CS 886

Applied Machine Learning Introduction Part 2 - Regression, Model Selection, Performance Evaluation

Dan Lizotte

University of Waterloo

9 May 2013

Notation reminder

- Consider a function $J(u_1, u_2, ..., u_p) : \mathbb{R}^p \to \mathbb{R}$ (for us, this will usually be an error function)
- The *gradient* $\nabla J(u_1, u_2, \dots, u_p) : \mathbb{R}^p \mapsto \mathbb{R}^p$ is a function which outputs a vector containing the partial derivatives. That is:

$$\nabla J = \left\langle \frac{\partial}{\partial u_1} J, \frac{\partial}{\partial u_2} J, \dots, \frac{\partial}{\partial u_p} J \right\rangle$$

- If J is differentiable and convex, we can find the global minimum of J by solving ∇J = 0.
- The partial derivative is the derivative along the u_i axis, keeping all other variables fixed.

The Least Squares Solution

Recalling some multivariate calculus:

$$\begin{aligned} \nabla_{\mathbf{w}} J &= \nabla_{\mathbf{w}} (X\mathbf{w} - \mathbf{y})^{\mathsf{T}} (X\mathbf{w} - \mathbf{y}) \\ &= \nabla_{\mathbf{w}} (\mathbf{w}^{\mathsf{T}} X^{\mathsf{T}} X \mathbf{w} - \mathbf{y}^{\mathsf{T}} X \mathbf{w} - \mathbf{w}^{\mathsf{T}} X^{\mathsf{T}} \mathbf{y} + \mathbf{y}^{\mathsf{T}} \mathbf{y}) \\ &= \nabla_{\mathbf{w}} (\mathbf{w}^{\mathsf{T}} X^{\mathsf{T}} X \mathbf{w} - 2 \mathbf{y}^{\mathsf{T}} X \mathbf{w} + \mathbf{y}^{\mathsf{T}} \mathbf{y}) \\ &= 2 X^{\mathsf{T}} X \mathbf{w} - 2 X^{\mathsf{T}} \mathbf{y} \end{aligned}$$

Setting gradient equal to zero:

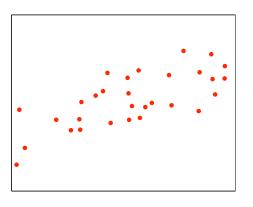
$$2X^{\mathsf{T}}X\mathbf{w} - 2X^{\mathsf{T}}\mathbf{y} = 0$$

$$\Rightarrow X^{\mathsf{T}}X\mathbf{w} = X^{\mathsf{T}}\mathbf{y}$$

$$\Rightarrow \mathbf{w} = (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}\mathbf{y}$$

• The inverse exists if the columns of X are linearly independent.

Example of linear regression



X	y y
0.86	2.49
0.09	0.83
-0.85	-0.25
0.87	3.10
-0.44	0.87
-0.43	0.02
-1.10	-0.12
0.40	1.81
-0.96	-0.83
0.17	0.43

Data matrices

$$X = \begin{bmatrix} 1 & 0.86 \\ 1 & 0.09 \\ 1 & -0.85 \\ 1 & 0.87 \\ 1 & -0.44 \\ 1 & -0.43 \\ 1 & -1.10 \\ 1 & 0.40 \\ 1 & -0.96 \\ 1 & 0.17 \end{bmatrix} \quad \mathbf{y} = \begin{bmatrix} 2.49 \\ 0.83 \\ -0.25 \\ 3.10 \\ 0.87 \\ 0.02 \\ -0.12 \\ 1.81 \\ -0.83 \\ 0.43 \end{bmatrix}$$

$$X^{\mathsf{T}}X$$

$$X^{\mathsf{T}}X =$$

$$= \left[\begin{array}{cc} 10 & -1.39 \\ -1.39 & 4.95 \end{array} \right]$$

$$X^{\mathsf{T}}\mathbf{y}$$

$$X^{\mathsf{T}}\mathbf{y} =$$

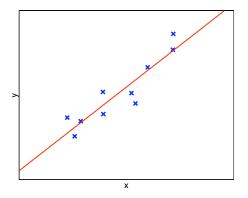
$$= \left[\begin{array}{c} 8.34 \\ 6.49 \end{array}\right]$$

Solving for w

$$\mathbf{w} = (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}\mathbf{y} = \begin{bmatrix} 10 & -1.39 \\ -1.39 & 4.95 \end{bmatrix}^{-1} \begin{bmatrix} 8.34 \\ 6.49 \end{bmatrix} = \begin{bmatrix} 1.05 \\ 1.60 \end{bmatrix}$$

So the best fit line is y = 1.05 + 1.60x.

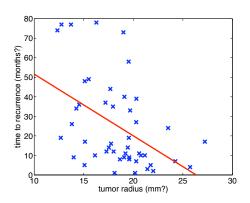
Data and line y = 1.05 + 1.60x



Linear regression summary

- The optimal solution (minimizing sum-squared-error) can be computed in polynomial time in the size of the data set.
- The solution is $\mathbf{w} = (X^T X)^{-1} X^T \mathbf{y}$, where X is the data matrix augmented with a column of ones, and \mathbf{y} is the column vector of target outputs.
- A very rare case in which an analytical, exact solution is possible

Predicting recurrence time based on tumor size



Is linear regression enough?

- Linear regression should be the first thing you try for real-valued outputs!
- ...but it is sometimes not expressive enough. 1
- Two possible solutions:
 - 1 Explicitly transform the data, i.e. create additional features
 - Add cross-terms, higher-order terms
 - More generally, apply a transformation of the inputs from $\mathcal X$ to some other space $\mathcal X'$, then do linear regression in the transformed space
 - **2** Use a different hypothesis class
- Idea (1) and idea (2) are two views of the strategy. Today we focus on the first approach

¹Problems can also occur if X^TX is not invertible.

Polynomial fits

- Suppose we want to fit a higher-degree polynomial to the data. (E.g., $y = w_0 + w_1x_1 + w_2x_1^2$.)
- Suppose for now that there is a single input variable $x_{i,1}$ per training sample.
- How do we do it?

Answer: Polynomial regression

- Given data: $(x_{1,1}, y_1), (x_{1,2}, y_2), \dots, (x_{1,n}, y_n)$.
- Suppose we want a degree-d polynomial fit.
- Let **y** be as before and let

$$X = \begin{bmatrix} 1 & x_{1,1} & x_{1,1}^2 & \dots & x_{1,1}^d \\ 1 & x_{1,2} & x_{1,2}^2 & \dots & x_{1,2}^d \\ \vdots & & \vdots & \vdots & \vdots \\ 1 & x_{1,n} & x_{1,n}^2 & \dots & x_{1,n}^d \end{bmatrix}$$

- We are making up features to add to our design matrix
- Solve the linear regression X**w** \approx **y**.

Example of quadratic regression: Data matrices

$$X = \begin{bmatrix} 1 & 0.86 & 0.75 \\ 1 & 0.09 & 0.01 \\ 1 & -0.85 & 0.73 \\ 1 & 0.87 & 0.76 \\ 1 & -0.44 & 0.19 \\ 1 & -0.43 & 0.18 \\ 1 & -1.10 & 1.22 \\ 1 & 0.40 & 0.16 \\ 1 & -0.96 & 0.93 \\ 1 & 0.17 & 0.03 \end{bmatrix} \quad \mathbf{y} = \begin{bmatrix} 2.49 \\ 0.83 \\ -0.25 \\ 3.10 \\ 0.87 \\ 0.02 \\ -0.12 \\ 1.81 \\ -0.83 \\ 0.43 \end{bmatrix}$$

$$X^{\mathsf{T}}X$$

$$X^{\mathsf{T}}X =$$

$$= \begin{bmatrix} 10 & -1.39 & 4.95 \\ -1.39 & 4.95 & 1.64 \\ 4.95 & 1.64 & 4.11 \end{bmatrix}$$

$$X^{\mathsf{T}}\mathbf{y}$$

$$X^{\mathsf{T}}\mathbf{y} =$$

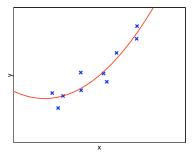
$$= \left[\begin{array}{c} 8.34\\6.49\\3.60 \end{array}\right]$$

Solving for w

$$\mathbf{w} = (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}\mathbf{y} = \begin{bmatrix} 10 & -1.39 & 4.95 \\ -1.39 & 4.95 & 1.64 \\ 4.95 & 1.64 & 4.11 \end{bmatrix}^{-1} \begin{bmatrix} 3.60 \\ 6.49 \\ 8.34 \end{bmatrix} = \begin{bmatrix} 0.73 \\ 1.74 \\ 0.68 \end{bmatrix}$$

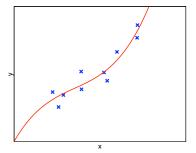
So the best order-2 polynomial is $y = 0.73 + 1.74x + 0.68x^2$.

Data and curve $y = 0.68x^2 + 1.74x + 0.73$



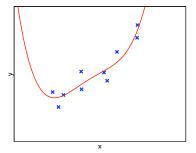
Is this a better fit to the data?

Order-3 fit



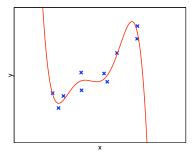
Is this a better fit to the data?

Order-4 fit



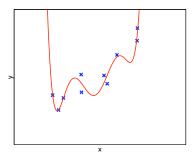
Is this a better fit to the data?

Order-5 fit



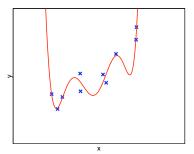
Is this a better fit to the data?

Order-6 fit



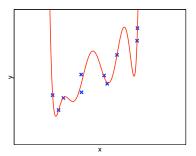
Is this a better fit to the data?

Order-7 fit



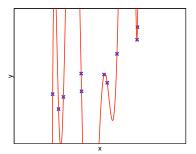
Is this a better fit to the data?

Order-8 fit



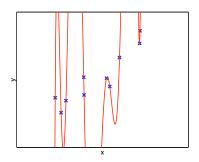
Is this a better fit to the data?

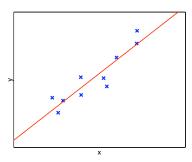
Order-9 fit



Is this a better fit to the data?

Evaluating Performance





Which do you prefer and why?

Fits the data we have right now

Fits data we will see in the future

Performance of a Fixed Hypothesis

- Assume that data (\mathbf{x}, y) are drawn from some fixed, unknown probability distribution $P(\mathbf{x}, y)$
- Given a hypothesis *h*, (which could have come from anywhere), its *generalization error* is:

$$J_h^* = \mathbb{E}[L(h(\mathbf{x}), y)]$$

• We don't have access to $P(\mathbf{x}, y)$, but if we have access to a *test set* of data, we can compute the *test error*

$$\hat{J}_h^* = \frac{1}{n} \sum_{i=1}^n L(h(\mathbf{x}_i), y_i)$$

Î_h* is an unbiased estimate of J_h* so long as the (x_i, y_i) do not influence h. Can use Î_h* to get a confidence interval for J_h*.

Test Error: The Gold Standard

$$\hat{J}_h^* = \frac{1}{n} \sum_{i=1}^n L(h(\mathbf{x}_i), y_i)$$

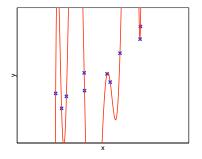
- \hat{J}_h^* is an *unbiased* estimate of J_h^* so long as the (\mathbf{x}_i, y_i) do not influence h. Can use \hat{J}_h^* to get a confidence interval for J_h^* .
- Gives a strong statistical guarantee about the true performance of our system, if we didn't use the test data to choose h.
- Note we can write training error for hypothesis class ${\cal H}$ as

$$\hat{J}_{\mathcal{H}} = \min_{h' \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} L(h'(\mathbf{x}_i), y_i)$$

• Obviously, for any data set, $\hat{J}_{\mathcal{H}} \leq \hat{J}_{h}^{*}$.

Problem 1 with Training Error

Training error $\hat{J}_{\mathcal{H}}$ systematically underestimates generalization error J_h^*

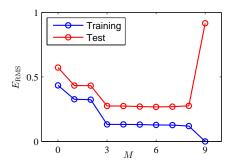


- Training error of the degree-9 polynomial is 0.
- Training error of the degree-9 polynomial on any set of 10 points is 0.
- The more complex the model and the smaller the training set, the worse this is.

Problem 2 with Training Error

Smaller training error does not mean smaller generalization error.

- Suppose \mathcal{H}_1 is the space of all linear functions, \mathcal{H}_2 is the space of all quadratic functions. Note $\mathcal{H}_1 \subset \mathcal{H}_2$.
- Let $h_1 = \arg\min_{h' \in \mathcal{H}_1} \hat{J}^*_{h'}$ and $h_2 = \arg\min_{h' \in \mathcal{H}_2} \hat{J}^*_{h'}$
- We must have $\hat{J}^*_{h_2} \leq \hat{J}^*_{h_1}$, but we may have $J^*_{h_2} > J^*_{h_1}$.



Training error is no good for choosing the hypothesis class.

Fix the problems with Training Error?

- 1 Training error $\hat{J}_{\mathcal{H}}$ underestimates generalization error J_h^*
 - If you really want a good estimate of J_h^* , you need a **test set**
 - (But new stat methods can produce a CI using training error)
 - Could report test error, then deploy whatever you train on the whole data. (Probably won't be worse.)
- Smaller training error does not mean smaller generalization error.
 - Known as overfitting
 - Hypothesis class choice problem is called *model selection*
 - A validation set can be used for this. Train on the training set using each proposed hypothesis class, evaluate each on the validation set, choose the one with lowest validation error

Training, Model Selection, and Error Estimation

- A general procedure for estimating the true error of a specific learned hypothesis using model selection
- The data is randomly partitioned into three subsets:
 - A training set used only to find the parameters w
 - A *validation set* used to find the right hypothesis class (e.g., the degree of the polynomial)
 - A test set used to report the prediction error of the algorithm
- The test set must be disjoint from training and validation!
- Can generate standard confidence intervals for the test error of the learned hypothesis

Problems with the Single-Partition Approach

Pros:

 Measures what we want. Performance of the actual learned hypothesis.

Cons:

- Why don't we use all the data we have? Is it rational to "throw away" data that could have been used for training/model selection?
- Can produce a high-variance estimate, especially for classification. (actually the bigger concern) "What if I get a weird test/train/validation set 'by accident?' "
- For a test set of size 100, with 60 correct classifications, 95% C.I. for actual accuracy is (0.497, 0.698).

k-fold cross-validation

- Divide the instances into *k* disjoint partitions or folds
- Loop through the partitions i = 1...k:
 - Partition *i* is for testing (i.e., estimating the performance of the algorithm after learning is done)
 - Partition $(i \mod k) + 1$ is for validation (e.g., choosing the hypothesis class or the parameters of the learning algorithm)
 - The rest are used for training (e.g., choosing the specific hypothesis within the class)
- Report average error on the testing partitions
- You should also compute and report standard error based on the testing errors on the different folds
- Magic number: k = 10
- To deploy at the end of the day, train on all the data using your chosen hypothesis class. If you want to estimate its error, go get more data.

Cross Validation [HTF 7.12]

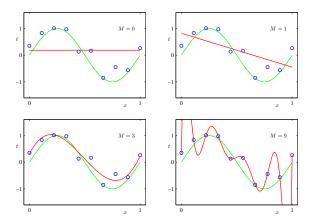
- Error on each test fold is an unbiased estimate of generalization error of a hypothesis *trained on the rest of the data*
- It is an average of error estimates for k different hypotheses
- They're similar: Each was trained on a slightly different dataset from the same distribution
- CV estimate approximately unbiased for the expected generalization error
 - 1 Draw many datasets of size n
 - 2 Train on each one (maybe split for validation; doesn't matter)
 - **3** Average the true generalization error of each of the hypotheses
- This is not the generalization error of the hypothesis learned from the data we actually have.
- More like an evaluation of the learning method.

Cross Validation

- Not exactly what we want, but close
- Standard errors are usually shown (i.e. standard deviation of test errors) but cannot² be used to produce valid confidence intervals
- Well-accepted

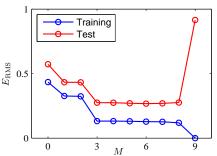
²easily: "Some progress has been made on constructing confidence intervals around cross-validation estimates, but this is considered a difficult problem." - Wikipedia. The WP CV article is pretty good.

Summary: Overfitting



- The higher the degree of the polynomial *M*, the more degrees of freedom, and the more capacity to "overfit" the training data
- Typical overfitting means that error on the training data is very low, but error on new instances is high

Summary: Overfitting



- The training error decreases with the degree of the polynomial *M*, i.e. *the complexity (size) of the hypothesis class*
- Generalization error decreases at first, then starts increasing
- Set aside a validation set helps us find a good hypothesis class
- We then can report unbiased error estimate, using a test set, untouched during both parameter training and validation
- Cross-validation is a lower-variance but possibly biased version of this approach. It is standard.