Classification

Dan Lizotte

2018-10-16

Classification

• Space of outputs \mathcal{Y} is finite. Often classes are given numbers starting from 0 or 1.

• Usually no notion of “similarity” between class labels in terms of loss. Remember our loss function $\ell(h(\mathbf{x}), y)$:
 - Regression: $\ell(9, 10)$ is better than $\ell(1, 10)$
 - Classification: $\ell(9, 10)$ and $\ell(1, 10)$ are equally bad.
 * Or, have explicit losses for every combination of predicted class and actual class.

“Linear models” in general (HTF Ch. 2.8.3)

• By linear models, we mean that the hypothesis function $h_\mathbf{w}(\mathbf{x})$ is a (transformed) linear function of the parameters \mathbf{w}.

• Predictions are a (transformed) linear combination of feature values

$$h_\mathbf{w}(\mathbf{x}) = g \left(\sum_{k=0}^{p} w_k \phi_k(\mathbf{x}) \right) = g(\phi(\mathbf{x})^T \mathbf{w})$$

• again, ϕ_k are called basis functions or feature functions As usual, we let $\phi_0(\mathbf{x}) = 1, \forall \mathbf{x}$, so that we don’t force $h_\mathbf{w}(0) = 0$

Linear Methods for Classification

• Classification tasks
 • Loss functions for classification
 • Logistic Regression
 • Support Vector Machines

Wisconsin Breast Cancer Prognostic Data

Cell samples were taken from tumors in breast cancer patients before surgery and imaged; tumors were excised; patients were followed to determine whether or not the cancer recurred, and how long until recurrence or disease free.
Wisconsin data (continued)

- 198 instances, 32 features for prediction
- Outcome (R=recurrence, N=non-recurrence)
- Time (until recurrence, for R, time healthy, for N).

Example: Given nucleus radius, predict cancer recurrence

```r
ggplot(bc, aes(Radius.Mean, fill=Outcome, color=Outcome)) + geom_density(alpha=1/2)
```
Example: Solution by linear regression

- Univariate real input: nucleus size
- Output coding: non-recurrence = 0, recurrence = 1
- Sum squared error minimized by the blue line
Linear regression for classification

- The predictor shows an increasing trend towards recurrence with larger nucleus size, as expected.
- Output cannot be directly interpreted as a class prediction.
- Thresholding output (e.g., at 0.5) could be used to predict 0 or 1.
 (In this case, prediction would be 0 except for extremely large nucleus size.)

Probabilistic view

- Suppose we have two possible classes: \(y \in \{0, 1\} \).
- The symbols “0” and “1” are unimportant. Could have been \(\{a, b\} \), \(\{up, down\} \), whatever.
- Rather than try to predict the class label directly, ask:
 What is the probability that a given input \(x \) has class \(y = 1 \)?
Aside: Relationships Between Random Variables

Conditional distributions
Conditional distributions

![Diagram showing conditional distributions with axes labeled as eruptions on the x-axis and waiting on the y-axis. The diagram includes two data clusters with varying distributions.]
Conditional distributions

\[f(\text{eruptions}|\text{waiting}=60) \]
Conditional distributions

![Graph showing conditional distributions with x-axis for eruptions and y-axis for waiting times, with data points clustered in certain regions.]
Conditional distributions

\[f(\text{eruptions}|\text{waiting}=80) \]
Conditional distributions

\[f(\text{waiting} \mid 2 \leq \text{eruptions} \leq 2.1) \]
Conditional distributions
Conditional distributions

\[f(\text{waiting} | 4.4 \leq \text{eruptions} \leq 4.5) \]
Predicting Waiting Time

Mean: 70.90

Conditional predictions

- If I know eruption time, can I do better?
Mean: 55.60

Conditional predictions

- If I know eruption time, can I do better?
Conditional probability functions

Strategy: Assume that the probability $P(y = 1|X = x)$ is given by some function $h(x)$. Then find a function that “fits” the data. What kind of function do we use for $P(y = 1|X = x)$?

Idea: $h_w(x) = w^T x$ Why? Why not?

Mean: 81.33
Sigmoid function

\[\varsigma(x) = \frac{1}{1 + e^{-x}} \]
Logistic Regression HTF (Ch. 4.4)

- Represent the hypothesis as a logistic function of a linear combination of inputs, interpret $h(x)$ as $P(y = 1 | X = x)$:
 \[h_w(x) = \varsigma(x^T w) \]

- \(\varsigma(a) = \frac{1}{1 + \exp(-a)} \) is the sigmoid or logistic function

- With a little algebra, we can write:
 \[P(y = 1 | X = x) = \varsigma \left(\log \frac{P(y = 1 | X = x)}{P(y = 0 | X = x)} \right) \]
 - Interpret $x^T w$ as the log-odds

Logistic regression training HTF (Ch. 4.4)

- How do we choose w?
- In the probabilistic framework, observing $(x_i, 1)$ does not mean $h_w(x_i)$ should be as close to 1 as possible.
- Maximize probability the model assigns to the y_i in the training set given the x_i by adjusting w.

18
Reminder: Independence

- Two random variables \(X \) and \(Y \) that are part of a random vector are independent iff:

\[
F_{X,Y}(x,y) = F_X(x)F_Y(y)
\]

If they have a joint density or joint PMF, then

\[
f_{X,Y}(x,y) = f_X(x)f_Y(y)
\]

Max Conditional Likelihood

- Maximize probability the model assigns to the \(y_i \) in the training set *given the* \(x_i \) by adjusting \(w \).
- Assumption 1: Examples are i.i.d. Probability of observing all \(y \)'s is product

\[
P(\text{all } y| \text{all } x) = P(Y_1 = y_1, Y_2 = y_2, ..., Y_n = y_n|X_1 = x_1, X_2 = x_2, ..., X_n = x_n)
\]

\[
= \prod_{i=1}^{n} P(Y_i = y_i|X_i = x_i = x_i)
\]

- Assumption 2: \(P(y = 1|X = x) = h_w(x) = \frac{1}{1 + \exp(-x^T w)} \)
 \(P(y = 0|X = x) = (1 - h_w(x)) \)

Max Conditional Likelihood

- Maximize probability the model assigns to the \(y_i \) in the training set *given the* \(x_i \) by adjusting \(w \).
- More numerically stable to maximize log probability. Note

\[
\log P(Y_i = y_i|X_i = x_i) = \begin{cases}
\log h_w(x_i) & \text{if } y_i = 1 \\
\log(1 - h_w(x_i)) & \text{if } y_i = 0
\end{cases}
\]

- Therefore,

\[
\log \prod_{i=1}^{n} P(Y_i = y_i|X_i = x_i) = \sum_{i=1}^{n} [y_i \log(h_w(x_i)) + (1 - y_i) \log(1 - h_w(x_i))]
\]

- Suggests an error

\[
J(h_w) = - \sum_{i=1}^{n} [y_i \log(h_w(x_i)) + (1 - y_i) \log(1 - h_w(x_i))]
\]

- This is the cross entropy. Number of bits to transmit \(y_i \) if both parties know \(h_w \) and \(x_i \).
Back to the breast cancer problem

Logistic Regression:

```
## (Intercept) Radius.Mean
## -3.4671348 0.1296493
```

Least Squares:

```
## (Intercept) Radius.Mean
## -0.17166939 0.02349159
```

Probability and Expectation

- Why are these so close?
- Recall the expected value of a discrete random variable Y is denoted

$$E[Y] = \sum_{y \in Y} y \cdot p_Y(Y = y)$$

- Consider a random variable $Y \in \{0, 1\}$

$$E[Y] = \sum_{y \in \{0, 1\}} y \cdot p_Y(Y = y)$$

$$= 0 \cdot p_Y(Y = 0) + 1 \cdot p_Y(Y = 1)$$

$$= p_Y(Y = 1)$$
- Though we did not discuss in this way, linear regression tries to estimate the function $E[Y|X = x]$. So, makes sense that the OLS and logistic regression answers can be close.

Supervised Learning Methods: “Objective-driven”

<table>
<thead>
<tr>
<th>Mthd.</th>
<th>Form</th>
<th>Objective</th>
</tr>
</thead>
<tbody>
<tr>
<td>OLS</td>
<td>$h_w(x) = x^T w$</td>
<td>$\sum_{i=1}^n (h_w(x_i) - y_i)^2$</td>
</tr>
<tr>
<td></td>
<td>$\approx E[Y</td>
<td>X = x]...$</td>
</tr>
<tr>
<td>LR</td>
<td>$h_w(x) = \frac{1}{1+e^{-x^T w}}$</td>
<td>$-\sum_{i=1}^n y_i \log h_w(x_i) + (1 - y_i) \log(1 - h_w(x_i))$</td>
</tr>
<tr>
<td></td>
<td>$\approx P(Y = y</td>
<td>X = x)...$</td>
</tr>
</tbody>
</table>

- Both model the **conditional mean of y** using a (transformed) **linear function**
- Both use **maximum conditional likelihood** to estimate

Decision boundary HTF Ch. 2.3.1,2.3.2

- How complicated is a classifier?
 - One way to think about it is in terms of its **decision boundary**, i.e. the line it defines for separating examples
 - **Linear classifiers** draw a hyperplane between examples of the different classes. **Non-linear classifiers** draw more complicated surfaces between the different classes.
 - For a probabilistic classifier with a cutoff of 0.5, the decision boundary is the curve on which:

 $\frac{P(y = 1|X = x)}{P(y = 0|X = x)} = 1$, i.e., where $\log \frac{P(y = 1|X = x)}{P(y = 0|X = x)} = 0$

- For logistic regression, this this is where $x^T w = 0$.

Decision boundaries of linear classifiers

- Recall: predictions are a (transformed) **linear combination of feature values**

 $h_w(x) = g(x^T w)$

- Suppose our decision boundary is

 $h_w(x) = c$

- This is equivalent to

 $x^T w = c'$

where $c' = g^{-1}(c)$.
Decision boundary

Class = R if $\Pr(Y = 1|X = x) > 0.5$

Decision boundary

Class = R if $\Pr(Y = 1|X = x) > 0.25$
Decision boundary

Class = R if $\Pr(Y = 1|X = x) > 0.5$
Decision boundary

Class = R if $\Pr(Y = 1|X = x) > 0.25$
Supervised Learning Methods: “Objective-driven”

<table>
<thead>
<tr>
<th>Mthd.</th>
<th>Form</th>
<th>Objective</th>
</tr>
</thead>
<tbody>
<tr>
<td>OLS</td>
<td>(h_w(x) = x^T w)</td>
<td>(\sum_{i=1}^n (h_w(x_i) - y_i)^2) using a linear function</td>
</tr>
<tr>
<td></td>
<td>(\approx E[Y</td>
<td>X = x])</td>
</tr>
<tr>
<td>LR</td>
<td>(h_w(x) = \frac{1}{1 + e^{-x^T w}})</td>
<td>(-\sum_{i=1}^n y_i \log h_w(x_i) + (1 - y_i) \log(1 - h_w(x_i)))</td>
</tr>
<tr>
<td></td>
<td>(\approx P(Y = y</td>
<td>X = x))</td>
</tr>
<tr>
<td>SVM</td>
<td>(h_w(x) = \text{sgn}(x^T w))</td>
<td></td>
</tr>
</tbody>
</table>

Large Margin Classifiers:

Linear Support Vector Machines

- Linear classifiers that focus on learning the decision boundary rather than the conditional distribution \(P(Y = y|X = x) \)
 - Perceptrons
 * Definition
 * Perceptron learning rule
 * Convergence

25
– “Margin” idea and max margin classifiers
– (Linear) support vector machines
 * Formulation as optimization problem

Marvin Minsky, 1927-2016

Perceptrons HTF Ch. 4.5

- Consider a binary classification problem with data \(\{x_i, y_i\}_{i=1}^n \), \(y_i \in \{-1, +1\} \). **Note coding of** \(y_i \).
- A perceptron (Rosenblatt, 1957) is a classifier of the form:
 \[
 h_{w,w_0}(x) = \text{sign}(x^T w + w_0) = \begin{cases}
 +1 & \text{if } x^T w + w_0 \geq 0 \\
 -1 & \text{otherwise}
 \end{cases}
 \]
 Here, \(w \) is a vector of weights, and \(w_0 \) is a constant offset. (**Note** \(x_0 = 1 \) **is omitted.**)
- The decision boundary is \(x^T w + w_0 = 0 \).
- Perceptrons output a class, not a probability
- An example \((x, y)\) is classified correctly if:
 \[
 y \cdot (x^T w + w_0) > 0
 \]

Linear separability

- The data set is **linearly separable** if and only if there exists \(w, w_0 \) such that:
 - For all \(i \), \(y_i(x_i^T w + w_0) > 0 \).
 - Or equivalently, the 0-1 loss \(\sum_i 1_{y_i(x_i^T w + w_0) < 0} \) is zero for some set of parameters \((w, w_0)\).
The Perceptron Learning Rule

- Consider the following procedure:
 1. Initialize \mathbf{w} and w_0 randomly
 2. While any training examples remain incorrectly classified
 1. Loop through all misclassified examples
 2. For misclassified example i, perform the updates:
 \[
 \mathbf{w} \leftarrow \mathbf{w} + \delta y_i \mathbf{x}_i, \quad w_0 \leftarrow w_0 + \delta y_i
 \]
 where δ is a step-size parameter.
- The update equation, or sometimes the whole procedure, is called the perceptron learning rule.
- Intuition: For positive examples misclassified as negative, change \mathbf{w} to increase $\mathbf{x}_i^T \mathbf{w} + w_0$, and vice versa
Error Minimization Interpretation

- PLR can be interpreted as a gradient descent on the following function:

\[
J(w, w_0) = \sum_{i=1}^{n} \begin{cases}
0 & \text{if } y_i(x_i^T w + w_0) \geq 0 \\
-y_i(x_i^T w + w_0) & \text{if } y_i(x_i^T w + w_0) < 0
\end{cases}
\]

- For correctly classified examples, the error is zero.
- For incorrectly classified examples, the error is by how much \(x_i^T w + w_0 \) is on the wrong side of the decision boundary.
- \(J \) is piecewise linear, so it has a gradient almost everywhere; stochastic gradient descent gives the perceptron learning rule.
- \(J \) is zero if and only if all examples are classified correctly – just like the 0-1 loss function.

Perceptron convergence theorem

- **If** classes are linearly separable then the perceptron learning rule will find a separator after some finite number of updates.
- The number of updates depends on the data set, and also on the step size parameter.
- If the classes are not linearly separable, there will be oscillation (which can be detected automatically).
Perceptron Learning Example

Update: 0.5 \(w: [1.000, 1.000] \), \(w_0: 1.000 \)
Perceptron Learning Example

Update: 1.0 $w: [0.628, 0.788]$, $w_0: 0.000$
Perceptron Learning Example

Update: 1.5 \(w: [0.628, 0.788], w_0: 0.000 \)
Perceptron Learning Example

Update: 2.0 \(w: [0.426, 0.521] \), \(w_0: -1.000 \)
Perceptron Learning Example

Update: 2.5 \(w: [0.426, 0.521], w_0: -1.000 \)
Perceptron Learning Example

Update: 3.0 w: [1.325, 0.907], w0: 0.000
Perceptron Learning Example

Update: 3.5 w: [1.325, 0.907], w0: 0.000
Perceptron Learning Example

Update: 4.0 w: [0.380, 0.893], w0: -1.000
Perceptron Learning Example

Update: 4.5 $w: [0.380, 0.893]$, $w_0: -1.000$
Perceptron Learning Example

Update: 5.0 \(w: [1.041, 1.276] \), \(w_0: 0.000 \)
Perceptron Learning Example

Update: 5.5 w: [1.041, 1.276], w0: 0.000

yhat

y

x1

x2

yhat

y

1

−1

1

−1

Update: 5.5 w: [1.041, 1.276], w0: 0.000
Weight as a combination of input vectors

- Recall perceptron learning rule:
 \[w \leftarrow w + \delta y_i x_i, \quad w_0 \leftarrow w_0 + \delta y_i \]

- If initial weights are zero, then at any step, the \textit{weights are a linear combination of feature vectors of the examples}:
 \[w = \sum_{i=1}^{n} \alpha_i y_i x_i, \quad w_0 = \sum_{i=1}^{n} \alpha_i y_i \]

 where \(\alpha_i \) is the sum of step sizes used for all updates based on example \(i \).

- This is called the \textit{dual representation} of the classifier.

- Even by the end of training, some examples may have never participated in an update, just by chance. So their corresponding \(\alpha_i = 0 \).
Examples used (bold) and not used (faint) in updates

\[w = [4.111 \ 3.8704] \quad w_0 = -4 \]
Comment: Solutions are nonunique

\[w = [2.1395 \ 1.9372] \quad w_0 = -2 \]

Perceptron summary

- Perceptrons can be learned to fit linearly separable data, using a gradient descent rule.
- Blindingly fast
- Solutions are non-unique

Support Vector Machines

- Support vector machines (SVMs) for binary classification can be viewed as a way of training perceptrons
- Three main new ideas:
 - A optimization criterion (the “margin”) guarantees uniqueness and has theoretical advantages
 - Natural handling nonseparable data by allowing mistakes
 - An efficient way of operating in expanded feature spaces: “kernel trick”
• SVMs can also be used for multiclass classification and regression.

Returning to the non-uniqueness issue

• Consider a linearly separable binary classification data set
• There is an infinite number of hyperplanes that separate the classes:

![Diagram of hyperplanes and data points]

• Which plane is best?
• For a given plane, for which points should we be most confident in the classification?

The margin, and linear SVMs

• For a given separating hyperplane, the margin is two times the (Euclidean) distance from the hyperplane to the nearest training example.
• Width of the “strip” around the decision boundary containing no training examples.
• A linear SVM is a perceptron for which we choose w, w_0 so that margin is maximized

Distance to the decision boundary

• Suppose we have a decision boundary that separates the data.
Let γ_i be the distance from instance x_i to the decision boundary.

How can we write γ_i in terms of x_i, y_i, w, w_0?

Distance to the decision boundary (II)

• w is orthogonal to boundary, $\frac{w}{||w||}$ is the unit vector orthogonal to the boundary
• Vector from B to x_i is $\gamma_i \frac{w}{||w||}$.
• B, the point on the boundary nearest x_i, is $x_i - \gamma_i \frac{w}{||w||}$.
• Since B is on the boundary,
$$\left(x_i - \gamma_i \frac{w}{||w||} \right)^T w + w_0 = 0$$
• Solving for γ_i yields

$$\gamma_i = \frac{x_i^T w + w_0}{\|w\|}$$

The margin HTF Ch. 4.5, Ch 12

• The margin of the hyperplane is $2M$, where $M = \min_i y_i \gamma_i$

• The most direct statement of the problem of finding a maximum margin separating hyperplane is thus

$$\max \min_{w, w_0} y_i \gamma_i$$

$$\equiv \max \min_{w, w_0} \frac{x_i^T w + w_0}{\|w\|}$$

• This turns out to be inconvenient for optimization, however

Treating the γ_i as constraints

• From the definition of margin, we have:

$$M \leq y_i \gamma_i = y_i \frac{x_i^T w + w_0}{\|w\|} \quad \forall i$$

• This suggests:

| maximize M with respect to M, w, w_0 | subject to $M \leq y_i \frac{x_i^T w + w_0}{\|w\|}$ for all i |

• Problems:

 – w appears nonlinearly in the constraints.

 – This problem is underconstrained. If (w, w_0, M) is an optimal solution, then so is $(\beta w, \beta w_0, M)$ for any $\beta > 0$.

Adding a constraint

Let’s add the constraint that $M = 1/\|w\|:$

• This allows us to rewrite the objective function:

| maximize $\frac{1}{\|w\|}$ with respect to w, w_0 | subject to $\frac{1}{\|w\|} \leq y_i \frac{x_i^T w + w_0}{\|w\|}$ for all i |

which is the same as
maximize $\frac{1}{||w||}$ with respect to w, w_0
subject to $1 \leq y_i (x_i^T w + w_0)$ for all i

Final formulation

- Let’s minimize $\frac{1}{2} ||w||^2$ instead of maximizing $\frac{1}{||w||}$. (Taking the square is a monotone transformation, as $||w||$ is positive, so this doesn’t change the optimal solution.)
- This gets us to:

$$\begin{align*}
\text{minimize} & \quad \frac{1}{2} ||w||^2 \text{ w.r.t. } w, w_0 \\
\text{subject to} & \quad y_i (x_i^T w + w_0) \geq 1
\end{align*}$$

- This we can solve! How?
 - It is a convex quadratic programming (QP) problem—a standard type of optimization problem for which many efficient packages are available.

Perceptron vs. SVM

We have a solution, but no “support vectors” yet...

What are “Support Vectors”?

$$\begin{align*}
\text{minimize} & \quad \frac{1}{2} ||w||^2 \text{ w.r.t. } w, w_0 \\
\text{subject to} & \quad y_i (x_i^T w + w_0) \geq 1
\end{align*}$$

- Turns out (HTF Ch. 4.5.2) we can write:
 $$w = \sum_i \alpha_i y_i x_i, \quad \text{where } \alpha_i \geq 0$$
- As for the perceptron with zero initial weights, the optimal solution for w and w_0 is a linear combination of the x_i.
- The output is therefore:
\[h_{\mathbf{w}, w_0}(\mathbf{x}) = \text{sgn} \left(\sum_{i=1}^{n} \alpha_i y_i (\mathbf{x}_i \cdot \mathbf{x}) + w_0 \right) \]

- Output depends on weighted dot product of input vector with training examples

Solving “the dual”

- We can actually solve directly for the \(\alpha_i \) (again see HTF Ch. 4.5.2):

 \[
 \max_{\alpha} \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} y_i y_j \alpha_i \alpha_j (\mathbf{x}_i \cdot \mathbf{x}_j) \\
 \text{with constraints: } \alpha_i \geq 0 \text{ and } \sum_{i} \alpha_i y_i = 0
 \]

- This is also a QP

The support vectors

- Suppose we find optimal \(\alpha \)s (e.g., using a standard QP package)
- The \(\alpha_i \) will be > 0 only for the points for which \(y_i (\mathbf{x}_i^T \mathbf{w} + w_0) = 1 \)
- These are the points lying on the edge of the margin, and they are called *support vectors*, because they define the decision boundary
- The output of the classifier for query point \(\mathbf{x} \) is computed as:

 \[
 \text{sgn} \left(\sum_{i=1}^{n} \alpha_i y_i (\mathbf{x}_i \cdot \mathbf{x}) + w_0 \right)
 \]

Hence, the output is determined by computing the *dot product of the point with the support vectors*

Example

Support vectors are in bold

But why all this work?

- SVMs are a state-of-the-art for classification when you don’t need probability estimates
- Intuitively, the large-margin property makes sense. Theory backs this up.
- SVMs offer “off-the-shelf” *non*-linear classification without having to do explicit feature construction, as we will see.

Soft margin classifiers

- Recall that in the linearly separable case, we compute the solution to the following optimization problem:

 \[
 \begin{aligned}
 \min \quad & \frac{1}{2} \| \mathbf{w} \|^2 \\
 \text{s.t.} \quad & y_i (\mathbf{x}_i^T \mathbf{w} + w_0) \geq 1
 \end{aligned}
 \quad \text{w.r.t. } \mathbf{w}, w_0
 \]

48
• What if we can’t satisfy the constraints?

Soft margin classifiers

• To allow misclassifications, we relax the constraints to:

\[y_i(x_i^T w + w_0) \geq 1 - \xi_i \]

• If \(\xi_i \in (0, 1) \), the data point is within the margin
• If \(\xi_i \geq 1 \), then the data point is misclassified
• We define the soft error as \(\sum_i \xi_i \); each \(\xi_i \) is a slack variable

Problem formulation with soft errors

• Instead of:

\[
\begin{align*}
\min & \quad \frac{1}{2}\|w\|^2 \text{ w.r.t. } w, w_0 \\
\text{s.t.} & \quad y_i(x_i^T w + w_0) \geq 1
\end{align*}
\]

we want to solve:

\[
\begin{align*}
\min & \quad \frac{1}{2}\|w\|^2 + C \sum_i \xi_i \text{ w.r.t. } w, w_0, \xi_i \\
\text{s.t.} & \quad y_i(x_i^T w + w_0) \geq 1 - \xi_i, \xi_i \geq 0
\end{align*}
\]

• Note that soft errors include points that are misclassified, as well as points within the margin
• There is a linear penalty for both categories
• The choice of the constant \(C \) controls boundary-fitting

A built-in boundary-fitting knob

\[
\begin{align*}
\min & \quad \frac{1}{2}\|w\|^2 + C \sum_i \xi_i \\
\text{w.r.t.} & \quad w, w_0, \xi_i \\
\text{s.t.} & \quad y_i(x_i^T w + w_0) \geq 1 - \xi_i, \xi_i \geq 0
\end{align*}
\]

• If \(C \) is very small, there is almost no penalty for soft errors, so the focus is on maximizing the margin, even if this means more mistakes
• If \(C \) is very large, the emphasis on the soft errors will decrease the margin, if this helps to classify more examples correctly.
• How could we choose \(C \)?
Example, $C = 100$

```
SVM classification plot

Example, $C = 10$

SVM classification plot
```
Example, $C = 1$

SVM classification plot

Example, $C = 0.1$
Example, $C = 0.01$

SVM classification plot

Example, $C = 0.001$

SVM classification plot
Dual form for the soft margin problem

- Like before, we can formulate a “dual” problem that identifies the support vectors:

Primal form:

\[
\begin{align*}
\text{min } & \|w\|^2 + C \sum_{i} \xi_i \quad \text{w.r.t. } w, w_0, \xi_i \\
\text{s.t. } & y_i (x_i^T w + w_0) \geq (1 - \xi_i), \xi_i \geq 0
\end{align*}
\]

Dual form:

\[
\begin{align*}
\text{max } & \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} y_i y_j \alpha_i \alpha_j (x_i \cdot x_j) \quad \text{w.r.t. } \alpha_i \\
\text{s.t. } & 0 \leq \alpha_i \leq C, \sum_{i=1}^{n} \alpha_i y_i = 0
\end{align*}
\]

- All the previously described machinery can be used to solve this problem

Supervised Learning Methods: “Objective-driven”

<table>
<thead>
<tr>
<th>Mthd.</th>
<th>Form</th>
<th>Objective</th>
</tr>
</thead>
<tbody>
<tr>
<td>OLS</td>
<td>(h_w(x) = x^T w) (\approx \frac{1}{2} \sum_{i=1}^{n} (h_w(x_i) - y_i)^2)</td>
<td>using a linear function</td>
</tr>
<tr>
<td>LR</td>
<td>(h_w(x) = \frac{1}{1 + e^{-x^T w}}) (\approx P(Y = y</td>
<td>X = x))</td>
</tr>
<tr>
<td>SVM</td>
<td>(h_w(x) = \text{sgn}(x^T w)) (\approx \text{decision boundary})</td>
<td>using a linear separator</td>
</tr>
</tbody>
</table>