Data Preparation

Dan Lizotte
2018-09-18

Data Wrangling and Exploration in R

Reasons to use R

- Easy-ish input from relational database, .csv, .xlsx
- Nice syntax for data table manipulation
- Elegant plotting
- There’s a package for everything. (The python of the statistics world.)
- On the other hand, python is also great. **You are not required to use R in this course.**

New York City Flights 2013

```r
# IF you see library(blah) in my code, you will need to install.packages("blah") before running it.
library(nycflights13)
print(flights)
```

```r
## # A tibble: 336,776 x 19
## #   year month day dep_time sched_dep_time dep_delay arr_time
## # 1 2013 1 1 517 515 2 830
## 2 2013 1 1 533 529 4 850
## 3 2013 1 1 542 540 2 923
## 4 2013 1 1 544 545 -1 1004
## 5 2013 1 1 554 600 -6 812
## 6 2013 1 1 554 558 -4 740
## 7 2013 1 1 555 600 -5 913
## 8 2013 1 1 557 600 -3 709
## 9 2013 1 1 557 600 -3 838
## 10 2013 1 1 558 600 -2 753
## # ... with 336,766 more rows, and 12 more variables: sched_arr_time <int>,
## #   arr_delay <dbl>, carrier <chr>, flight <int>, tailnum <chr>,
## #   origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>, hour <dbl>,
## #   minute <dbl>, time_hour <dttm>
```

```r
print(planes)
```
A tibble: 3,322 x 9
A tibble: 3,322 x 9
tailnum year type manufacturer model engines seats speed engine
<chr> <int> <chr> <chr> <chr> <int> <int> <int> <chr>
1 N10156 2004 Fixed wi- EMBRAER EMB-1~ 2 55 NA Turbo~
2 N102UW 1998 Fixed wi- AIRBUS INDUS- A320-- 2 182 NA Turbo~
3 N103US 1999 Fixed wi- AIRBUS INDUS- A320-- 2 182 NA Turbo~
4 N104UW 1999 Fixed wi- AIRBUS INDUS- A320-- 2 182 NA Turbo~
5 N10575 2002 Fixed wi- EMBRAER EMB-1~ 2 55 NA Turbo~
6 N105UW 1999 Fixed wi- AIRBUS INDUS- A320-- 2 182 NA Turbo~
7 N107US 1999 Fixed wi- AIRBUS INDUS- A320-- 2 182 NA Turbo~
8 N108UW 1999 Fixed wi- AIRBUS INDUS- A320-- 2 182 NA Turbo~
9 N109UW 1999 Fixed wi- AIRBUS INDUS- A320-- 2 182 NA Turbo~
10 N110UW 1999 Fixed wi- AIRBUS INDUS- A320-- 2 182 NA Turbo~
... with 3,312 more rows

print(weather)

A tibble: 26,115 x 15
A tibble: 26,115 x 15
origin year month day hour temp dewp humid wind_dir wind_speed
<chr> <dbl> <dbl> <int> <int> <dbl> <dbl> <dbl> <dbl> <dbl>
1 EWR 2013 1 1 1 39.0 26.1 59.4 270 10.4
2 EWR 2013 1 1 2 39.0 27.0 61.6 250 8.06
3 EWR 2013 1 1 3 39.0 28.0 64.4 240 11.5
4 EWR 2013 1 1 4 39.9 28.0 62.2 250 12.7
5 EWR 2013 1 1 5 39.0 28.0 64.4 260 12.7
6 EWR 2013 1 1 6 37.9 28.0 67.2 240 11.5
7 EWR 2013 1 1 7 39.0 28.0 64.4 240 15.0
8 EWR 2013 1 1 8 39.9 28.0 62.2 250 10.4
9 EWR 2013 1 1 9 39.9 28.0 62.2 260 15.0
10 EWR 2013 1 1 10 41 28.0 59.6 260 13.8
... with 26,105 more rows, and 5 more variables: wind_gust <dbl>,
precip <dbl>, pressure <dbl>, visib <dbl>, time_hour <dttm>

print(airlines)

A tibble: 16 x 2
A tibble: 16 x 2
carrier name
<chr> <chr>
1 9E Endeavor Air Inc.
2 AA American Airlines Inc.
3 AS Alaska Airlines Inc.
4 B6 JetBlue Airways
5 DL Delta Air Lines Inc.
6 EV ExpressJet Airlines Inc.
7 F9 Frontier Airlines Inc.
8 FL AirTran Airways Corporation
9 HA Hawaiian Airlines Inc.
10 MQ Envoy Air
11 OO SkyWest Airlines Inc.
12 UA United Air Lines Inc.
13 US US Airways Inc.
14 VX Virgin America
15 WN Southwest Airlines Co.
16 YV Mesa Airlines Inc.

```r
print(airports)
```

```r
# A tibble: 1,458 x 8
#  faa  name          lat  lon  alt  tz  dst tzone
#  <chr> <chr>        <dbl> <dbl> <int> <dbl> <chr> <chr>
#1 04G Lansdowne Airport  41.1 -80.6  1044  -5  A  America/New-
#2 06A Moton Field Municipal 32.5 -85.7   264   -6  A  America/Chic-
#3 06C Schaumburg Regional 42.0 -88.1   801   -6  A  America/Chic-
#4 06N Randall Airport     41.4 -74.4   523   -5  A  America/New-
#5 09J Jekyll Island Airport 31.1 -81.4    11   -5  A  America/New-
#6 0A9 Elizabethton Municipal 36.4 -82.2  1593   -5  A  America/New-
#7 0G6 Williams County Airport 41.5 -84.5   730   -5  A  America/New-
#8 0G7 Finger Lakes Regional 42.9 -76.8   492   -5  A  America/New-
#9 0P2 Shoestring Aviation  39.8 -76.6  1000   -5  U  America/New-
#10 0S9 Jefferson County Int 48.1 -123. 108    -8  A  America/Los-
# ... with 1,448 more rows
```

dplyr

The `dplyr` package in R provides simple functions that correspond to the most common data manipulation operations (or verbs) and uses efficient storage approaches.

<table>
<thead>
<tr>
<th>verb</th>
<th>meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>select()</td>
<td>select variables (or columns)</td>
</tr>
<tr>
<td>filter()</td>
<td>subset observations (or rows)</td>
</tr>
<tr>
<td>mutate()</td>
<td>add new variables (or columns)</td>
</tr>
<tr>
<td>arrange()</td>
<td>re-order the observations</td>
</tr>
<tr>
<td>summarise()</td>
<td>reduce to a single row</td>
</tr>
<tr>
<td>group_by()</td>
<td>aggregate</td>
</tr>
<tr>
<td>left_join()</td>
<td>merge two data objects</td>
</tr>
<tr>
<td>distinct()</td>
<td>remove duplicate entries</td>
</tr>
<tr>
<td>collect()</td>
<td>force computation and bring data back into R</td>
</tr>
</tbody>
</table>

Designed for tidy data

- `dplyr` was designed with the idea of tidy data in mind, but can be applied to all data
- good for coercing data into a new format
- convenient syntax:

```r
newdata <- olddata %>% verb1(options) %>% verb2(options) %>% verb3(options)
```
Filtering observations

• `filter()` extracts a subset of rows of interest
• Suppose we wanted to find out which airports certain codes belong to?

```r
library(dplyr)
airports %>% filter(faa %in% c('ALB', 'BDL', 'BTV'))
```

```
## # A tibble: 3 x 8
## # Groups: carrier [16]
##     faa name     lat  lon  alt  dst tzon
##  <chr> <chr> <dbl> <dbl> <int> <int> <chr>
## 1   ALB   Albany Intl 42.7  -73.8 285   -5     A America/New_York
## 2   BDL  Bradley Intl 41.9  -72.7 173   -5     A America/New_York
## 3   BTV Burlington Intl 44.5  -73.2 335   -5     A America/New_York
```

Grouping

```r
flights

## # A tibble: 336,776 x 19
##     year month day dep_time sched_dep_time dep_delay arr_time
##    <int> <int> <int>    <int>          <int>      <int>     <int>
## 1   2013     1     1       517            515        2    830
## 2   2013     1     1       533            529        4    850
## 3   2013     1     1       542            540        2    923
## 4   2013     1     1       544            545       -1   1004
## 5   2013     1     1       554            600       -6    812
## 6   2013     1     1       554            558       -4    740
## 7   2013     1     1       555            600       -5    913
## 8   2013     1     1       557            600       -3    709
## 9   2013     1     1       557            600       -3    838
##10   2013     1     1       558            600       -2    753
## ... with 336,766 more rows, and 12 more variables: sched_arr_time <int>,
## arr_delay <dbl>, carrier <chr>, flight <int>, tailnum <chr>,
## origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>, hour <dbl>,
## minute <dbl>, time_hour <dttm>
```

```r
bycarrier <- flights %>% group_by(carrier)
bycarrier
```

```
## # A tibble: 336,776 x 19
##     year month day dep_time sched_dep_time dep_delay arr_time
##    <int> <int> <int>    <int>          <int>      <int>     <int>
## 1   2013     1     1       517            515        2    830
## 2   2013     1     1       533            529        4    850
## 3   2013     1     1       542            540        2    923
## 4   2013     1     1       544            545       -1   1004
## 5   2013     1     1       554            600       -6    812
## 6   2013     1     1       554            558       -4    740
## 7   2013     1     1       555            600       -5    913
## 8   2013     1     1       557            600       -3    709
## 9   2013     1     1       557            600       -3    838
##10   2013     1     1       558            600       -2    753
```
Grouping and Summaries

flights %>% summarise(numflights = n()) # n() counts rows

A tibble: 1 x 1
numflights
<int>
1 336776

bycarrier %>% summarise(numflights = n()) # n() counts rows

A tibble: 16 x 2
carrier numflights
<chr> <int>
1 9E 18460
2 AA 32729
3 AS 714
4 B6 54635
5 DL 48110
6 EV 54173
7 F9 685
8 FL 3260
9 HA 342
10 MQ 26397
11 OD 32
12 UA 58665
13 US 20536
14 VX 5162
15 WN 12275
16 YV 601

Aggregating observations

Aggregate the counts of flights at the monthly level.

monthlycounts <- flights %>%
 filter(dest %in% c('ALB', 'BDL', 'BTV')) %>%
 group_by(year, month) %>%
 summarise(numflights = n())

A tibble: 12 x 3
Groups: year [?]
year month numflights
<int> <int> <int>
1 2013 1 324
2 2013 2 293
3 2013 3 376
Aggregating observations

Aggregate the counts of flights at three airports at the monthly level.

```r
airportmonthlycounts <- flights %>%
  filter(dest %in% c('ALB', 'BDL', 'BTV')) %>%
  group_by(year, month, dest) %>%
  summarise(numflights = n())
```

```
# A tibble: 36 x 4
# Groups: year, month [?
## year month dest numflights
## <int> <int> <chr> <int>
## 1 2013 1 ALB 64
## 2 2013 1 BDL 37
## 3 2013 1 BTV 223
## 4 2013 2 ALB 58
## 5 2013 2 BDL 46
## 6 2013 2 BTV 189
## 7 2013 3 ALB 57
## 8 2013 3 BDL 62
## 9 2013 3 BTV 257
## 10 2013 4 ALB 13
## # ... with 26 more rows
```

Creating new derived variables

Add a new column by constructing a date variable using `mutate()`. R has a special “date” data type that is useful; dates can be constructed different ways, including using the `ymd()` function.

```r
library(lubridate) #To get the ymd() function
airportdailycounts <- flights %>%
  filter(dest %in% c('ALB', 'BDL', 'BTV')) %>%
  group_by(year, month, day, dest) %>%
  summarise(numflights = n()) %>%
  mutate(date = ymd(paste(year, month, day, sep = "-")))
```

```
# A tibble: 876 x 6
# Groups: year, month, day [365]
## year month day dest numflights date
## <int> <int> <int> <chr> <int> <date>
## 1 2013 1 1 ALB 3 2013-01-01
## 2 2013 1 1 BDL 2 2013-01-01
## 3 2013 1 1 BTV 7 2013-01-01
```

6
library(ggplot2)
ggplot(data = airportdailycounts, aes(x = date, y = numflights, colour = dest)) + geom_point()

Plot by month instead

airportmonthlycounts <- airportmonthlycounts %>%
 mutate(FirstOfMonth = ymd(paste(year, "-", month, "-01", sep="")))
ggplot(data = airportmonthlycounts, aes(x = FirstOfMonth, y = numflights, colour = dest)) + geom_point()
Sorting and selecting

arrange() lets us display the months with the largest number of flights.

airportmonthlycounts %>% arrange(desc(numflights))

```r
## # A tibble: 36 x 5
## # Groups: year, month [12]
## year month dest numflights FirstOfMonth
## <int> <int> <chr> <int> <date>
## 1 2013 6 BTV 264 2013-06-01
## 2 2013 3 BTV 257 2013-03-01
## 3 2013 5 BTV 256 2013-05-01
## 4 2013 10 BTV 238 2013-10-01
## 5 2013 7 BTV 236 2013-07-01
## 6 2013 1 BTV 223 2013-01-01
## 7 2013 4 BTV 223 2013-04-01
## 8 2013 8 BTV 214 2013-08-01
## 9 2013 2 BTV 189 2013-02-01
## 10 2013 12 BTV 179 2013-12-01
## # ... with 26 more rows
```

Comparing airlines

Which airline was most reliable flying from New York to Minneapolis/St. Paul (MSP) in January, 2013?
jandelays <- flights %>% select(origin, dest, year, month, day, carrier, arr_delay) %>%
filter(dest == 'MSP' & month == 1)
ggplot(data = jandelays, aes(x = carrier, y = arr_delay)) + geom_boxplot()

Merging or “Joining”

Here, the full carrier names are merged (or joined, in database speak) using the `left_join()`

merged <- left_join(jandelays, airlines, by = c("carrier" = "carrier"))

```r
merged
## # A tibble: 546 x 8
## # row.names origin dest year month day carrier arr_delay name
##     <chr> <chr> <int> <int> <int> <chr> <dbl> <chr>
##  1 LGA MSP 2013 1 1 DL -8 Delta Air Lines Inc.
##  2 EWR MSP 2013 1 1 EV 29 ExpressJet Airlines Inc.
##  3 LGA MSP 2013 1 1 MQ 10 Envoy Air
##  4 LGA MSP 2013 1 1 DL -8 Delta Air Lines Inc.
##  5 JFK MSP 2013 1 1 9E 11 Endeavor Air Inc.
##  6 LGA MSP 2013 1 1 DL -10 Delta Air Lines Inc.
##  7 LGA MSP 2013 1 1 DL 8 Delta Air Lines Inc.
##  8 LGA MSP 2013 1 1 MQ 93 Envoy Air
##  9 LGA MSP 2013 1 1 DL -8 Delta Air Lines Inc.
## 10 LGA MSP 2013 1 1 MQ 91 Envoy Air
## # ... with 536 more rows
```
Truth in Advertising

`?flights` gives description: “On-time data for all flights that departed NYC (i.e. JFK, LGA or EWR) in 2013.”

```r
flights %>% filter(dest == 'ORD') %>% summarize(count = n())
## # A tibble: 1 x 1
##   count
##    <int>
## 1 17283

flights %>% filter(dest == 'YYZ') %>% summarize(count = n())
## # A tibble: 1 x 1
##   count
##    <int>
## 1     0
```

Big Databases

`nycflights13` is just a fraction of the available flight information. See http://www.amherst.edu/~nhorton/precursors for example code using SQLite.

Relational databases, first popularized in the 1970’s, provide fast and efficient access to terabyte-sized files. These systems use a structured query language (SQL) to specify data operations.

Database systems have been highly optimized and tuned since they were first invented. Connections between general purpose statistics packages such as R and database systems can be facilitated through use of SQL.

Key operators in SQL

<table>
<thead>
<tr>
<th>verb</th>
<th>meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>SELECT</td>
<td>create a new result set from a table</td>
</tr>
<tr>
<td>FROM</td>
<td>specify table</td>
</tr>
<tr>
<td>WHERE</td>
<td>subset observations</td>
</tr>
<tr>
<td>GROUP BY</td>
<td>aggregate</td>
</tr>
<tr>
<td>ORDER</td>
<td>re-order the observations</td>
</tr>
<tr>
<td>DISTINCT</td>
<td>remove duplicate values</td>
</tr>
<tr>
<td>JOIN</td>
<td>merge two data objects</td>
</tr>
</tbody>
</table>

Data Cleaning

Data cleansing, data cleaning, or data scrubbing is the process of detecting and correcting (or removing) corrupt or inaccurate records from a record set, table, or database and refers to identifying incomplete, incorrect, inaccurate or irrelevant parts of the data and then replacing, modifying, or deleting the dirty or coarse data.

(Wikipedia)
Tools

- Your scripting/programming language of choice. (Will look at R today.)
 - Ensures reproducibility.
 - R cheat sheets under Other Resources on the course wiki
- OpenRefine http://openrefine.org
 - Formerly Google Refine. Open source.
- Tableau http://www.tableau.com
 - Industrial-strength. Free student license available.