

InfoViz & VA

for Effective Communication in Data Science

Arman Didandeh February 25, 2016

 Combine and integrate visual marks into more complex structural forms to encode information

- Combine and integrate visual marks into more complex structural forms to encode information
- Hence, Information Visualization, i.e., InfoViz

- Combine and integrate visual marks into more complex structural forms to encode information
- Hence, Information Visualization, i.e., InfoViz
- But why?

This report details the number of West Nile Virus human cases in Ontario from January 2012 to November 2014. In January 2012 there were two human cases, in February there were three cases, in March, there were five cases, in April there were seven cases, in May there were nine cases, in June there were eleven cases, in July there were thirteen cases, in August there were fifteen cases, in September there were seventeen cases, in October there were nineteen cases, in November, there were twenty-one cases, in December there were twenty-three cases. In January 2013, there were forty cases, in February there were forty-two cases, in March there were thirty-eight cases, in April, there were thirty-four cases, in May there were thirty cases, in June there were twenty-six cases, in July there were twenty-two cases, in August there were twenty cases. In September of 2013, there were twenty cases, in October there were twenty cases, in November there were twenty-two cases, in December there were twenty-three cases. In January of 2014, there were twentyfour cases, in February there were twenty-five cases, in March there were twenty-seven cases, and in April there were thirty cases. In May there were thirty-five cases and in June there were fourty new human cases.

What do we know about this text?

<u>Month</u>	Number of West Nile Virus Human Cases		
Oct 12	19		
Nov 12	21		
Dec 12	23		
Jan 13	40		
Feb 13	42		
Mar 13	38		
Apr 13	34		
May 13	30		
Jun 13	26		
Jul 13	22		
Aug 13	20		
Sep 13	20		
Nov 13	22		
Dec 13	23		

What did we see in this table?

New West Nile Virus Human Cases in Ontario Jan. 2012 - Jun. 2014

- Combine and integrate visual marks into more complex structural forms to encode information
- Hence, Information Visualization, i.e., InfoViz
- But why?
- Different types of visualizations are fit for different tasks

- Combine and integrate visual marks into more complex structural forms to encode information
- Hence, Information Visualization, i.e., InfoViz
- But why?
- Different types of visualizations are fit for different tasks:
 - illustrate relationships
 - discover trends, patterns, and outliers
 - get attention of recipients
 - support remembering and recall
 - facilitate learning
 - tell a story

- Combine and integrate visual marks into more complex structural forms to encode information
- Hence, Information Visualization, i.e., InfoViz
- But why?
- Different types of visualizations are fit for different tasks
- Relate to and depend upon other disciplines, such as human perception, cognition theory, computer science, etc.

- Combine and integrate visual marks into more complex structural forms to encode information
- Hence, Information Visualization, i.e., InfoViz
- But why?
- Different types of visualizations are fit for different tasks
- Relate to and depend upon other disciplines, such as human perception, cognition theory, computer science, etc.
- Need interaction to be more effective

- Combine and integrate visual marks into more complex structural forms to encode information
- Hence, Information Visualization, i.e., InfoViz
- But why?
- Different types of visualizations are fit for different tasks
- Relate to and depend upon other disciplines, such as human perception, cognition theory, computer science, etc.
- Need interaction to be more effective:
 - InfoViz.org
 - Force-Directed Graph
 - Sunburst Partition
 - Hierarchical Edge Bundling
 - US Map + Voronoi
 - Scatterplot Matrix
 - Treemap

Big Data

Big Data

Data Storage

Computational Capacity

Data Availability

The type of data generated and stored varies by sector¹

	Video	Image	Audio	Text/ numbers
Banking				
Insurance				
Securities and investment services				
Discrete manufacturing				
Process manufacturing				
Retail				
Wholesale				
Professional services				
Consumer and recreational services				
Health care				
Transportation				
Communications and media ²				
Utilities				
Construction				
Resource industries				
Government				
Education				

Naively: InfoViz + Analytics

- Naively: InfoViz + Analytics
- But what is Analytics?

- Naively: InfoViz + Analytics
- But what is Analytics?
- No common agreed-upon definition among scholars and practitioners

- Naively: InfoViz + Analytics
- But what is Analytics?
- No common agreed-upon definition among scholars and practitioners
- -ics denotes "The science and/or art of of studying something" 1

¹ etymonline.com

- Naively: InfoViz + Analytics
- But what is Analytics?
- No common agreed-upon definition among scholars and practitioners
- -ics denotes "The science and/or art of of studying something"
- Analytics = "The science and/or art of of studying" the analyses of data in various forms

- Naively: InfoViz + Analytics
- But what is Analytics?
- No common agreed-upon definition among scholars and practitioners
- -ics denotes "The science and/or art of of studying something"
- Analytics = "The science and/or art of of studying" the analyses of data in various forms
- Remember the "other disciplines" point?

- Naively: InfoViz + Analytics
- But what is Analytics?
- No common agreed-upon definition among scholars and practitioners
- -ics denotes "The science and/or art of of studying something"
- Analytics = "The science and/or art of of studying" the analyses of data in various forms
- Remember the "other disciplines" point?
 - Human perception, cognition theory, computer science, etc.

Human Cognition

Distributed Cognition

So anything will work right?!

Back to Visualization

Percentage of New WNV cases

Back to Visualization

A Human-Centered Approach

- Consider:
 - intended audience or users
 - tasks to be performed
 - context

A Human-Centered Approach

- Learn about visual elements:
 - points
 - lines
 - surfaces
 - volumes

A Human-Centered Approach

- Learn about visual properties:
 - size/length
 - orientation
 - o color
 - direction
 - o area
 - texture
 - shape
 - curvature
 - shading
 - saturation
 - 0

Gestalt Principles

Human-Centered Analytics

Human-Centered Analytics

Human-Centered Analytics

Tools for Developers

- 1. D3.js
- 2. FusionCharts
- 3. Chart.js
- 4. Google Charts
- 5. Highcharts
- 6. Leaflet
- 7. dygraphs

Tools for Non-Developers

- 1. Datawrapper
- 2. Tableau
- 3. Raw
- 4. Timeline JS
- 5. Infogram
- 6. Plotly
- 7. ChartBlocks

OpenData Tools

- 1. visualizing.org
- 2. FlowingData
- 3. Google Chart Tools
- 4. GeoCommons
- 5. Quadrigram
- 6. Journalism in the Age of Data
- 7. JavaScript InfoVis Toolkit
- 8. Google Public Data Explorer
- 9. Maps Marker WP-Plugin
- 10. DataMaps.eu
- 11. Ushahidi
- 12. Eclipse BIRT

Knowledge exists to be imparted.

- Ralph Waldo Emerson

