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Notation reminder

• Consider a function J(u1, u2, . . . , up) : Rp 7→ R (for us, this will
usually be an error function)

• The gradient ∇J(u1, u2, . . . , up) : Rp 7→ Rp is a function which
outputs a vector containing the partial derivatives.
That is:

∇J =

〈
∂

∂u1
J,
∂

∂u2
J, . . . ,

∂

∂up
J
〉

• If J is differentiable and convex, we can find the global minimum of
J by solving ∇J = 0.

• The partial derivative is the derivative along the ui axis, keeping all
other variables fixed.
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The Least Squares Solution [HTF 2.6.*, 3.2.*]

• Recalling some multivariate calculus:

∇wJ = ∇w(Xw − y)T(Xw − y)
= ∇w(wTXTXw − yTXw −wTXTy + yTy)
= ∇w(wTXTXw − 2yTXw + yTy)
= 2XTXw − 2XTy

• Setting gradient equal to zero:

2XTXw − 2XTy = 0

⇒ XTXw = XTy
⇒ w = (XTX )−1XTy

• The inverse exists if the columns of X are linearly independent.
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Example of linear regression

x y
0.86 2.49
0.09 0.83
-0.85 -0.25
0.87 3.10
-0.44 0.87
-0.43 0.02
-1.10 -0.12
0.40 1.81
-0.96 -0.83
0.17 0.43
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Data matrices

X =



1 0.86
1 0.09
1 −0.85
1 0.87
1 −0.44
1 −0.43
1 −1.10
1 0.40
1 −0.96
1 0.17


y =



2.49
0.83
−0.25
3.10
0.87
0.02
−0.12
1.81
−0.83
0.43
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XTX

XTX =

[
1 1 1 1 1 1 1 1 1 1

0.86 0.09 −0.85 0.87 −0.44 −0.43 −1.10 0.40 −0.96 0.17

]
×


1 0.86
1 0.09
1 −0.85
1 0.87
1 −0.44
1 −0.43
1 −1.10
1 0.40
1 −0.96
1 0.17


=

[
10 −1.39
−1.39 4.95

]
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XTy

XTy =

[
1 1 1 1 1 1 1 1 1 1

0.86 0.09 −0.85 0.87 −0.44 −0.43 −1.10 0.40 −0.96 0.17

]
×


2.49
0.83
−0.25
3.10
0.87
0.02
−0.12
1.81
−0.83
0.43


=

[
8.34
6.49

]
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Solving for w

w = (XTX )−1XTy =

[
10 −1.39
−1.39 4.95

]−1 [
8.34
6.49

]
=

[
1.05
1.60

]
So the best fit line is y = 1.05+ 1.60x .
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Data and line y = 1.05+ 1.60x

x

y
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Linear regression summary

• The optimal solution (minimizing sum-squared-error) can be
computed in polynomial time in the size of the data set.

• The solution is w = (XTX )−1XTy, where X is the data matrix
augmented with a column of ones, and y is the column vector of
target outputs.

• A very rare case in which an analytical, exact solution is possible
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Predicting recurrence time based on tumor size
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Is linear regression enough?

• Linear regression should be the first thing
you try for real-valued outputs!

• ...but it is sometimes not expressive enough.1

• Two possible solutions:
1 Explicitly transform the data, i.e. create additional features

• Add cross-terms, higher-order terms
• More generally, apply a transformation of the inputs from X to some

other space X ′, then do linear regression in the transformed space

2 Use a different hypothesis class

• Idea (1) and idea (2) are two views of the strategy.
Today we focus on the first approach

1Problems can also occur if XTX is not invertible.
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Polynomial fits [HTF 2.6.*]

• Suppose we want to fit a higher-degree polynomial to the data.
(E.g., y = w0 + w1x1 + w2x2

1 .)

• Suppose for now that there is a single input variable xi ,1 per training
sample.

• How do we do it?
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Answer: Polynomial regression

• Given data: (x1,1, y1), (x1,2, y2), . . . , (x1,n, yn).

• Suppose we want a degree-d polynomial fit.

• Let y be as before and let

X =


1 x1,1 x2

1,1 . . . xd
1,1

1 x1,2 x2
1,2 . . . xd

1,2
...

...
...

...
1 x1,n x2

1,n . . . xd
1,n


• We are making up features to add to our design matrix

• Solve the linear regression Xw ≈ y.
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Example of quadratic regression: Data matrices

X =



1 0.86 0.75
1 0.09 0.01
1 −0.85 0.73
1 0.87 0.76
1 −0.44 0.19
1 −0.43 0.18
1 −1.10 1.22
1 0.40 0.16
1 −0.96 0.93
1 0.17 0.03


y =



2.49
0.83
−0.25
3.10
0.87
0.02
−0.12
1.81
−0.83
0.43
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XTX

XTX =

[
1 1 1 1 1 1 1 1 1 1

0.86 0.09 −0.85 0.87 −0.44 −0.43 −1.10 0.40 −0.96 0.17
0.75 0.01 0.73 0.76 0.19 0.18 1.22 0.16 0.93 0.03

]
×


1 0.86 0.75
1 0.09 0.01
1 −0.85 0.73
1 0.87 0.76
1 −0.44 0.19
1 −0.43 0.18
1 −1.10 1.22
1 0.40 0.16
1 −0.96 0.93
1 0.17 0.03



=

 10 −1.39 4.95
−1.39 4.95 1.64
4.95 1.64 4.11
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XTy

XTy =

[
1 1 1 1 1 1 1 1 1 1

0.86 0.09 −0.85 0.87 −0.44 −0.43 −1.10 0.40 −0.96 0.17
0.75 0.01 0.73 0.76 0.19 0.18 1.22 0.16 0.93 0.03

]
×


2.49
0.83
−0.25
3.10
0.87
0.02
−0.12
1.81
−0.83
0.43



=

 8.34
6.49
3.60
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Solving for w

w = (XTX )−1XTy =
[

10 −1.39 4.95
−1.39 4.95 1.64
4.95 1.64 4.11

]−1 [ 3.60
6.49
8.34

]
=
[

0.73
1.74
0.68

]
So the best order-2 polynomial is y = 0.73+ 1.74x + 0.68x2.
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Data and curve y = 0.68x2 + 1.74x + 0.73

x

y

Is this a better fit to the data?
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Order-3 fit

x

y

Is this a better fit to the data?
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Order-4 fit

x

y

Is this a better fit to the data?
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Order-5 fit

x

y

Is this a better fit to the data?
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Order-6 fit

x

y

Is this a better fit to the data?
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Order-7 fit

x

y

Is this a better fit to the data?
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Order-8 fit

x

y

Is this a better fit to the data?
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Order-9 fit

x

y

Is this a better fit to the data?
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Evaluating Performance

x

y

x

y

Which do you prefer and why?

Fits the data we have right now Fits data we will see in the future
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Performance of a Fixed Hypothesis [HTF 7.1–7.4]
• Assume that data (x, y) are drawn from some fixed, unknown
probability distribution P(x, y)

• Given a hypothesis h, (which could have come from anywhere), its
generalization error is:

J∗h = Ex,y∼P [L(h(x), y)]

• We don’t have access to P(x, y), but if we have access to a test set
of data, we can compute the test error

Ĵ∗h =
1
n

n∑
i=1

L(h(xi), yi)

• Ĵ∗h is an unbiased estimate of J∗h so long as the (xi , yi) do not
influence h. Can use Ĵ∗h to get a confidence interval for J∗h .
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Test Error: The Gold Standard

Ĵ∗h =
1
n

n∑
i=1

L(h(xi), yi)

• Ĵ∗h is an unbiased estimate of J∗h so long as the (xi , yi) do not
influence h. Can use Ĵ∗h to get a confidence interval for J∗h .

• Gives a strong statistical guarantee about the true performance of
our system, if we didn’t use the test data to choose h.

• Note we can write training error for hypothesis class H as

ĴH = min
h′∈H

1
n

n∑
i=1

L(h′(xi), yi)

• Obviously, for any data set, ĴH ≤ Ĵ∗h .

Dan Lizotte (University of Waterloo) CS 886 - 01 Intro-2 12 Sept 2014 29 / 42



Problem 1 with Training Error
Training error ĴH systematically underestimates generalization error J∗h

x

y

• Training error of the degree-9 polynomial is 0.

• Training error of the degree-9 polynomial
on any set of 10 points is 0.

• The more complex the model and the smaller the training set,
the worse this is.
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Problem 2 with Training Error
Smaller training error does not mean smaller generalization error.

• Suppose H1 is the space of all linear functions, H2 is the space of all
quadratic functions. Note H1 ⊂ H2.

• Let h1 = argminh′∈H1 Ĵ∗h′ and h2 = argminh′∈H2 Ĵ∗h′

• We must have Ĵ∗h2
≤ Ĵ∗h1

, but we may have J∗h2
> J∗h1

.

M

E
R
M
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0 3 6 9
0
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1
Training
Test

Training error is no good for choosing the hypothesis class.
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Fix the problems with Training Error?

1 Training error ĴH underestimates generalization error J∗h
• If you really want a good estimate of J∗h , you need a test set
• (But new stat methods can produce a CI using training error)
• Could report test error, then deploy whatever you train on the whole
data. (Probably won’t be worse.)

2 Smaller training error does not mean smaller generalization error.
• Known as overfitting
• Hypothesis class choice problem is called model selection
• A validation set can be used for this. Train on the training set using
each proposed hypothesis class, evaluate each on the validation set,
choose the one with lowest validation error
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Training, Model Selection, and Error Estimation

• A general procedure for estimating the true error of a specific
learned hypothesis using model selection

• The data is randomly partitioned into three subsets:
• A training set used only to find the parameters w
• A validation set used to find the right hypothesis class (e.g., the
degree of the polynomial)

• A test set used to report the prediction error of the algorithm

• The test set must be disjoint from training and validation!

• Can generate standard confidence intervals for the test error of the
learned hypothesis

Dan Lizotte (University of Waterloo) CS 886 - 01 Intro-2 12 Sept 2014 33 / 42



Problems with the Single-Partition Approach

• Pros:
• Measures what we want. Performance of the actual learned
hypothesis.

• Cons:
• Why don’t we use all the data we have? Is it rational to “throw away”
data that could have been used for training/model selection?

• Can produce a high-variance estimate, especially for classification.
(actually the bigger concern) “What if I get a weird
test/train/validation set ‘by accident?’ ”

• For a test set of size 100, with 60 correct classifications, 95% C.I. for
actual accuracy is (0.497, 0.698).

Dan Lizotte (University of Waterloo) CS 886 - 01 Intro-2 12 Sept 2014 34 / 42



k-fold cross-validation

• Divide the instances into k disjoint partitions or folds
• Loop through the partitions i = 1...k :

• Partition i is for testing (i.e., estimating the performance of the
algorithm after learning is done)

• Partition (i mod k) + 1 is for validation (e.g., choosing the
hypothesis class or the parameters of the learning algorithm)

• The rest are used for training (e.g., choosing the specific hypothesis
within the class)

• Report average error on the testing partitions

• You should also compute and report standard error based on the
testing errors on the different folds

• Magic number: k = 10

• To deploy at the end of the day, train on all the data using your
chosen hypothesis class. If you want to estimate its error, go get
more data.
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Cross Validation [HTF 7.10.*]

• Error on each test fold is an unbiased estimate of generalization
error of a hypothesis trained on the rest of the data

• It is an average of error estimates for k different hypotheses
• They’re similar: Each was trained on a slightly different dataset
from the same distribution

• CV estimate approximately unbiased for the expected generalization
error

1 Draw many datasets of size n
2 Train on each one (maybe split for validation; doesn’t matter)
3 Average the true generalization error of each of the hypotheses

• This is not the generalization error of the hypothesis learned
from the data we actually have.

• More like an evaluation of the learning method.
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Cross Validation

• Not exactly what we want, but close

• Standard errors are usually shown (i.e. standard deviation of test
errors) but cannot2 be used to produce valid confidence intervals

• Well-accepted

2easily: “Some progress has been made on constructing confidence intervals around
cross-validation estimates, but this is considered a difficult problem.” - Wikipedia. The
WP CV article is pretty good.
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Summary: Overfitting
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• The higher the degree of the polynomial M, the more degrees of
freedom, and the more capacity to “overfit" the training data

• Typical overfitting means that error on the training data is very low,
but error on new instances is high

Dan Lizotte (University of Waterloo) CS 886 - 01 Intro-2 12 Sept 2014 38 / 42



Summary: Overfitting
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• The training error decreases with the degree of the polynomial M,
i.e. the complexity (size) of the hypothesis class

• Generalization error decreases at first, then starts increasing
• Set aside a validation set helps us find a good hypothesis class
• We then can report unbiased error estimate, using a test set,
untouched during both parameter training and validation

• Cross-validation is a lower-variance but possibly biased version of
this approach. It is standard.

Dan Lizotte (University of Waterloo) CS 886 - 01 Intro-2 12 Sept 2014 39 / 42


