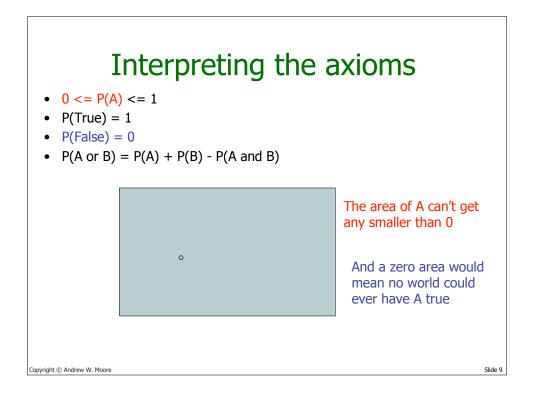


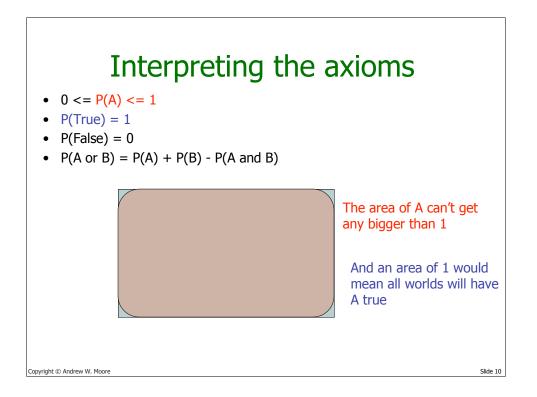
The Axioms of Probability

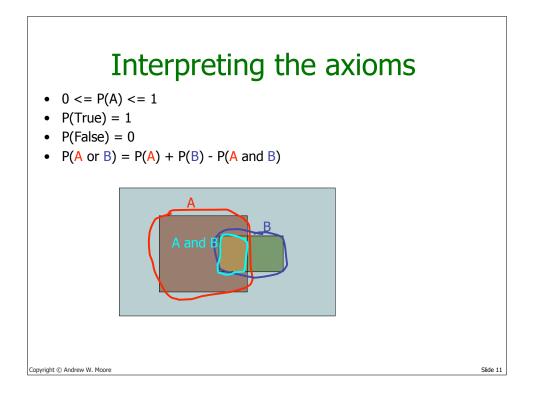
- 0 <= P(A) <= 1
- P(True) = 1
- P(False) = 0
- P(A or B) = P(A) + P(B) P(A and B)
- These plus set theory are all you need

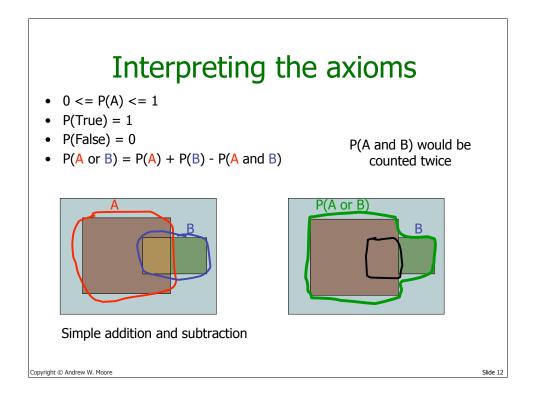
Where do these axioms come from? Were they "discovered"? Answers coming up later.

Slide 8









These Axioms are Not to be Trifled With

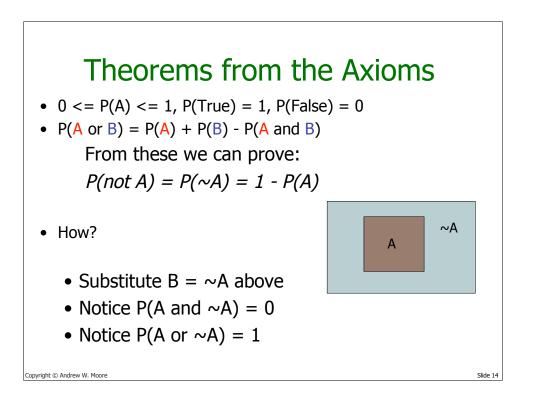
• There have been attempts to do different methodologies for uncertainty

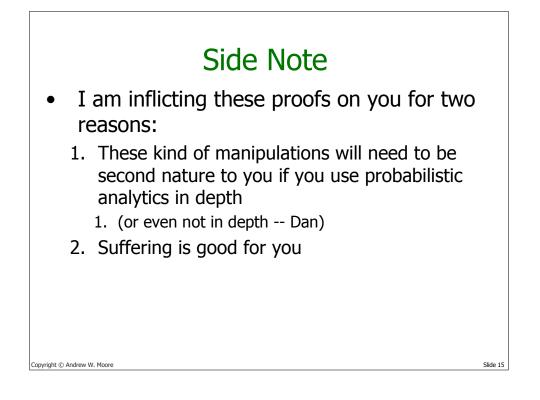
- Fuzzy Logic
- Three-valued logic
- Dempster-Shafer
- Non-monotonic reasoning
- But the axioms of probability are the only system with this property:

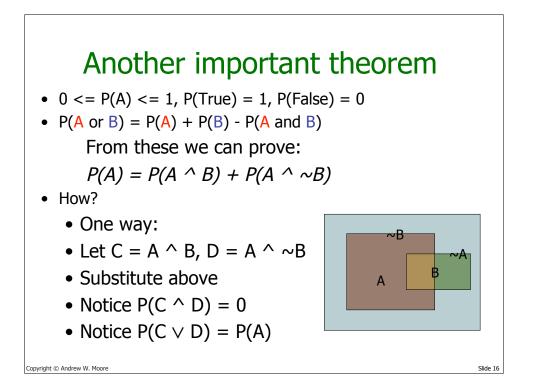
If you gamble using them you can't be unfairly exploited by an opponent using some other system [di Finetti 1931]

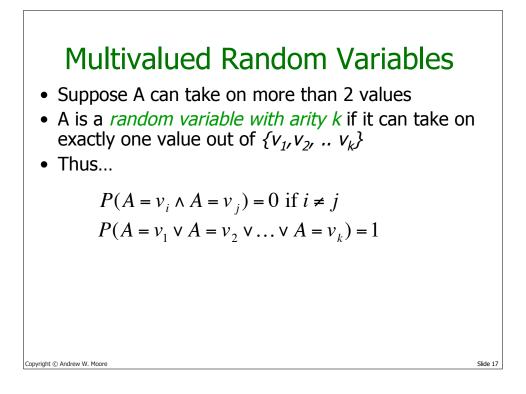
Slide 13

Copyright © Andrew W. Moore









An easy fact about Multivalued Random Variables:

• Using the axioms of probability... $0 \le P(A) \le 1, P(\text{True}) = 1, P(\text{False}) = 0$ P(A or B) = P(A) + P(B) - P(A and B)• And assuming that A obeys... $P(A = v_i \land A = v_j) = 0 \text{ if } i \neq j$ $P(A = v_1 \lor A = v_2 \lor \dots \lor A = v_k) = 1$ • It's easy to prove that $P(A = v_1 \lor A = v_2 \lor \dots \lor A = v_i) = \sum_{j=1}^{i} P(A = v_j)$

An easy fact about Multivalued **Random Variables:**

• Using the axioms of probability...

 $0 \le P(A) \le 1$, P(True) = 1, P(False) = 0

- P(A or B) = P(A) + P(B) P(A and B)
- And assuming that A obeys...

$$P(A = v_i \land A = v_j) = 0 \text{ if } i \neq j$$

$$P(A = v_1 \lor A = v_2 \lor \dots \lor A = v_k) = 1$$

• It's easy to prove that

$$P(A = v_1 \lor A = v_2 \lor \ldots \lor A = v_i) = \sum_{j=1}^{k} P(A = v_j)$$

And thus we can prove
$$\sum_{j=1}^{k} P(A = v_j) = 1$$

i

Slide 19

Slide 20

Copyright © Andrew W. Moore

Another fact about Multivalued **Random Variables:**

- Using the axioms of probability...
 - $0 \le P(A) \le 1$, P(True) = 1, P(False) = 0P(A or B) = P(A) + P(B) - P(A and B)
- And assuming that A obeys...

$$P(A = v_i \land A = v_j) = 0 \text{ if } i \neq j$$

$$P(A = v_1 \lor A = v_2 \lor \dots \lor A = v_k) = 1$$

It's easy to prove that ٠

• It's easy to prove that

$$P(B \land [A = v_1 \lor A = v_2 \lor \dots \lor A = v_i]) = \sum_{j=1}^{i} P(B \land A = v_j)$$

Copyright © Andrew W. Moore

Another fact about Multivalued Random Variables:

- Using the axioms of probability... 0 <= P(A) <= 1, P(True) = 1, P(False) = 0 P(A or B) = P(A) + P(B) - P(A and B)
 And assuming that A obeys... P(A = v_i ∧ A = v_j) = 0 if i ≠ j P(A = v_i ∧ A = v_j) = 0 if i ≠ j
 P(A = v₁ ∨ A = v₂ ∨ ... ∨ A = v_k) = 1
 It's easy to prove that
- $P(B \land [A = v_1 \lor A = v_2 \lor \dots \lor A = v_i]) = \sum_{j=1}^{i} P(B \land A = v_j)$ • And thus we can prove $P(B) = \sum_{j=1}^{k} P(B \land A = v_j)$

$$P(B) = \sum_{j=1}^{n} P(B \land A = v_j)$$

Slide 21

Copyright © Andrew W. Moore

