# Reward Preferences in Reinforcement Learning

#### Dan Lizotte

Postdoctoral Fellow, University of Michigan Statistics

Joint work with Michael Bowling†, Susan A. Murphy‡ †University of Alberta, ‡University of Michigan

> Montefiore Institute University of Liège 11 April 2011





## About Me

## Learning Treatment Policies from Data

- Informing treatment decisions in a non-myopic way
- Accommodating preferences
- Measures of confidence

## Global Optimization

- Deciding which domain points to investigate next
- Fundamentals: Experimental evaluation, quantifying difficulty, invariant methods
- Application: Robot gait learning

## Budgeted/Active Learning

- Deciding which data items to purchase next
- Budgeted learning in the naïve Bayes setting

## About Me

## Learning Treatment Policies from Data

- Informing treatment decisions in a non-myopic way
- Accommodating preferences
- Measures of confidence

## Global Optimization

- Deciding which domain points to investigate next
- Fundamentals: Experimental evaluation, quantifying difficulty, invariant methods
- Application: Robot gait learning

## Budgeted/Active Learning

- Deciding which data items to purchase next
- Budgeted learning in the naïve Bayes setting

## About Me

## Learning Treatment Policies from Data

- Informing treatment decisions in a non-myopic way
- Accommodating preferences
- Measures of confidence

## Global Optimization

- Deciding which domain points to investigate next
- Fundamentals: Experimental evaluation, quantifying difficulty, invariant methods
- Application: Robot gait learning

## Budgeted/Active Learning

- Deciding which data items to purchase next
- Budgeted learning in the naïve Bayes setting

### Health Informatics

• Development and application of computer science methods for problems that arise in health care.

## A Healthcare "Problem": Evidence-Based Medicine

- "It's about integrating individual clinical expertise and the best external evidence."
- "Evidence based medicine is not restricted to randomised trials and meta-analyses."

<sup>&</sup>lt;sup>1</sup>D.L. Sackett et al., "Evidence-based Medicine: What It Is and What It Isn't" (Editorial), British Medical Journal 312, no. 7023 (1996): 71-72.

## A Healthcare "Problem": Evidence-Based Medicine

- "It's about integrating individual clinical expertise and the best external evidence."
- "Evidence based medicine is not restricted to randomised trials and meta-analyses."

<sup>&</sup>lt;sup>1</sup>D.L. Sackett et al., "Evidence-based Medicine: What It Is and What It Isn't" (Editorial), British Medical Journal 312, no. 7023 (1996): 71-72.

• One approach: Collect and analyze data, recommend treatments

- One approach: Collect and analyze data, recommend treatments
  - Input: Patient state, Output: Recommended treatment
    - · "Personalized medicine"

- One approach: Collect and analyze data, recommend treatments
  - Input: Patient state, Output: Recommended treatment
    - "Personalized medicine"
- This does not integrate with individual clinical expertise

- One approach: Collect and analyze data, recommend treatments
  - Input: Patient state, Output: Recommended treatment
    - "Personalized medicine"
- This does not integrate with individual clinical expertise
  - Input: Patient state, Output: Salient information about available treatments that reflects the evidence in the data.

- One approach: Collect and analyze data, recommend treatments
  - Input: Patient state, Output: Recommended treatment
    - "Personalized medicine"
- This does not integrate with individual clinical expertise
  - Input: Patient state, Output: Salient information about available treatments that reflects the evidence in the data.
- Approach: Modify methods and algorithms that recommend a single treatment to produce richer information about available treatments

- Chronic diseases are managed, not cured
  - Type 2 diabetes
  - Major depressive disorder
  - Schizophrenia
  - ...
- Treatment decisions should be:
- Personalized
  - Current treatment is chosen based on current patient state
- Non-myopic
  - Current treatment is chosen conditioned on future treatment strategy
- Reinforcement Learning (RL) methods can be used to learn a personalized, non-myopic treatment policy from data

- Chronic diseases are managed, not cured
  - Type 2 diabetes
  - Major depressive disorder
  - Schizophrenia
  - ...
- Treatment decisions should be:
- Personalized
  - Current treatment is chosen based on current patient state
- Non-myopic
  - Current treatment is chosen conditioned on future treatment strategy
- Reinforcement Learning (RL) methods can be used to learn a personalized, non-myopic treatment policy from data

- Chronic diseases are managed, not cured
  - Type 2 diabetes
  - Major depressive disorder
  - Schizophrenia
  - ...
- Treatment decisions should be:
- Personalized
  - Current treatment is chosen based on current patient state
- Non-myopic
  - Current treatment is chosen conditioned on future treatment strategy
- Reinforcement Learning (RL) methods can be used to learn a personalized, non-myopic treatment policy from data

- Chronic diseases are managed, not cured
  - Type 2 diabetes
  - Major depressive disorder
  - Schizophrenia
  - ...
- Treatment decisions should be:
- Personalized
  - Current treatment is chosen based on current patient state
- Non-myopic
  - Current treatment is chosen conditioned on future treatment strategy
- Reinforcement Learning (RL) methods can be used to learn a personalized, non-myopic treatment policy from data

# Challenges in Using Reinforcement Learning to Provide Evidence

- "Output-Related" Challenges
  - Conveying strength of evidence
  - Accommodating preferences
  - ...
- These are in addition to more usual "Input-Related" Challenges
  - Curse of dimensionality
  - Discovering good features
  - Missing data/partial observability
  - Causal inference
  - Computational tractability
  - ..

# Challenges in Using Reinforcement Learning to Provide Evidence

- "Output-Related" Challenges
  - Conveying strength of evidence
  - Accommodating preferences
  - ...
- These are in addition to more usual "Input-Related" Challenges
  - Curse of dimensionality
  - Discovering good features
  - Missing data/partial observability
  - Causal inference
  - Computational tractability
  - ...

## Preferences in Schizophrenia Treatment

- Many treatments available for managing schizophrenia (dozens)
- Consider two important objectives or rewards:
  - Symptom reduction, weight control
- No treatment is best by both measures
- Different doctors and patients have very different preferences about relative importance of rewards
- Preference information is absent from large schizophrenia datasets

## The Inverse Preference Elicitation Project

 How can we provide salient information about available treatments that is non-myopic and that accommodates these preferences?

- Augment Q-Learning to allow for different reward preferences
  - Formalize preferences as a multi-objective optimization problem
- ② Develop an algorithm tailored to randomized trial data that provides information for each treatment for all preferences simultaneously

# Example: Decision Aid for Choosing Antipsychotics

Possible decision aid:

| Initial<br>Symptoms | Preference     |             |                |        |
|---------------------|----------------|-------------|----------------|--------|
|                     | Symptom Relief |             | Weight Control |        |
|                     | Strong         | Mild        | Mild           | Strong |
| Good                | Olan           | Olan or Zip | Zip            | Zip    |
| Moderate            | Olan           | Olan or Zip | Zip            | Zip    |
| Bad                 | Olan           | Olan        | Risp or Zip    | Zip    |

Olan = Olanzapine, Zip = Ziprasidone, Risp = Risperidone

• This is harder than it looks

# Q-Learning - Scalar Reward, Two Time Points

- Randomized trial data:  $(S_1, A_1, S_2, A_2, R)$  for each individual
  - $S_t \in \mathcal{S}_t$  "State" Patient features (prior treatments, test results, ...)
  - $A_t \in \mathcal{A}_t$  "Action" Treatment assigned by exploration policy
  - $R \in \mathbb{R}$  "Reward" Scalar clinical outcome, depends on  $(S_2, A_2)$
- Want to find  $\pi^*$  that produces maximal expected reward
- A "policy"  $\pi = \{\pi_1, \pi_2\}$  chooses actions given state
  - $\pi_t: \mathcal{S}_t \to \mathcal{A}_t$
  - $\pi_1$  influences distribution of  $S_2$  by choosing  $A_1$
  - $\pi_2$  influences distribution of R by choosing  $A_2$

• Q-Learning is Dynamic Programming. Determine  $\pi_2^*$ , then  $\pi_1^*$ .

#### Time 2

- Define  $Q_2(s_2, a_2) = E[R|S_2 = s_2, A_2 = a_2]$ 
  - For state  $s_2$ , this is *quality* of each  $a_2 \in A_2$ .
- $\pi_2^*(s_2) = \operatorname{argmax}_{a_2} Q_2(s_2, a_2)$
- $V_2^{\pi_2^*}(s_2) = \max_{a_2} Q_2(s_2, a_2)$  the value of being in  $s_2$

- Define  $Q_1(s_1, a_1) = E_{S_2}[V_2^{\pi_2^*}(S_2)|S_1 = s_1, A_1 = a_1]$ 
  - For state  $s_1$ , this is *quality* of each  $a_1 \in A_1$ .
- $\pi_1^*(s_1) = \operatorname{argmax}_{a_1} Q_1(s_1, a_1)$
- Q-functions are conditional expectations

• Q-Learning is Dynamic Programming. Determine  $\pi_2^*$ , then  $\pi_1^*$ .

## Time 2

- Define  $Q_2(s_2, a_2) = E[R|S_2 = s_2, A_2 = a_2]$ 
  - For state  $s_2$ , this is *quality* of each  $a_2 \in A_2$ .
- $\pi_2^*(s_2) = \operatorname{argmax}_{a_2} Q_2(s_2, a_2)$
- $V_2^{\pi_2^*}(s_2) = \max_{a_2} Q_2(s_2, a_2)$  the value of being in  $s_2$

- Define  $Q_1(s_1, a_1) = E_{S_2}[V_2^{\pi_2^*}(S_2)|S_1 = s_1, A_1 = a_1]$ 
  - For state  $s_1$ , this is *quality* of each  $a_1 \in A_1$ .
- $\pi_1^*(s_1) = \operatorname{argmax}_{a_1} Q_1(s_1, a_1)$
- Q-functions are conditional expectations

• Q-Learning is Dynamic Programming. Determine  $\pi_2^*$ , then  $\pi_1^*$ .

## Time 2

- Define  $Q_2(s_2, a_2) = E[R|S_2 = s_2, A_2 = a_2]$ 
  - For state  $s_2$ , this is *quality* of each  $a_2 \in A_2$ .
- $\pi_2^*(s_2) = \operatorname{argmax}_{a_2} Q_2(s_2, a_2)$
- $V_2^{\pi_2^*}(s_2) = \max_{a_2} Q_2(s_2, a_2)$  the value of being in  $s_2$

- Define  $Q_1(s_1, a_1) = E_{S_2}[V_2^{\pi_2^*}(S_2)|S_1 = s_1, A_1 = a_1]$ 
  - For state  $s_1$ , this is *quality* of each  $a_1 \in A_1$ .
- $\pi_1^*(s_1) = \operatorname{argmax}_{a_1} Q_1(s_1, a_1)$
- Q-functions are conditional expectations

• Q-Learning is Dynamic Programming. Determine  $\pi_2^*$ , then  $\pi_1^*$ .

## Time 2

- Define  $Q_2(s_2, a_2) = E[R|S_2 = s_2, A_2 = a_2]$ 
  - For state  $s_2$ , this is *quality* of each  $a_2 \in A_2$ .
- $\pi_2^*(s_2) = \operatorname{argmax}_{a_2} Q_2(s_2, a_2)$
- $V_2^{\pi_2^*}(s_2) = \max_{a_2} Q_2(s_2, a_2)$  the value of being in  $s_2$

- Define  $Q_1(s_1, a_1) = E_{S_2}[V_2^{\pi_2^*}(S_2)|S_1 = s_1, A_1 = a_1]$ 
  - For state  $s_1$ , this is *quality* of each  $a_1 \in A_1$ .
- $\pi_1^*(s_1) = \operatorname{argmax}_{a_1} Q_1(s_1, a_1)$
- Q-functions are conditional expectations

• Q-Learning is Dynamic Programming. Determine  $\pi_2^*$ , then  $\pi_1^*$ .

## Time 2

- Define  $Q_2(s_2, a_2) = E[R|S_2 = s_2, A_2 = a_2]$ 
  - For state  $s_2$ , this is *quality* of each  $a_2 \in A_2$ .
- $\pi_2^*(s_2) = \operatorname{argmax}_{a_2} Q_2(s_2, a_2)$
- $V_2^{\pi_2^*}(s_2) = \max_{a_2} Q_2(s_2, a_2)$  the value of being in  $s_2$

- Define  $Q_1(s_1, a_1) = E_{S_2}[V_2^{\pi_2^*}(S_2)|S_1 = s_1, A_1 = a_1]$ 
  - For state  $s_1$ , this is *quality* of each  $a_1 \in A_1$ .
- $\pi_1^*(s_1) = \operatorname{argmax}_{a_1} Q_1(s_1, a_1)$
- Q-functions are conditional expectations

• Q-Learning is Dynamic Programming. Determine  $\pi_2^*$ , then  $\pi_1^*$ .

### Time 2

- Define  $Q_2(s_2, a_2) = E[R|S_2 = s_2, A_2 = a_2]$ 
  - For state  $s_2$ , this is *quality* of each  $a_2 \in A_2$ .
- $\pi_2^*(s_2) = \operatorname{argmax}_{a_2} Q_2(s_2, a_2)$
- $V_2^{\pi_2^*}(s_2) = \max_{a_2} Q_2(s_2, a_2)$  the *value* of being in  $s_2$

- Define  $Q_1(s_1, a_1) = E_{S_2}[V_2^{\pi_2^*}(S_2)|S_1 = s_1, A_1 = a_1]$ 
  - For state  $s_1$ , this is quality of each  $a_1 \in A_1$ .
- $\pi_1^*(s_1) = \operatorname{argmax}_{a_1} Q_1(s_1, a_1)$
- Q-functions are conditional expectations

• Q-Learning is Dynamic Programming. Determine  $\pi_2^*$ , then  $\pi_1^*$ .

### Time 2

- Define  $Q_2(s_2, a_2) = E[R|S_2 = s_2, A_2 = a_2]$ 
  - For state  $s_2$ , this is *quality* of each  $a_2 \in A_2$ .
- $\pi_2^*(s_2) = \operatorname{argmax}_{a_2} Q_2(s_2, a_2)$
- $V_2^{\pi_2^*}(s_2) = \max_{a_2} Q_2(s_2, a_2)$  the value of being in  $s_2$

- Define  $Q_1(s_1, a_1) = E_{S_2}[V_2^{\pi_2^*}(S_2)|S_1 = s_1, A_1 = a_1]$ 
  - For state  $s_1$ , this is *quality* of each  $a_1 \in A_1$ .
- $\pi_1^*(s_1) = \operatorname{argmax}_{a_1} Q_1(s_1, a_1)$
- Q-functions are conditional expectations

• Q-Learning is Dynamic Programming. Determine  $\pi_2^*$ , then  $\pi_1^*$ .

### Time 2

- Define  $Q_2(s_2, a_2) = E[R|S_2 = s_2, A_2 = a_2]$ 
  - For state  $s_2$ , this is *quality* of each  $a_2 \in A_2$ .
- $\pi_2^*(s_2) = \operatorname{argmax}_{a_2} Q_2(s_2, a_2)$
- $V_2^{\pi_2^*}(s_2) = \max_{a_2} Q_2(s_2, a_2)$  the *value* of being in  $s_2$

- Define  $Q_1(s_1, a_1) = E_{S_2}[V_2^{\pi_2^*}(S_2)|S_1 = s_1, A_1 = a_1]$ 
  - For state  $s_1$ , this is *quality* of each  $a_1 \in A_1$ .
- $\pi_1^*(s_1) = \operatorname{argmax}_{a_1} Q_1(s_1, a_1)$
- Q-functions are conditional expectations

• Estimate each  $Q_t$  by linear regression on features  $\phi_t(s_t,a_t)$ 

Time 2: 
$$Q_2(s_2, a_2) = E_R[R|S_2 = s_2, A_2 = a_2]$$

- Regress R on features  $\phi_2(S_2, A_2)$  [R might be symptom reduction] to obtain  $\hat{Q}_2(s_2, a_2; \hat{\beta}_2) = \hat{\beta}_2^{\mathsf{T}} \phi_2(s_2, a_2)$
- Set  $\hat{\pi}_2^* = \operatorname{argmax}_{a_2} \hat{Q}_2(s_2, a_2), \quad \hat{V}_2^{\hat{\pi}_2^*}(s_2) = \operatorname{max}_{a_2} \hat{Q}_2(s_2, a_2)$

Time 1: 
$$Q_1(s_1, a_1) = E_{S_2}[V_2^{\pi_2^*}(S_2)|S_1 = s_1, A_1 = a_1]$$

- Regress  $\hat{V}_{2}^{\pi_{2}^{2}}(s_{2})$  on features  $\phi_{1}(S_{1}, A_{1})$  to obtain  $\hat{Q}_{1}(s_{1}, a_{1}; \hat{\beta}_{1}) = \hat{\beta}_{1}^{T} \phi_{1}(s_{1}, a_{1})$
- $\hat{\pi}_1^*(s_1) = \operatorname{argmax}_{a_1} \hat{Q}_1(s_1, a_1)$

• Estimate each  $Q_t$  by linear regression on features  $\phi_t(s_t,a_t)$ 

Time 2: 
$$Q_2(s_2, a_2) = E_R[R|S_2 = s_2, A_2 = a_2]$$

- Regress R on features  $\phi_2(S_2, A_2)$  [R might be symptom reduction] to obtain  $\hat{Q}_2(s_2, a_2; \hat{\beta}_2) = \hat{\beta}_2^T \phi_2(s_2, a_2)$
- Set  $\hat{\pi}_2^* = \operatorname{argmax}_{a_2} \hat{Q}_2(s_2, a_2), \quad \hat{V}_2^{\hat{\pi}_2^*}(s_2) = \operatorname{max}_{a_2} \hat{Q}_2(s_2, a_2)$

Time 1: 
$$Q_1(s_1,a_1)=E_{S_2}[V_2^{\pi_2^*}(S_2)|S_1=s_1,A_1=a_1]$$

- Regress  $\hat{V}_{2}^{\pi_{2}^{2}}(s_{2})$  on features  $\phi_{1}(S_{1}, A_{1})$  to obtain  $\hat{Q}_{1}(s_{1}, a_{1}; \hat{\beta}_{1}) = \hat{\beta}_{1}^{T} \phi_{1}(s_{1}, a_{1})$
- $\hat{\pi}_1^*(s_1) = \operatorname{argmax}_{a_1} \hat{Q}_1(s_1, a_1)$

• Estimate each  $Q_t$  by linear regression on features  $\phi_t(s_t,a_t)$ 

Time 2: 
$$Q_2(s_2, a_2) = E_R[R|S_2 = s_2, A_2 = a_2]$$

- Regress R on features  $\phi_2(S_2, A_2)$  [R might be symptom reduction] to obtain  $\hat{Q}_2(s_2, a_2; \hat{\beta}_2) = \hat{\beta}_2^T \phi_2(s_2, a_2)$
- Set  $\hat{\pi}_2^* = \operatorname{argmax}_{a_2} \hat{Q}_2(s_2, a_2), \quad \hat{V}_2^{\hat{\pi}_2^*}(s_2) = \operatorname{max}_{a_2} \hat{Q}_2(s_2, a_2)$

Time 1: 
$$Q_1(s_1, a_1) = E_{S_2}[V_2^{\pi_2^*}(S_2)|S_1 = s_1, A_1 = a_1]$$

- Regress  $\hat{V}_{2}^{\hat{\pi}_{2}^{2}}(s_{2})$  on features  $\phi_{1}(S_{1}, A_{1})$  to obtain  $\hat{Q}_{1}(s_{1}, a_{1}; \hat{\beta}_{1}) = \hat{\beta}_{1}^{T} \phi_{1}(s_{1}, a_{1})$
- $\hat{\pi}_1^*(s_1) = \operatorname{argmax}_{a_1} \hat{Q}_1(s_1, a_1)$

• Estimate each  $Q_t$  by linear regression on features  $\phi_t(s_t, a_t)$ 

Time 2: 
$$Q_2(s_2, a_2) = E_R[R|S_2 = s_2, A_2 = a_2]$$

- Regress R on features  $\phi_2(S_2, A_2)$  [R might be symptom reduction] to obtain  $\hat{Q}_2(s_2, a_2; \hat{\beta}_2) = \hat{\beta}_2^T \phi_2(s_2, a_2)$
- Set  $\hat{\pi}_2^* = \operatorname{argmax}_{a_2} \hat{Q}_2(s_2, a_2), \quad \hat{V}_2^{\hat{\pi}_2^*}(s_2) = \operatorname{max}_{a_2} \hat{Q}_2(s_2, a_2)$

Time 1: 
$$Q_1(s_1, a_1) = E_{S_2}[V_2^{\pi_2^*}(S_2)|S_1 = s_1, A_1 = a_1]$$

- Regress  $\hat{V}_{2}^{\hat{\pi}_{2}^{*}}(s_{2})$  on features  $\phi_{1}(S_{1}, A_{1})$  to obtain  $\hat{Q}_{1}(s_{1}, a_{1}; \hat{\beta}_{1}) = \hat{\beta}_{1}^{T} \phi_{1}(s_{1}, a_{1})$
- $\hat{\pi}_1^*(s_1) = \operatorname{argmax}_{a_1} \hat{Q}_1(s_1, a_1)$

• Estimate each  $Q_t$  by linear regression on features  $\phi_t(s_t, a_t)$ 

Time 2: 
$$Q_2(s_2, a_2) = E_R[R|S_2 = s_2, A_2 = a_2]$$

- Regress R on features  $\phi_2(S_2, A_2)$  [R might be symptom reduction] to obtain  $\hat{Q}_2(s_2, a_2; \hat{\beta}_2) = \hat{\beta}_2^T \phi_2(s_2, a_2)$
- Set  $\hat{\pi}_2^* = \operatorname{argmax}_{a_2} \hat{Q}_2(s_2, a_2), \quad \hat{V}_2^{\hat{\pi}_2^*}(s_2) = \operatorname{max}_{a_2} \hat{Q}_2(s_2, a_2)$

Time 1: 
$$Q_1(s_1, a_1) = E_{S_2}[V_2^{\pi_2^*}(S_2)|S_1 = s_1, A_1 = a_1]$$

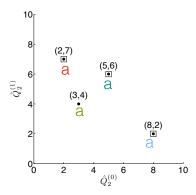
- Regress  $\hat{V}_{2}^{\hat{\pi}_{2}^{*}}(s_{2})$  on features  $\phi_{1}(S_{1}, A_{1})$  to obtain  $\hat{Q}_{1}(s_{1}, a_{1}; \hat{\beta}_{1}) = \hat{\beta}_{1}^{\top} \phi_{1}(s_{1}, a_{1})$
- $\hat{\pi}_1^*(s_1) = \operatorname{argmax}_{a_1} \hat{Q}_1(s_1, a_1)$

# Q-Learning - Beyond Scalar Rewards

- Learned policy  $\hat{\pi}_t^*(s_t) = \operatorname{argmax}_{a_t} \hat{Q}_t(s_t, a_t)$  is constructed to maximize long-term expected reward, i.e. is *non-myopic*
- Dynamic programming "trick" is to maximize over a<sub>2</sub> first
  - Key step: Set  $\hat{V}_2^{\hat{\pi}_2^*}(s_2) = \max_{a_2} \hat{Q}_2(s_2, a_2)$
  - Only makes sense if R is scalar
- What if there is more than one R of interest?

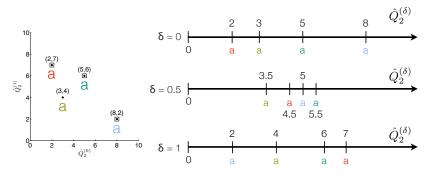
#### Time 2 Policy - Two Rewards

- Suppose two rewards  $R^{(0)}$  and  $R^{(1)}$  are of interest, e.g. symptom reduction and weight control
- Below,  $(\hat{Q}_2^{(0)}, \hat{Q}_2^{(1)})$  for patient with  $S_2 = s_2$ , four different actions
- What should  $\hat{\pi}_2^*(s_2)$  be?



### Formalizing Preference

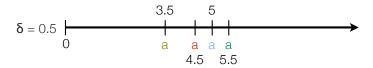
- Define a scalar reward  $R^{(\delta)} = (1 \delta)R^{(0)} + \delta R^{(1)}$
- $0 \le \delta \le 1$
- Proceed as before to get  $\hat{Q}_2^{(\delta)}$



•  $\delta$  represents "How much do I care about  $R^{(1)}$ ?"

#### Preference Elicitation

- Function  $R^{(\delta)}$  is an Aggregate Objective Function (many names...) familiar in multi-objective optimization
- Preference Elicitation Approach:
  - ullet Figure out the decision maker's  $\delta$
  - Define a scalar reward  $R^{(\delta)} = (1 \delta) \cdot R^{(0)} + \delta \cdot R^{(1)}$
  - Use Q-learning to estimate the optimal policy for that reward
- Resulting policy is Pareto optimal
- E.g., for  $\delta = 0.5$



#### Preference Elicitation

- E.g., "Consider two actions. You can have (8,5), or you can have (5,x). What value of x makes you indifferent to this choice?"  $^2$
- Find  $\delta$  so that  $R^{(\delta)}$  is equal for the two points

• 
$$(1 - \delta) \cdot 8 + \delta \cdot 5 = (1 - \delta) \cdot 5 + \delta \cdot x$$

- Doubt about whether or not this actually works
- Has nothing to do with the actions that are actually available, i.e. does not provide salient information about available treatments.

<sup>&</sup>lt;sup>2</sup>Actual question would be more subtle.

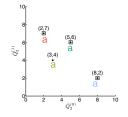
- Preference Elicitation
  - "Give me your  $\delta$ , I will tell you the right action."
- Infinite number of  $\delta$ , but only 4 actions
- Inverse Preference Elicitation
  - "Given each available action, I will tell you the  $\delta$  for which that action is optimal."
  - This is our salient information

- "Given each available action, I will tell you the  $\delta$  for which that action is optimal."
- Each action is optimal over a range of  $\delta$



- "Given each available action, I will tell you the  $\delta$  for which that action is optimal."
- ullet Each action is optimal over a range of  $\delta$

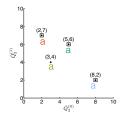




• Note action a does not appear

- "Given each available action, I will tell you the  $\delta$  for which that action is optimal."
- Each action is optimal over a range of  $\delta$

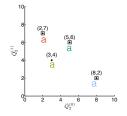




- Note action a does not appear
- Can see sensitivity of action choice w.r.t. preference

- "Given each available action, I will tell you the  $\delta$  for which that action is optimal."
- ullet Each action is optimal over a range of  $\delta$





- Note action a does not appear
- Can see sensitivity of action choice w.r.t. preference
- Decision aid from the beginning is a coarsened version of a picture like this

#### Non-Myopic Inverse Preference Elicitation

- At each timepoint t, define  $\hat{Q}_t(s_t, a_t; \hat{\beta}_t(\delta)) = \hat{\beta}_t^{\mathsf{T}}(\delta)\phi_t(s_t, a_t)$
- Perform Q-learning for all  $\delta$  simultaneously
- At Time 2, finding ranges of  $\delta$  is straightforward
  - ullet Use convex hull to identify regions of  $\delta$
- At Time 1, things get interesting
- Challenge: represent  $\hat{Q}_1(s_1, a_1; \hat{\beta}_1(\delta))$ 
  - Exactly
  - Economically

Time 2: 
$$Q_2(s_2, a_2; \delta) = E_R[R^{(\delta)}|S_2 = s_2, A_2 = a_2]$$

• For all  $\delta \in [0, 1]$ , regress  $R^{(\delta)}$  on features  $\phi_2(S_2, A_2)$  giving  $\hat{Q}_2(s_2, a_2; \hat{\beta}_2(\delta)) = \hat{\beta}_2^{\mathsf{T}}(\delta)\phi_2(s_2, a_2)$ 

• 
$$\hat{\beta}_2(\delta) = (\Phi_2^T \Phi_2)^{-1} \Phi_2^T ((1 - \delta) \vec{R}^{(0)} + \delta \vec{R}^{(1)})$$

• Notice that  $\hat{Q}_2(s_2, a_2; \hat{\beta}_2(\delta)) = \phi_2(s_2, a_2)^T \hat{\beta}_2(\delta)$  is linear in  $\delta$  so only compute  $\hat{\beta}_2(0)$  and  $\hat{\beta}_2(1)$ .

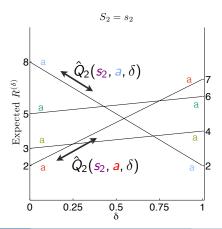
Time 2: 
$$Q_2(s_2, a_2; \delta) = E_R[R^{(\delta)}|S_2 = s_2, A_2 = a_2]$$

- For all  $\delta \in [0, 1]$ , regress  $R^{(\delta)}$  on features  $\phi_2(S_2, A_2)$  giving  $\hat{Q}_2(s_2, a_2; \hat{\beta}_2(\delta)) = \hat{\beta}_2^{\mathsf{T}}(\delta)\phi_2(s_2, a_2)$
- $\hat{\beta}_2(\delta) = (\Phi_2^T \Phi_2)^{-1} \Phi_2^T ((1 \delta) \vec{R}^{(0)} + \delta \vec{R}^{(1)})$
- Notice that  $\hat{Q}_2(s_2, a_2; \hat{\beta}_2(\delta)) = \phi_2(s_2, a_2)^T \hat{\beta}_2(\delta)$  is linear in  $\delta$ , so only compute  $\hat{\beta}_2(0)$  and  $\hat{\beta}_2(1)$ .

Time 2: 
$$Q_2(s_2, a_2; \delta) = E_R[R^{(\delta)}|S_2 = s_2, A_2 = a_2]$$

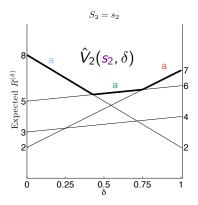
- For all  $\delta \in [0, 1]$ , regress  $R^{(\delta)}$  on features  $\phi_2(S_2, A_2)$  giving  $\hat{Q}_2(s_2, a_2; \hat{\beta}_2(\delta)) = \hat{\beta}_2^{\mathsf{T}}(\delta)\phi_2(s_2, a_2)$
- $\hat{\beta}_2(\delta) = (\Phi_2^T \Phi_2)^{-1} \Phi_2^T ((1 \delta) \vec{R}^{(0)} + \delta \vec{R}^{(1)})$
- Notice that  $\hat{Q}_2(s_2, a_2; \hat{\beta}_2(\delta)) = \phi_2(s_2, a_2)^T \hat{\beta}_2(\delta)$  is linear in  $\delta$ , so only compute  $\hat{\beta}_2(0)$  and  $\hat{\beta}_2(1)$ .

• Notice that  $\hat{Q}_2(s_2, a_2; \hat{\beta}_2(\delta)) = \phi_2(s_2, a_2)^T \hat{\beta}_2(\delta)$  is linear in  $\delta$ , so only compute  $\hat{\beta}_2(0)$  and  $\hat{\beta}_2(1)$ .



- For all  $\delta \in [0, 1]$ , set  $\hat{V}_2(s_2; \delta) \triangleq \max_{a_2} \hat{Q}_2(s_2, a_2; \delta)$ . Note  $\hat{V}_2(s_2; \delta)$  is piecewise linear in  $\delta$ .
- For all  $\delta \in [0, 1]$ , regress  $\hat{V}_2(S_2; \delta)$  on features  $\phi_1(S_1, A_1)$  giving  $\hat{Q}_1(s_1, a_1; \hat{\beta}_1(\delta)) = \hat{\beta}_1(\delta)^T \phi_1(s_1, a_1)$
- $\hat{\beta}_1(\delta) = (\Phi_1^T \Phi_1)^{-1} \Phi_1^T \hat{\vec{V}}_2(S_2; \delta)$
- Notice that  $\hat{\beta}_1(\delta)$  and  $\hat{Q}_1(s_1, a_1; \hat{\beta}_1(\delta))$  are linear over regions of  $\delta$  where elments of  $\hat{\vec{V}}_2(s_2; \delta)$  are all simultaneously linear

• Notice  $\hat{V}_2(s_2; \delta)$  is piecewise linear in  $\delta$ .

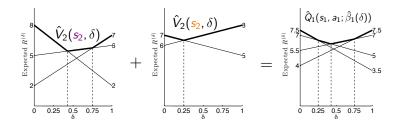


- For all  $\delta \in [0, 1]$ , set  $\hat{V}_2(s_2; \delta) \triangleq \max_{a_2} \hat{Q}_2(s_2, a_2; \hat{\beta}_2(\delta))$ . Note  $\hat{V}_2(s_2; \delta)$  is piecewise linear in  $\delta$ .
- For all  $\delta$ , regress  $\hat{V}_2(S_2; \delta)$  on features  $\phi_1(S_1, A_1)$  giving  $\hat{Q}_1(s_1, a_1; \hat{\beta}_1(\delta)) = \hat{\beta}_1(\delta)^{\mathsf{T}} \phi_1(s_1, a_1)$
- $\hat{\beta}_1(\delta) = (\Phi_1^T \Phi_1)^{-1} \Phi_1^T \hat{\vec{V}}_2(S_2; \delta)$
- Notice that  $\hat{\beta}_1(\delta)$  and  $\hat{Q}_1(s_1, a_1; \hat{\beta}_1(\delta))$  are linear over regions of  $\delta$  where elments of  $\hat{V}_2(s_2; \delta)$  are all simultaneously linear

- For all  $\delta \in [0, 1]$ , set  $\hat{V}_2(s_2; \delta) \triangleq \max_{a_2} \hat{Q}_2(s_2, a_2; \hat{\beta}_2(\delta))$ .
- For all  $\delta$ , regress  $\hat{V}_2(S_2; \delta)$  on features  $\phi_1(S_1, A_1)$  giving  $\hat{Q}_1(s_1, a_1; \hat{\beta}_1(\delta)) = \hat{\beta}_1(\delta)^T \phi_1(s_1, a_1)$
- $\hat{\beta}_1(\delta) = (\Phi_1^T \Phi_1)^{-1} \Phi_1^T \hat{V}_2(S_2; \delta)$
- Notice that  $\hat{\beta}_1(\delta)$  and  $\hat{Q}_1(s_1, a_1; \hat{\beta}_1(\delta))$  are linear over regions of  $\delta$

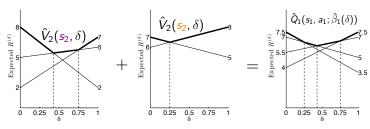
- For all  $\delta \in [0, 1]$ , set  $\hat{V}_2(s_2; \delta) \triangleq \max_{a_2} \hat{Q}_2(s_2, a_2; \hat{\beta}_2(\delta))$ . Note  $\hat{V}_2(s_2; \delta)$  is piecewise linear in  $\delta$ .
- For all  $\delta$ , regress  $\hat{V}_2(S_2; \delta)$  on features  $\phi_1(S_1, A_1)$  giving  $\hat{Q}_1(s_1, a_1; \hat{\beta}_1(\delta)) = \hat{\beta}_1(\delta)^{\mathsf{T}} \phi_1(s_1, a_1)$
- $\hat{\beta}_1(\delta) = (\Phi_1^{\mathsf{T}} \Phi_1)^{-1} \Phi_1^{\mathsf{T}} \hat{\vec{V}}_2(S_2; \delta)$
- Notice that  $\hat{\beta}_1(\delta)$  and  $\hat{Q}_1(s_1, a_1; \hat{\beta}_1(\delta))$  are linear over regions of  $\delta$  where elments of  $\hat{\vec{V}}_2(s_2; \delta)$  are all simultaneously linear

• Notice that  $\hat{\beta}_1(\delta)$  and  $\hat{Q}_1(s_1, a_1; \hat{\beta}_1(\delta))$  are linear over regions of  $\delta$  where  $\hat{V}_2(s_2; \delta)$  is simultaneously linear for all  $s_2$ .



• Only need to evaluate  $\hat{\beta}_1(\delta)$  at union of knots in  $\hat{V}_2(S_2;\delta)$ 

# Convexity of $\hat{Q}_t$ , $\hat{V}_t$



- $\hat{Q}_1(s_1, a_1; \hat{\beta}_1(\delta))$  is a weighted combination of the  $\hat{V}_2(S_2; \delta)$ , with weights  $\phi_1(s_1, a_1)^{\mathsf{T}}(\Phi_1^{\mathsf{T}}\Phi_1)^{-1}\Phi_1^{\mathsf{T}}$
- Note that  $\hat{Q}_1(s_1, a_1; \hat{\beta}_1(\delta))$  may not be convex in  $\delta$ !
- $\bullet$  Earlier work (Barrett and Narayanan 2008) relied on convexity, which restricts possible definitions of  $\phi$

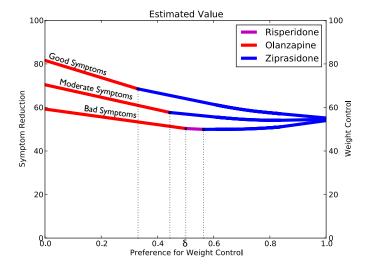
# Complexity of $\hat{Q}_t$ , $\hat{V}_t$

- In general,  $\hat{Q}_t(s_t, a_t; \hat{\beta}_t(\delta))$  is piecewise linear in  $\delta$ .
- For a T-timepoint analysis
  - $\hat{Q}_t(s_t, a_t; \hat{\beta}_t(\delta))$  has  $O(n^{T-t}|\mathcal{A}|^{T-t})$  knots
  - New knots introduced by setting  $\hat{V}_t \triangleq \max_{a_t} \hat{Q}_t(s_t, a_t; \hat{\beta}_t(\delta))$
  - $\hat{V}_t(s_t; \delta)$  has  $O(n^{T-t}|\mathcal{A}|^{(T-t)+1})$  knots
  - ullet New knots introduced by taking union over state at the n data points
  - $\hat{Q}_{t-1}(s_{t-1}, a_{t-1}; \hat{\beta}(\delta))$  has  $O(n^{(T-t)+1}|\mathcal{A}|^{(T-t)+1})$  knots
- Bookkeeping allows construction of  $\hat{Q}_t$  and  $\hat{V}_t$  in time linear in number of knots [Lizotte, Bowling, Murphy 2010]
- Earlier work (e.g. Barrett and Narayanan 2008) did not take advantage of piecewise linear structure, which increases computation time to quadratic in # of knots.

#### Example: CATIE

- Large (N = 1460) comparative effectiveness trial
- Most patients randomized two times:
  - First to one of 5 actions
  - Then, if desired, to one of 5 different actions
- Following is a highly simplified analysis
- Overall, the results are consistent with the literature
- Rewards: symptoms relief, weight control

#### Example: CATIE Inverse Preference Elicitation



#### Example: CATIE-based Decision Aid

• Possible decision aid: Coarse version of the plots

| Initial<br>Symptoms | Preference     |             |                |        |
|---------------------|----------------|-------------|----------------|--------|
|                     | Symptom Relief |             | Weight Control |        |
|                     | Strong         | Mild        | Mild           | Strong |
| Good                | Olan           | Olan or Zip | Zip            | Zip    |
| Moderate            | Olan           | Olan or Zip | Zip            | Zip    |
| Bad                 | Olan           | Olan        | Risp or Zip    | Zip    |

Olan = Olanzapine, Zip = Ziprasidone, Risp = Risperidone

• Thanks to Holly Wittemann, Brian Zikmund-Fisher, UMich SPH

#### Future Work

- Algorithms and Methods for Generating Evidence
  - More flexible models / approximation algorithms for preferences
  - Measures of uncertainty requires interesting optimization
    - Ask me about this!
  - "Classical" ML problems (feature selection/dimensionality reduction/model selection, feature extraction via NLP, accommodating missing data...)
  - Must still provide salient information!
- Clinical Science Applications
  - Schizophrenia CATIE
  - Major Depressive Disorder STAR\*D
  - ICU data (non-randomized) MIMIC, MIMIC II
  - EHR?

#### Thank You

- Supported by National Institute of Health grants R01 MH080015 and P50 DA10075
- Daniel J. Lizotte, Michael Bowling, and Susan A. Murphy. Efficient Reinforcement Learning with Multiple Reward Functions for Randomized Clinical Trial Analysis. Proceedings of the Twenty-Seventh International Conference on Machine Learning (ICML), 2010.
- Related work:

Barrett, L. and Narayanan, S. *Learning all optimal policies with multiple criteria*. In Proceedings of the 25th International Conference on Machine Learning 2008.

## Confidence Intervals for Q-Learning

- Question: In state  $s_t$ , is there evidence that a is really better than a?
- Classical approach: get confidence interval for  $\hat{\beta}_t^{\mathsf{T}} \cdot (\phi(s_t, a) \phi(s_t, a))$
- For t = T, under mild assumptions on R, can use normal approximation or bootstrap
- For t < T, standard methods can fail even as  $n \to \infty$
- Trouble arises when statistics (e.g.  $\hat{\beta}_t$ ) are non-differentiable functions of the dataset
- $\hat{\beta}_1$  based on  $\hat{V}_2(s_2) = \max_a \hat{Q}_2(s_2, a)$

## Confidence Intervals for Q-Learning

- Question: In state  $s_t$ , is there evidence that a is really better than a?
- Classical approach: get confidence interval for  $\hat{\beta}_t^{\mathsf{T}} \cdot (\phi(s_t, a) \phi(s_t, a))$
- For t = T, under mild assumptions on R, can use normal approximation or bootstrap
- For t < T, standard methods can fail even as  $n \to \infty$
- Trouble arises when statistics (e.g.  $\hat{\beta}_t$ ) are non-differentiable functions of the dataset
- $\hat{\beta}_1$  based on  $\hat{V}_2(s_2) = \max_a \hat{Q}_2(s_2, a)$

### Confidence Intervals for Q-Learning

- Question: In state  $s_t$ , is there evidence that a is really better than a?
- Classical approach: get confidence interval for  $\hat{\beta}_t^{\mathsf{T}} \cdot (\phi(s_t, a) \phi(s_t, a))$
- For t = T, under mild assumptions on R, can use normal approximation or bootstrap
- For t < T, standard methods can fail even as  $n \to \infty$
- Trouble arises when statistics (e.g.  $\hat{\beta}_t$ ) are non-differentiable functions of the dataset
- $\hat{\beta}_1$  based on  $\hat{V}_2(s_2) = \max_a \hat{Q}_2(s_2, a)$

### Adaptive Confidence Intervals for Q-Learning

- A method that produces correct coverage:
  - ullet Re-sample a dataset  $\mathcal{D}'$  with replacement
  - Compute  $\tilde{\beta}_t = \arg\max_{\beta \text{ near } \hat{\beta}_t} f(\beta, \mathcal{D}')$
  - Repeat
- Use distribution of  $\tilde{\beta}_t$  to make C.I.
- The arg  $\max_{\beta \text{ near } \hat{\beta}_t} f(\beta, \mathcal{D}')$  problem is interesting
  - Non-convex
  - Piecewise linear but possibly not continuous
  - Can formulate as MIP, but maybe we can do better...