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Instance-based learning

• Non-parametric learning

• k-nearest neighbour

• Efficient implementations

• Variations

Dan Lizotte (University of Waterloo) CS 886 - TUT - KNN 20 June 2013 2 / 32



Parametric supervised learning

• So far, we have assumed that we have a data set D of labeled
examples

• From this, we learn a parameter vector of a fixed size such that
some error measure based on the training data is minimized

• These methods are called parametric, and their main goal is to
summarize the data using the parameters

• Parametric methods are typically global, i.e. have one set of
parameters for the entire data space

• But what if we just remembered the data?

• When new instances arrive, we will compare them with what we
know, and determine the answer
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Non-parametric (memory-based) learning methods

• Key idea: just store all training examples 〈xi, yi〉
• When a query is made, compute the value of the new instance
based on the values of the closest (most similar) points

• Requirements:
• A distance function
• How many closest points (neighbors) to look at?
• How do we compute the value of the new point based on the existing
values?
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Simple idea: Connect the dots!
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Simple idea: Connect the dots!
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One-nearest neighbor

• Given: Training data {(xi , yi)}ni=1, distance metric d on X .
• Training: Nothing to do! (just store data)
• Prediction: for x ∈ X

• Find nearest training sample to x.

i∗ ∈ argmin
i
d(xi , x)

• Predict y = yi∗ .
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What does the approximator look like?

• Nearest-neighbor does not explicitly compute decision boundaries

• But the effective decision boundaries are a subset of the Voronoi
diagram for the training data

Each line segment is equidistant between two points of opposite classes.
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What kind of distance metric?

• Euclidian distance

• Maximum/minimum difference along any axis

• Weighted Euclidian distance (with weights based on domain
knowledge)

d(x, x′) =

n∑
j=1

uj(xj − x′j)2

• An arbitrary distance or similarity function d , specific for the
application at hand (works best, if you have one)
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Distance metric is really important!
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Distance metric tricks

• You may need to do preprocessing:
• Scale the input dimensions (or normalize them)
• Determine weights for features based on cross-validation (or
information-theoretic methods)

• Distance metric is often domain-specific
• E.g. string edit distance in bioinformatics
• E.g. trajectory distance in time series models for walking data

• Distance metric can be learned sometimes (more on this later)

Dan Lizotte (University of Waterloo) CS 886 - TUT - KNN 20 June 2013 11 / 32



k-nearest neighbor

• Given: Training data {(xi , yi)}ni=1, distance metric d on X .
• Learning: Nothing to do!
• Prediction: for x ∈ X

• Find the k nearest training samples to x.
Let their indices be i1, i2, . . . , ik .

• Predict
• y = mean/median of {yi1 , yi2 , . . . , yik } for regression
• y = majority of {yi1 , yi2 , . . . , yik } for classification, or empirical

probability of each class
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Classification, 2-nearest neighbor, empirical distribution
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Classification, 3-nearest neighbor
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Classification, 5-nearest neighbor
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Classification, 10-nearest neighbor
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Classification, 15-nearest neighbor

10 15 20 25 30

0

0.2

0.4

0.6

0.8

1

tumor size (mm?)

no
n−

re
cu

rri
ng

 (0
) /

 re
cu

rri
ng

 (1
)

15−nearest neighbor, mean

Dan Lizotte (University of Waterloo) CS 886 - TUT - KNN 20 June 2013 17 / 32



Classification, 20-nearest neighbor
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Regression, 2-nearest neighbor, mean prediction
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Regression, 3-nearest neighbor
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Regression, 5-nearest neighbor
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Regression, 10-nearest neighbor
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Bias-variance trade-off

• If k is low, very non-linear functions can be approximated, but we
also capture the noise in the data
Bias is low, variance is high

• If k is high, the output is much smoother, less sensitive to data
variation
High bias, low variance

• A validation set can be used to pick the best k
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Distance-weighted (kernel-based) nearest neighbor

• Inputs: Training data {(xi , yi)}ni=1, distance metric d on X ,
weighting function w : R 7→ R.

• Learning: Nothing to do!
• Prediction: On input x,

• For each i compute wi = w(d(xi , x)).
• Predict weighted majority or mean. For example,

y =

∑
i wiyi∑
i wi

• How to weight distances?
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Some weighting functions

1

d(xi , x)

1

d(xi , x)2
1

c + d(xi , x)2
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d(xi ,x)
2

σ2
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Example: Gaussian weighting, small σ
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Gaussian weighting, medium σ
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Gaussian weighting, large σ
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All examples get to vote! Curve is smoother, but perhaps too smooth.
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Locally-weighted linear regression

• Weighted linear regression: different weights in the error function for
different points (see homework 1)

• Locally weighted linear regression: weights depend on the distance
to the query point

• Uses a linear fit rather than just an average
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Another view of LWR

Image from  Cohn, D.A., Ghahramani, Z., and Jordan, M.I. (1996) "Active Learning with Statistical Models", JAIR Volume 4, pages 129-145.
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Lazy and eager learning

• Lazy: wait for query before generalizing
E.g. Nearest Neighbor

• Eager: generalize before seeing query
E.g. Backpropagation, Linear regression,

Does it matter?
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Pros and cons of lazy and eager learning

• Eager learners must create global approximation

• Lazy learners can create many local approximations

• An eager learner does the work off-line, summarizes lots of data
with few parameters

• A lazy learner has to do lots of work sifting through the data at
query time

• Typically lazy learners take longer time to answer queries and require
more space
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When to consider instance-based learning

• Instances map to points in Rp

• Not too many features per instance (maybe < 20)
• Advantages:

• Training is very fast
• Easy to learn complex functions over few variables
• Can give back confidence intervals in addition to the prediction
• Variable resolution (depends on the density of data points)
• Does not lose any information
• Often wins if you have enough data

• Disadvantages:
• Slow at query time
• Query answering complexity depends on the number of instances
• Easily fooled by irrelevant features (for most distance metrics)
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