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Recall: SIFTs for image classification

• SIFTs code takes an image, produces a collection (set, bag, ...) of
“features.” SIFT descriptors stay largely the same even if you rotate
or scale the image.

• Two problems for classification:
1 Space of possible SIFTs is 28·128 = 21024

2 Different images have different numbers of SIFTs

• Possible solution to the above problem:
1 Vector Quantization to reduce to a “vocabulary size” of 100 (say)

through clustering or sparse coding
2 Any SIFT gets mapped to the closest “word” in the “vocabulary,”

creating a histogram of the “words” in each image, i.e. count how
many times each quantized SIFT appears. This is the new feature
vector, has length 100 (say)
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Features for Audio (and other) Signals

• Sounds are just one-dimensional images

• Can construct global and local features

• Many of the same problems associated with pixels-as-features show
up with samples-as-features: Lack of invariance.
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Phase and Frequency

• Phase information is present in audio data, can have huge impact on
simple similarity (distance, dot-product) but is perceptually
irrelevant. (Except maybe stereo.)

• Can we derive features that are invariant to phase?

• [ Matlab demo 1 ]

• Fourier analysis takes a signal and re-writes it as a weighted sum of
shifted sines and cosines

• Weights correspond to importance of different frequencies
• Shifts (phases) can be easily “thrown away”
• Main methods: “Fourier Transform” (or Fast Fourier Transform,
FFT), “Discrete Cosine Transform”
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Windowing

• Discrete Fourier transform works perfectly for functions that have
an integer number of periods over the samples

• No chance of this happening in practice

• Compensate by “windowing.” Essential for any kind of frequency
analysis

• [ Matlab demo 2 ]
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The Frequency Domain: Spectrogram

• Many overlapping windows, one after the other

• Plot: Time on x-axis, frequency on y-axis, color indicates power

• Each “column” could be used as a feature vector for the audio
playing at that instant in time.

• [ Matlab demo 3 ]
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Problems with the Spectrogram
1 All the information is scrunched way down at the bottom in the low
frequencies. Perceptually, the frequency ranges 100-200Hz and
10kHz-20kHz should be approximately equally important.

2 Power distribution of natural sounds is... periodic!! Features become
redundant.

1 Warp the frequency axis to “enlarge” the region where the
information is (i.e. low frequencies.) Converts from Hz to “mels”

2 Take the log of the result then take Fourier transform *AGAIN* to
remove periodicity

• Produces the Mel-Frequency Cepstral Coefficients (MFCC), which
are *the* feature vectors for natural sounds. Much like SIFTs in this
respect.

• (But, see http://ieeexplore.ieee.org/xpls/abs_all.jsp?
arnumber=5618550)

• [ Matlab Demo 4 ]
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The Cepstrum

• The spectrum of the spectrum.

• Mapping from Hz to “mels” first gives the Mel-frequency Cepstrum

• Warp the frequency axis to “enlarge” the region where the
information is (i.e. low frequencies)

• Take the log of the result then take Fourier transform *AGAIN* to
identify periodicity in the spectrogram
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Audio signal classification

Talk by Anssi Klapuri at
http://mtg.upf.edu/ismir2004/graduateschool/

• Concrete problems
• musical instrument classification
• musical genre classification
• percussive instrument transcription
• music segmentation
• speaker recognition, language recognition, sound effects retrieval,
context awareness, video segmentation using audio,...

• Closely related to sound source recognition in humans
• includes segmentation (perceptual sound separation) in polyphonic
signals

• Many efficient methods have been developed in the speech / speaker
recognition field
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What is dimensionality reduction?

• Dimensionality reduction (or embedding) techniques:
• Assign instances to real-valued vectors, in a space that is much
smaller-dimensional (even 2D or 3D for visualization).

• Approximately preserve similarity/distance relationships between
instances

• Sometimes, retain the ability to (approximately) reconstruct the
original instances

• Some techniques:
• Axis-aligned: Feature selection
• Linear: Principal components analysis
• Non-linear

• Kernel PCA
• Independent components analysis
• Self-organizing maps
• Multi-dimensional scaling
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What is the true dimensionality of this data?
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What is the true dimensionality of this data?
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Remarks

• All dimensionality reduction techniques are based on an implicit
assumption that the data lies along some low-dimensional manifold

• This is the case for the first three examples, which lie along a
1-dimensional manifold despite being plotted in 2D

• In the last example, the data has been generated randomly in 2D, so
no dimensionality reduction is possible without losing information

• The first three cases are in increasing order of difficulty, from the
point of view of existing techniques.
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Simple Principal Component Analysis (PCA)

• Given: n instances, each being a length-p real vector.

• Suppose we want a 1-dimensional representation of that data,
instead of p-dimensional.

• Specifically, we will:
• Choose a line in Rp that “best represents" the data.
• Assign each data object to a point along that line.
• (Identifying a point on a line just requires a scalar: How far along the
line is the point?)
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Which line is best?

?
?
?
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How do we assign points to lines?

?
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Reconstruction error

• Let the line be represented as b+ αv for b, v ∈ Rp, α ∈ R.
For convenience assume ‖v‖ = 1.

• Each instance xi is associated with a point on the line x̂i = b+αiv.
• Instance xi is encoded as a scalar αi

• We want to choose b, v, and the αi to minimize the total
reconstruction error over all data points, measured using Euclidean
distance:

R =

n∑

i=1

‖xi − x̂i‖2

min
∑n
i=1 ‖xi − (b+ αiv)‖2

w.r.t. b, v, αi , i = 1, . . . n

s.t. ‖v‖2 = 1
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Solving the optimization problem [HTF Ch. 14.5]

min
∑n
i=1 ‖xi − (b+ αiv)‖2

w.r.t. b, v, αi , i = 1, . . . n

s.t. ‖v‖2 = 1

• Turns out the optimal b is just the sample mean of the data,
b = 1

n

∑n
i=1 xi

• This means that the best line goes through the mean of the data.
Typically, we subtract the mean first. Assuming it’s zero:

min
∑n
i=1 ‖xi − αiv‖2

w.r.t. v, αi , i = 1, . . . n

s.t. ‖v‖2 = 1
• Consider fixing v. The optimal αi is given by projecting xi onto v.
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Example data
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Example with v ∝ (1, 0.3)
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Example with v ∝ (1,−0.3)
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Optimizing...

Let’s look at the objective we want to minimize:

•
∑n
i=1 ‖xi − αiv‖2, min over v, αi s.t. ‖v‖ = 1

•
∑n
i=1(xi − αiv)T(xi − αiv)

•
∑n
i=1 x

T
i xi − 2αivTxi + α2i vTv

•
∑n
i=1 x

T
i xi − 2αivTxi + α2i (Assumed v was a unit vector.)

• =⇒ α∗i = v
Txi

•
∑n
i=1 x

T
i xi − 2vTxivTxi + vTxivTxi

•
∑n
i=1 x

T
i xi − vTxivTxi

•
∑n
i=1 x

T
i xi −

∑n
i=1 v

Txiv
Txi

• tr(XTX)− vT(XTX)v

max vT(XTX)v

w.r.t. v

s.t. ‖v‖2 = 1
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Optimal choice of v

max vT(XTX)v

w.r.t. v

s.t. ‖v‖2 = 1
• Forming the Lagrangian of the above problem and setting derivative
to zero gives (XTX)v = λv as feasible solutions. (Left to reader.)

• Recall: an eigenvector u of a matrix A satisfies Au = λu, where
λ ∈ R is the eigenvalue.

• Fact: The matrix XTX has p non-negative eigenvalues and p
orthogonal eigenvectors.

• Thus, v must be an eigenvector of (XTX).

• The v that maximizes vT (XTX)v is the eigenvector of (XTX) with
the largest eigenvalue
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Another view of v

max vT(XTX)v

w.r.t. v

s.t. ‖v‖2 = 1

• Recall xTi v is our low-dimensional representation of xi
• vT(XTX)v =

∑
i(x

T
i v)

2 = Var(xTi v)

• The optimal v produces an encoding that has as much variance as
possible

• (Dan you should draw some pictures.)
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Recall: Covariance

• (XTX) is an p × p matrix whose i , j entry is proportional to the
estimated covariance between the ith and jth feature

• Covariance quantifies a linear relationship (if any) between two
random variables X and Y .

Cov(X, Y ) = E{(X − E(X))(Y − E(Y ))}

• Given n samples of X and Y , covariance can be estimated as

1

n

n∑

i=1

(xi − µX)(yi − µY ) ,

where µX = (1/n)
∑n
i=1 xi and µY = (1/n)

∑n
i=1 yi .

• Note: Cov(X,X) = V ar(X).
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Covariance example
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Example with optimal line: b = (0.54, 0.52),
v ∝ (1, 0.45)
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Remarks

• The line b+ αv is the first principal component.

• The variance of the data along projected onto the line b+ αv is as
large as if they are projected onto any other line.

• b, v, and the αi can be computed easily in polynomial time.

Dan Lizotte (University of Waterloo) CS 886 - 05 - Audio, Dim. Red. 9 Oct 2012 30 / 44



Reduction to d dimensions

• More generally, we can create a d-dimensional representation of our
data by projecting the instances onto a hyperplane
b+ α1v1 + . . .+ α

dvd .
• If we assume the vj are of unit length and orthogonal, then the
optimal choices are:

• b is the mean of the data (as before)
• The vj are orthogonal eigenvectors of S corresponding to its d largest
eigenvalues.

• Each instance is projected orthogonally on the hyperplane.
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Remarks
• b, the eigenvalues, the vj , and the projections of the instances can
all be computing in polynomial time, e.g. using Singular Value
Decomposition.

Xn×p = Un×nDn×pV
T
p×p

• Columns of U are left-eigenvectors, diagonal of D are sqrts of
eigenvalues (“singular values”), V are right-eigenvectors

• The magnitude of the j th-largest eigenvalue, λj , tells you how much
variability in the data is captured by the j th principal component

• So you have feedback on how to choose d!
• When the eigenvalues are sorted in decreasing order, the proportion
of the variance captured by the first d components is:

λ1 + · · ·+ λd
λ1 + · · ·+ λd + λd+1 + · · ·+ λn

• So if a “big" drop occurs in the eigenvalues at some point, that
suggests a good dimension cutoff
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Example: λ1 = 0.0938, λ2 = 0.0007
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Example: λ1 = 0.1260, λ2 = 0.0054
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Example: λ1 = 0.0884, λ2 = 0.0725
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Example: λ1 = 0.0881, λ2 = 0.0769
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More remarks

• Outliers have a big effect on the covariance matrix, so they can
affect the eigenvectors quite a bit

• A simple examination of the pairwise distances between instances
can help discard points that are very far away (for the purpose of
PCA)

• If the variances in the original dimensions vary considerably, they can
“muddle" the true correlations. There are two solutions:

• work with the correlation of the original data, instead of covariance
matrix

• normalize the input dimensions individually before PCA

• In certain cases, the eigenvectors are meaningful; e.g. in vision, they
can be displayed as images (“eigenfaces")

Dan Lizotte (University of Waterloo) CS 886 - 05 - Audio, Dim. Red. 9 Oct 2012 37 / 44



Uses of PCA

• Pre-processing for a supervised learning algorithm, e.g. for image
data, robotic sensor data

• Used with great success in image and speech processing

• Visualization

• Exploratory data analysis

• Removing the linear component of a signal (before fancier non-linear
models are applied)
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Eigenfaces

• L. Sirovich and M. Kirby (1987). "Low-dimensional procedure for
the characterization of human faces". Journal of the Optical
Society of America A 4 (3): 519-524.

• Adapted from Wikipedia:
http://en.wikipedia.org/wiki/Eigenface

1 Prepare a training set of face images taken under the same lighting
conditions, normalized to have the eyes and mouths aligned,
resampled to a common pixel resolution. Each image is treated as
one vector, by concatenating the rows of pixels

2 Subtract the mean vector.
3 Calculate the eigenvectors and eigenvalues of (XTX). Each

eigenvector has the same dimensionality (number of components) as
the original images, and thus can itself be seen as an image. The
eigenvectors are called eigenfaces. They are the directions in which
the images differ from the mean image.

4 Choose the principal components. The eigenvectors (eigenfaces) with
largest associated eigenvalue are kept.
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Eigenfaces
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Beyond PCA: Nonlinear dimensionality reduction

• Kernel PCA (but you don’t get the eigenvectors)

• Self-Organizing Maps

• Isomap

• Locally Linear Embedding

• http://en.wikipedia.org/wiki/Nonlinear_dimensionality_
reduction
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Application: Netflix Recommender

• Given: An enormous matrix Yn×p containing the ratings by n users
of p movies. Ratings are all ∈ {1, 2, 3, 4, 5}.

• Most of the ratings are missing. The point is to reconstruct Y . “As
well as possible.”

• Recall, SVD gives you:

Yn×p = Un×nDn×pV
T
p×p

but requires a complete Y , which we don’t have.

• First, let’s rearrange the decomposition (assume n > p):

Yn×p = Un×pV
T
p×p

• Solving this is way too easy: U = Y , V = I.
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SVD with Missing Data

Yn×p = Un×pV
T
p×p

• Solving this is way too easy: U = Y , V = I. We have n × p plus
p × p parameters to fit n × p targets (elements of Y ). Massive
overfitting.

• “Force” generalization by choosing a c � p and asserting

Yn×p ≈ Un×cV T
p×c

• What do we mean by ≈? Minimize squared error over the observed
data:

min
U,V

n∑

i=1

p∑

j=1

1i j(uiv
T
j − Yi j)2
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Final Touch: Regularization
• What do we mean by ≈? Minimize squared error over the observed
data, don’t let the matrices entries grow too large:

min
U,V

n∑

i=1

p∑

j=1

1i j(uiv
T
j − Yi j)2 + λ

∑

i j

1i j
(
‖ui‖2 + ‖vj‖2

)

Restricted Boltzmann Machines for Collaborative Filtering

The weights were updated using a learning rate of
0.01/batch-size, momentum of 0.9, and a weight de-
cay of 0.001. The weights were initialized with small
random values sampled from a zero-mean normal dis-
tribution with standard deviation 0.01. CD learning
was started with T = 1 and increased in small steps
during training.

6.3. Results

We compare different models based on their perfor-
mance on the validation set. The error that Netflix
reports on the test set is typically larger than the er-
ror we get on the validation set by about 0.0014. When
the validation set is added to the training set, RMSE
on the test set is typically reduced by about 0.005.

Figure 3 (left panel) shows performance of the RBM
and the RBM with Gaussian hidden units. The y-
axis displays RMSE, and the x-axis shows the number
of epochs. Clearly, the nonlinear model substantially
outperforms its linear counterpart. Figure 3 (middle
panel) also reveals that conditioning on rated/unrated
information significantly improves model performance.
It also shows (right panel) that, when using a condi-
tional RBM, factoring the weight matrix leads to much
faster convergence.

7. Singular Value Decomposition (SVD)

SVD seeks a low-rank matrix X = UV ′, where U ∈
RN×C and V ∈ RM×C , that minimizes the sum-
squared distance to the fully observed target matrix
Y . The solution is given by the leading singular vec-
tors of Y . In the collaborative filtering domain, most
of the entries in Y will be missing, so the sum-squared
distance is minimized with respect to the partially ob-
served entries of the target matrix Y . Unobserved en-
tries of Y are then predicted using the corresponding
entries of X.

Let X = UV ′, where U ∈ RN×C and V ∈ RM×C de-
note the low-rank approximation to the partially ob-
served target matrix Y ∈ RN×M . Matrices U and
V are initialized with small random values sampled
from a zero-mean normal distribution with standard
deviation 0.01. We minimize the following objective
function:

f =

N∑

i=1

M∑

j=1

Iij

(
uivj

′ − Yij

)2

+λ
∑

ij

Iij

(
‖ ui ‖2

Fro + ‖ vj ‖2
Fro

)
(15)

where ‖ · ‖2
Fro denotes the Frobenius norm, and Iij is
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Figure 4. Performance of the conditional factored RBM
vs. SVD with C = 40 factors. The y-axis displays
RMSE (root mean squared error), and the x-axis shows
the number of epochs, or passes through the entire train-
ing dataset.

the indicator function, taking on value 1 if user i rated
movie j, and 0 otherwise. We then perform gradient
descent in U and V to minimize the objective function
of Eq. 15.

To speed-up the training, we subdivided the Netflix
data into mini-batches of size 100,000 (user/movie
pairs), and updated the weights after each mini-batch.
The weights were updated using a learning rate of
0.005, momentum of 0.9, and regularization parameter
λ = 0.01. Regularization, particularly for the Netflix
dataset, makes quite a significant difference in model
performance. We also experimented with various val-
ues of C and report the results with C = 40, since it
resulted in the best model performance on the valida-
tion set. Values of C in the range of [20, 60] also give
similar results.

We compared the conditional factored RBM with
an SVD model (see Fig. 4). The conditional fac-
tored RBM slightly outperforms SVD, but not by
much. Both models could potentially be improved by
more careful tuning of learning rates, batch sizes, and
weight-decay. More importantly, the errors made by
various versions of the RBM are significantly different
from the errors made by various versions of SVD, so
linearly combining the predictions of several different
versions of each method, using coefficients tuned on
the validation data, produces an error rate that is well
over 6% better than the Netflix’s own baseline score.

• Salakhutdinov, Mnih, Hinton,
“Restricted Boltzmann
Machines for Collaborative
Filtering” http:
//www.machinelearning.
org/proceedings/icml2007/
papers/407.pdf presents an
alternative model also
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