Sackett et al., “Evidence-based Medicine: What It Is and What It Isn’t”
(Editorial), British Medical Journal 312, no. 7023 (1996): 71-72.
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Motivation

How do we provide the “best external evidence?”

• One approach: Collect and analyze data, recommend treatments

• Input: Patient state, Output: Recommended treatment

• “Personalized medicine”

• This does not integrate with individual clinical expertise

• Input: Patient state, Output: Salient information about available
treatments that reflects the evidence in the data.

• Approach: Modify methods and algorithms that recommend a single
treatment to produce richer information about available treatments
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Motivation

Example: Reinforcement Learning
for Chronic Disease Management
• Chronic diseases are managed, not cured

• Major depressive disorder
• Schizophrenia
• ...

• Treatment decisions should be:
• Personalized

• Current treatment is chosen based on current patient state
• Non-myopic

• Current treatment is chosen conditioned on future treatment strategy

• Reinforcement Learning (RL) methods can be used
to learn a personalized, non-myopic treatment policy from data...

• ...but almost all current RL methods recommend a single treatment.
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Motivation

Preferences in Schizophrenia Treatment

• Many treatments available for managing schizophrenia (dozens)

• Consider two important objectives or rewards:
• Symptom reduction, weight control

• No treatment is best by both measures

• Different doctors and patients have very different preferences
about relative importance of rewards, and preference information is
absent from large schizophrenia datasets

• Recommending a single treatment based on available data
is not appropriate.
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Motivation

The Inverse Preference Elicitation Project

• How can we provide salient information about available treatments
that is non-myopic and that accommodates these preferences?

1 Augment Q-Learning to allow for different reward preferences
• Formalize preferences as a multi-objective optimization problem

2 Develop an algorithm tailored to randomized trial data that provides
information for each treatment for all preferences simultaneously
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Motivation

Example: Decision Aid for Choosing Antipsychotics

• Possible decision aid:

Initial
Symptoms

Preference
Symptom Relief Weight Control

Strong Mild Mild Strong
Good Olan Olan or Zip Zip Zip

Moderate Olan Olan or Zip Zip Zip
Bad Olan Olan Risp or Zip Zip

Olan = Olanzapine, Zip = Ziprasidone, Risp = Risperidone

• This is harder than it looks
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Background

Q-Learning - Scalar Reward, Two Time Points

• Randomized trial data: (S1,A1,S2,A2,R) for each individual
• St ∈ St - “State” - Patient features (prior treatments, test results, ...)
• At ∈ At - “Action” - Treatment assigned by exploration policy
• R ∈ R - “Reward” - Scalar clinical outcome, depends on (S2,A2)

• Want to find π∗ that produces maximal expected reward

• A “policy” π = {π1, π2} chooses actions given state
• πt : St → At
• π1 influences distribution of S2 by choosing A1
• π2 influences distribution of R by choosing A2
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Background

Q-Learning - Dynamic Programming
• Q-Learning is Dynamic Programming. Determine π∗2, then π

∗
1.

Time 2
• Define Q2(s2, a2) = E [R|S2 = s2,A2 = a2]

• For state s2, this is quality of each a2 ∈ A2.

• π∗2(s2) = argmaxa2 Q2(s2, a2)

• V π
∗
2

2 (s2) = maxa2 Q2(s2, a2) the value of being in s2

Time 1

• Define Q1(s1, a1) = ES2 [V
π∗2
2 (S2)|S1 = s1,A1 = a1]

• For state s1, this is quality of each a1 ∈ A1.

• π∗1(s1) = argmaxa1 Q1(s1, a1)

• Q-functions are conditional expectations
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Background

Q-Learning from Data: Repeated Regression

• Estimate each Qt by linear regression on features φt(st , at)

Time 2: Q2(s2, a2) = ER [R|S2 = s2,A2 = a2]

• Regress R on features φ2(S2,A2) [R might be symptom reduction]

to obtain Q̂2(s2, a2; β̂2) = β̂T
2 φ2(s2, a2)

• Set π̂∗2 = argmaxa2 Q̂2(s2, a2), V̂ π̂
∗
2

2 (s2) = maxa2 Q̂2(s2, a2)

Time 1: Q1(s1, a1) = ES2[V
π∗2
2 (S2)|S1 = s1,A1 = a1]

• Regress V̂ π̂
∗
2

2 (s2) on features φ1(S1,A1)

to obtain Q̂1(s1, a1; β̂1) = β̂T
1 φ1(s1, a1)

• π̂∗1(s1) = argmaxa1 Q̂1(s1, a1)
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Contribution Formalizing Preference

Q-Learning - Beyond Scalar Rewards and Values

• Learned policy π̂∗t (st) = argmaxat Q̂t(st , at) is constructed to
maximize long-term expected reward, i.e. is non-myopic

• Dynamic programming “trick” is to maximize over a2 first
• Key step: Set V̂ π̂

∗
2

2 (s2) = maxa2 Q̂2(s2, a2)
• Only makes sense if R is scalar

• What if there is more than one R of interest?

Dan Lizotte (U. of Michigan) Inverse Preference Elicitation 21 June 2011



Contribution Formalizing Preference

Time 2 Policy - Two Rewards

• Suppose two rewards R(0) and R(1) are of interest,
e.g. symptom reduction and weight control

• Below, (Q̂(0)
2 , Q̂(1)

2 ) for patient with S2 = s2, four different actions

• What should π̂∗2(s2) be?
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Contribution Formalizing Preference

Formalizing Preference

• Define a scalar reward R(δ) = (1− δ)R(0) + δR(1)

• 0 ≤ δ ≤ 1

• Proceed as before to get Q̂(δ)
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• δ represents “How much do I care about R(1)?”
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Contribution Formalizing Preference

Preference Elicitation
• Function R(δ) is an Aggregate Objective Function (many names...)
familiar in multi-objective optimization

• Preference Elicitation Approach:
• Figure out the decision maker’s δ
• Define a scalar reward R(δ) = (1− δ) · R(0) + δ · R(1)

• Use Q-learning to estimate the optimal policy for that reward

• Resulting policy is Pareto optimal

• E.g., for δ = 0.5

4.5
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a

5

a

3.5

a0
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Contribution Formalizing Preference

Preference Elicitation

• E.g., “Consider two actions. You can have (8, 5), or you can have
(5, x). What value of x makes you indifferent to this choice?”2

• Find δ so that R(δ) is equal for the two points
• (1− δ) · 8+ δ · 5 = (1− δ) · 5+ δ · x

• Doubt about whether or not this actually works

• Has nothing to do with the actions that are actually available,
i.e. does not provide salient information about available treatments.

2Actual question would be more subtle.
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Contribution Inverse Preference Elicitation

Contribution: Inverse Preference Elicitation

• Preference Elicitation
• “Give me your δ, I will tell you the right action.”

• Infinite number of δ, but only 4 actions

• Inverse Preference Elicitation
• “Given each available action,
I will tell you the δ for which that action is optimal.”

• This is our salient information
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Contribution Inverse Preference Elicitation

Contribution: Inverse Preference Elicitation

• “Given each available action,
I will tell you the δ for which that action is optimal.”

• Each action is optimal over a range of δ
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• Decision aid from the beginning
is a coarsened version of a picture like this
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Contribution Inverse Preference Elicitation

Contribution: Inverse Preference Elicitation

• “Given each available action,
I will tell you the δ for which that action is optimal.”

• Each action is optimal over a range of δ
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Contribution Algorithm

Non-Myopic Inverse Preference Elicitation

• At each timepoint t, define Q̂t(st , at ; β̂t(δ)) = β̂T
t (δ)φt(st , at)

• Before, each Q̂t(st , at) was a scalar. Now they are functions of δ.

• Perform Q-learning for all δ simultaneously

• At Time 2, finding ranges of δ is straightforward
• Use convex hull to identify regions of δ

• At Time 1, things get interesting

• Challenge: represent Q̂1(s1, a1; β̂1(δ))

• Exactly
• Economically
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Contribution Algorithm

Q-Learning for all δ: Time 2

• Notice that Q̂2(s2, a2; β̂2(δ)) = φ2(s2, a2)
Tβ̂2(δ) is linear in δ,

so only compute β̂2(0) and β̂2(1).

0 2 4 6 8 100

2

4

6

8

10

Q̂
(0)
2

Q̂
(1

)
2

(2,7)
(5,6)

(8,2)

(3,4)

2

4

6

7

0 0.25 0.5 0.75 1

2

3

5

8

S2 = s2

!

E
x
p
ec

te
d

R
(δ

)

a

a

aa

a

a

a

a
Q̂2(s2, a, δ)

Q̂2(s2, a, δ)

Dan Lizotte (U. of Michigan) Inverse Preference Elicitation 21 June 2011



Contribution Algorithm

Q-Learning for all δ: Time 1

• Notice V̂2(s2; δ) is piecewise linear in δ.
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Contribution Algorithm

Q-Learning for all δ: Time 1

• Notice that β̂1(δ) and Q̂1(s1, a1; β̂1(δ)) are linear over regions of δ
where V̂2(s2; δ) is simultaneously linear for all s2.
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• Only need to evaluate β̂1(δ) at union of knots in V̂2(S2; δ)
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Results

Example: CATIE

• Large (N = 1460) comparative effectiveness trial

• Most patients randomized two times:
• First to one of 5 actions
• Then, if desired, to one of 5 different actions

• Following is a highly simplified analysis

• Overall, the results are consistent with the literature

• Rewards: symptoms relief, weight control
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Results

Example: CATIE Inverse Preference Elicitation

Bad Symptoms

Moderate Symptoms

Good Symptoms

δ
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Results

Example: CATIE-based Decision Aid

• Possible decision aid: Coarse version of the plots

Initial
Symptoms

Preference
Symptom Relief Weight Control

Strong Mild Mild Strong
Good Olan Olan or Zip Zip Zip

Moderate Olan Olan or Zip Zip Zip
Bad Olan Olan Risp or Zip Zip

Olan = Olanzapine, Zip = Ziprasidone, Risp = Risperidone

• Thanks to Holly Wittemann, Brian Zikmund-Fisher, UMich SPH

Dan Lizotte (U. of Michigan) Inverse Preference Elicitation 21 June 2011



Results

Future Work

• Algorithms and Methods for Generating Evidence
• More flexible models / approximation algorithms for preferences
• Measures of uncertainty - requires interesting optimization

• Ask me about this!

• “Classical” ML problems (feature selection/dimensionality
reduction/model selection, feature extraction via NLP,
accommodating missing data...)

• Must still provide salient information!

• Clinical Science Applications
• Schizophrenia - CATIE
• Major Depressive Disorder - STAR*D
• ICU data (non-randomized) - MIMIC, MIMIC II
• EHR?
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Results

Thank You

• Supported by National Institute of Health grants R01 MH080015
and P50 DA10075

• Daniel J. Lizotte, Michael Bowling, and Susan A. Murphy. Efficient
Reinforcement Learning with Multiple Reward Functions for
Randomized Clinical Trial Analysis. Proceedings of the
Twenty-Seventh International Conference on Machine Learning
(ICML), 2010.

• Related work:
Barrett, L. and Narayanan, S. Learning all optimal policies with
multiple criteria. In Proceedings of the 25th International Conference
on Machine Learning 2008.

Dan Lizotte (U. of Michigan) Inverse Preference Elicitation 21 June 2011



Results

Confidence Intervals for Q-Learning

• Question: In state st , is there evidence that a is really better than a?

• Classical approach: get confidence interval for
β̂T

t · (φ(st , a)− φ(st , a))

• For t = T , under mild assumptions on R,
can use normal approximation or bootstrap

• For t < T , standard methods can fail even as n →∞

• Trouble arises when statistics (e.g. β̂t) are non-differentiable
functions of the dataset

• β̂1 based on V̂2(s2) = max aQ̂2(s2, a)
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Results

Adaptive Confidence Intervals for Q-Learning

• A method that produces correct coverage:
• Re-sample a dataset D′ with replacement
• Compute β̃t = arg max

β near β̂t

f (β,D′)

• Repeat

• Use distribution of β̃t to make C.I.

• The arg max
β near β̂t

f (β,D′) problem is interesting

• Non-convex
• Piecewise linear but possibly not continuous
• Can formulate as MIP, but maybe we can do better...
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