Hidden Markov Model for Sequential Data

Dr.-Ing. Michelle Karg
mekarg@uwaterloo.ca

Electrical and Computer Engineering
Cheriton School of Computer Science
Sequential Data

• Measurement of time series:

 Example: Motion data

• Others:
 – Characters in a Sentence
 – Nucleotide base pairs along a strand of DNA sequence

 Example: Speech data [1]
Sequential Data

• Characteristic:
 – Dependence on previous observations
 \[P(q_t = S_i \mid q_{t-1} = S_j, q_{t-2} = S_k, \ldots) = P(q_t = S_i \mid q_{t-1} = S_j) \]
 More recent observations likely to be more relevant
 – Stationary versus nonstationary sequential distributions
 Stationary: generative distribution not evolving with time

• Tasks:
 – Predict next value in a time series
 – Classify time series
Methods

Deterministic Models:
• Frequency analysis
• Statistical Features: (e.g., mean) + classification
• Dynamic time warping

Probabilistic Models:
• Hidden Markov Models
Frequency Analysis

- Fourier transform
 - Amplitude of frequency

- Pro:
 - Visualization

- Disadvantage:
 - No information about previous state

Example: speech data [1]
Statistical Features

• Transformation of time series into a \textit{set of features} → Conventional classification

• Example: Emotion recognition in gait [2]
 Step length, time, velocity: 84 % (NN)
 Min, mean, max: 93 % (Naive Bayes)

\begin{center}
\begin{figure}
\centering
\includegraphics[width=\textwidth]{time_series.png}
\caption{Time series [2]}
\end{figure}
\end{center}
Statistical Features

- Questions:
 - Which descriptors to calculate?
 - Feature Selection
 - Window size?
Statistical Features

- Questions:
 - Which descriptors to calculate?
 - Feature Selection
 - Window size?

- Pro:
 - Simple approach, fast

- Disadvantage:
 - Could be easily distorted by noise
Dynamic Time Warping

• Similarity measure between two sequences:
 Spatio-temporal correspondence
• Minimize error between sequence and reference:

\[E_c[\xi, \tau] = \int \left[|\xi(t)|^2 + \lambda \tau(t)^2 \right] dt \]
Dynamic Time Warping

• Computation: 1. Local cost measure
 – Distance measure (e.g., Euclidean, Manhattan)
 – Sampled at equidistant points in time

Cost matrix C for time series X and Y [6]
Dynamic Time Warping

• Computation: 1. Local cost measure
 – Distance measure (e.g., Euclidean, Manhattan)
 – Sampled at equidistant points in time

Cost matrix C for time series X and Y [6]
Dynamic Time Warping

- Computation: 1. Local cost measure
 - Distance measure (e.g., Euclidean, Manhattan)
 - Sampled at equidistant points in time

Cost matrix C for time series X and Y [6]
Dynamic Time Warping

2. Find **optimal warping path**:
 - Boundary condition: \(p_1 = (1,1) \) and \(p_L = (N,M) \)
 - Monotonicity condition: \(n_1 \leq n_2 \leq \ldots \leq n_L \) and \(m_1 \leq m_2 \leq \ldots \leq m_L \)
 - Step size condition

Which figure fulfills all conditions? [6]
Dynamic Time Warping

- Result: Optimal warping path

\[D(n, m) = \min\{D(n-1, m-1), D(n-1, m), D(n, m-1)\} + c(n, m) \]
Dynamic Time Warping

Pro:
- Very accurate
- Cope with different speeds
- Can be used for generation

Disadvantages:
- Alignment of segments?
 (e.g., different length)
- Computationally intensive
- Usually applied to low-dimensional data (1-dim.)

Generation: Morphing [3]
Methods

Deterministic Models:
• Frequency analysis
• Statistical Features: (e.g., mean) + classification
• Dynamic time warping

Probabilistic Models:
• Hidden Markov Models
Hidden Markov Model

- Sequence of hidden states
- **Observations** in each state
- Markov property
- Parameters: Transition matrix, observation, prior

[5] “A Tutorial on HMM and Selected Applications in Speech Recognition”
Hidden Markov Model

- Topology of transition matrix
- Model for the observations
- Methodology (3 basic problems)
- Implementation Issues
Topology of Transition Matrix A

• Markov Chain:
 Considering the previous state!

• Transition matrix A:
 – $0 \leq a_{ij} \leq 1$
 Transactions of the hidden states

• Topologies:
 – Ergodic or fully connected
 – Left-right or Bakis model (cyclic, noncyclic)
 – Note: the more “0”, the faster computation!

• What happens if
 – All entries of A are equal?
 – All entries in a row/column are zero except for diagonal?
Example for Markov Chain

• Given 3 states and A
 – **State 1**: rain or snow, **state 2**: cloudy, **state 3**: sunny

 \[
 A = \begin{bmatrix}
 0.4 & 0.3 & 0.3 \\
 0.2 & 0.6 & 0.2 \\
 0.1 & 0.1 & 0.8 \\
 \end{bmatrix}
 \]

• Questions:
 – If the sun shines now, what is the most probable weather for tomorrow?
 – What is the probability that the weather for the next 7 days will be: “sun – rain – rain – sun – cloudy – sun”
 Given, that the sun shines today;
Hidden Markov Model

- Markov Chain: States are observable
- HMM: states are not observable, only the observations

Observations are either
- Discrete, e.g., icy - cold – warm
- Continuous, e.g., temperature

Comparison of Markov Chain and HMM [4]
HMM – Discrete Observations

- A number of M distinct observation symbols per state:
 - Vector quantization of continuous data
- Observation Matrix B
Continuous Density HMM

- Example: Identification using gait [7]
 - Extract silhouette from video

 Width vector profile during gait steps [7]

 - FED vector for observation:
 * 5 stances: \(e_n \)
 * Distance
 \[f_{ed}^n(t) = d(x(t), e_n) \]
 * Distance: Gaussian distributed

Gait as biometric [7]

FED vector components during a step [7]
Design of an HMM

• An HMM is characterized by
 – The number of states: N
 – The number of distinct observation symbols M (only discrete !)
 – The state transition probabilities: A
 – The observation probability probability distributions
 – The initial state distribution π

• A model is described by the parameter set λ
 – $\lambda = (A, B, \pi)$
3 Basic Problems

1. **Learning:**

 Given:
 - Number of states N
 - The number of observations M
 - Structure of the model
 - Set of training observations

 How to estimate the probability matrices A and B?

 Solution: *Baum-Welch* algorithm

 (It can result in local maxima and the results depend on the initial estimates of A and $B)

 Application: Required for any HMM
Similarity Measure for HMMS

- Kullback-Leibler divergence
- Example: Movement imitation in robotics
 - Encode observed behavior as HMM
 - Calculate Kullback-Leibler divergence:
 - Existing or new behavior?
 - Build tree of human motions

Why not a metric?

Clustering human movement [8]

General Concept [8]
3 Basic Problems

2. Evaluation:

Given:
- Trained HMM $\lambda = (A, B, \pi)$
- Observation sequence $V = [v(1), v(2), \ldots, v(T)]$

What is the conditional probability $P(V|\lambda)$ that the observation sequence V is generated by the model λ?

Solution: Forward-backward algorithm

(Straight-forward calculation of $P(V|\lambda)$ would be too computationally intensive)

Application: Classification of time series
Classification of Time Series

- Examples: Happy versus neutral gait
- Concept: An HMM is trained for each class c
 \[\lambda_h = (A_h, B_h, \pi) \text{ and } \lambda_{neu} = (A_{neu}, B_{neu}, \pi) \]
- Calculation of the probabilities \(P(V|\lambda) \) for sequence \(V \)
 \[P_h(V | \lambda_h) \text{ and } P_{neu}(V | \lambda_{neu}) \]
- Comparison:
 \[P_h(V | \lambda_h) > P_{neu}(V | \lambda_{neu}) \]

Concept of HMM [4]
3 Basic Problems

3. Decoding:

Given:
- Trained HMM $\lambda = (A, B, \pi)$
- Observation sequence $V = [v(1), v(2), \ldots, v(T)]$

What is the most likely sequence of hidden states?

Solution: Viterbi algorithm

Application: Activity recognition
Implementation Issues

• Scaling
 – Rescale of forward and backward variables to avoid that computed variables exceed the precision range of machines

• Multiple observation sequences
 – Training

• Initial estimates of the HMM parameters
 – Random or uniform of π and A is adequate
 – Observation distributions: good initial estimate crucial

• Choice of the model
 – Topology of Markov Chain
 – Observation: discrete or continuous?
Implementation

An HMM can be used to
- Estimate a state sequence
- Classify sequential data
- Predict next value
- Build a generative model (e.g., application in robotics for motion imitation)

Real-world issues:
- Incomplete sequences
- Data differing in length
References