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Bayesian Analytics
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Note to other teachers and users of
these slides. Andrew would be delighted
if you found this source material useful in
giving your own lectures. Feel free to use
these slides verbatim, or to modify them
to fit your own needs. PowerPoint
originals are available. If you make use
of a significant portion of these slides in
your own lecture, please include this
message, or the following link to the
source repository of Andrew’s tutorials:
http://www.cs.cmu.edu/~awm/tutorials .
Comments and corrections gratefully
received.
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Probability
• The world is a very uncertain place
• 30 years of Artificial Intelligence and

Database research danced around this fact
• And then a few AI researchers decided to

use some ideas from the eighteenth century



2

Copyright © Andrew W. Moore Slide 3

What we’re going to do
• We will review the fundamentals of

probability.
• It’s really going to be worth it
• In this lecture, you’ll see an example of

probabilistic analytics in action: Bayes
Classifiers
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Discrete Random Variables
• A is a Boolean-valued random variable if A

denotes an event, and there is some degree
of uncertainty as to whether A occurs.

• Examples
• A = The US president in 2023 will be male
• A = You wake up tomorrow with a headache
• A = You have Ebola
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Probabilities
• We write P(A) as “the fraction of possible

worlds in which A is true”
• We could at this point spend 2 hours on the

philosophy of this.
• But we won’t.
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Visualizing A

Event space of
all possible
worlds

Its area is 1
Worlds in which A is False

Worlds in which
A is true

P(A) = Area of
reddish oval

You can think of a probability as the measurement of a set.
In this case, the measurement is area.
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TheAxiomsOfProbability
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The Axioms of Probability
• 0 <= P(A) <= 1
• P(True) = 1
• P(False) = 0
• P(A or B) = P(A) + P(B) - P(A and B)

• These plus set theory are all you need

Where do these axioms come from? Were they “discovered”?
Answers coming up later.



5

Copyright © Andrew W. Moore Slide 9

Interpreting the axioms
• 0 <= P(A) <= 1
• P(True) = 1
• P(False) = 0
• P(A or B) = P(A) + P(B) - P(A and B)

The area of A can’t get
any smaller than 0

And a zero area would
mean no world could
ever have A true
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Interpreting the axioms
• 0 <= P(A) <= 1
• P(True) = 1
• P(False) = 0
• P(A or B) = P(A) + P(B) - P(A and B)

The area of A can’t get
any bigger than 1

And an area of 1 would
mean all worlds will have
A true
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Interpreting the axioms
• 0 <= P(A) <= 1
• P(True) = 1
• P(False) = 0
• P(A or B) = P(A) + P(B) - P(A and B)

A

B
A and B
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Interpreting the axioms
• 0 <= P(A) <= 1
• P(True) = 1
• P(False) = 0
• P(A or B) = P(A) + P(B) - P(A and B)

A

B

P(A or B)

B

P(A and B) would be
counted twice

Simple addition and subtraction
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These Axioms are Not to be
Trifled With

• There have been attempts to do different
methodologies for uncertainty

• Fuzzy Logic
• Three-valued logic
• Dempster-Shafer
• Non-monotonic reasoning

• But the axioms of probability are the only
system with this property:

    If you gamble using them you can’t be unfairly exploited
by an opponent using some other system [di Finetti 1931]
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Theorems from the Axioms
• 0 <= P(A) <= 1, P(True) = 1, P(False) = 0
• P(A or B) = P(A) + P(B) - P(A and B)

From these we can prove:
P(not A) = P(~A) = 1 - P(A)

• How?

• Substitute B = ~A above
• Notice P(A and ~A) = 0
• Notice P(A or ~A) = 1

A
~A
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Side Note
• I am inflicting these proofs on you for two

reasons:
1. These kind of manipulations will need to be

second nature to you if you use probabilistic
analytics in depth
1. (or even not in depth -- Dan)

2. Suffering is good for you
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Another important theorem
• 0 <= P(A) <= 1, P(True) = 1, P(False) = 0
• P(A or B) = P(A) + P(B) - P(A and B)

From these we can prove:
P(A) = P(A ^ B) + P(A ^ ~B)

• How?

• One way:
• Let C = A ^ B, D = A ^ ~B
• Substitute above
• Notice P(C ^ D) = 0
• Notice P(C ∨ D) = P(A)

A

~A
B

~B
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Multivalued Random Variables
• Suppose A can take on more than 2 values
• A is a random variable with arity k if it can take on

exactly one value out of {v1,v2, .. vk}
• Thus…

! 

P(A = vi " A = v j ) = 0 if i # j

  

! 

P(A = v
1
" A = v

2
"K" A = v

k
) =1
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An easy fact about Multivalued
Random Variables:

• Using the axioms of probability…
0 <= P(A) <= 1, P(True) = 1, P(False) = 0
P(A or B) = P(A) + P(B) - P(A and B)

• And assuming that A obeys…

• It’s easy to prove that

! 

P(A = vi " A = v j ) = 0 if i # j

  

! 

P(A = v
1
" A = v

2
"K" A = v

k
) =1

  

! 

P(A = v
1
" A = v

2
"K" A = vi) = P(A = v j

j=1

i

# )
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An easy fact about Multivalued
Random Variables:

• Using the axioms of probability…
0 <= P(A) <= 1, P(True) = 1, P(False) = 0
P(A or B) = P(A) + P(B) - P(A and B)

• And assuming that A obeys…

• It’s easy to prove that

! 

P(A = vi " A = v j ) = 0 if i # j

  

! 

P(A = v
1
" A = v

2
"K" A = v

k
) =1

  

! 

P(A = v
1
" A = v

2
"K" A = vi) = P(A = v j

j=1

i

# )

• And thus we can prove

1)(
1

==!
=

k

j

jvAP
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Another fact about Multivalued
Random Variables:

• Using the axioms of probability…
0 <= P(A) <= 1, P(True) = 1, P(False) = 0
P(A or B) = P(A) + P(B) - P(A and B)

• And assuming that A obeys…

• It’s easy to prove that

! 

P(A = vi " A = v j ) = 0 if i # j

  

! 

P(A = v
1
" A = v

2
"K" A = v

k
) =1

  

! 

P(B"[A = v
1
# A = v

2
#K# A = vi]) = P(B" A = v j

j=1

i

$ )
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Another fact about Multivalued
Random Variables:

• Using the axioms of probability…
0 <= P(A) <= 1, P(True) = 1, P(False) = 0
P(A or B) = P(A) + P(B) - P(A and B)

• And assuming that A obeys…

• It’s easy to prove that

! 

P(A = vi " A = v j ) = 0 if i # j

  

! 

P(A = v
1
" A = v

2
"K" A = v

k
) =1

  

! 

P(B"[A = v
1
# A = v

2
#K# A = vi]) = P(B" A = v j

j=1

i

$ )

• And thus we can prove

! 

P(B) = P(B" A = v j

j=1

k

# )
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Elementary Probability in Pictures
1)(

1

==!
=

k

j

jvAP
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Elementary Probability in Pictures
)()(

1

!
=

="=
k

j

jvABPBP
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Conditional Probability
• P(A|B) = Fraction of worlds in which B is

true that also have A true

F

H

H = “Have a headache”
F = “Coming down with
Flu”

P(H) = 1/10
P(F) = 1/40
P(H|F) = 1/2

“Headaches are rare and flu
is rarer, but if you’re
coming down with ‘flu
there’s a 50-50 chance
you’ll have a headache.”
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Conditional Probability
F

H

H = “Have a headache”
F = “Coming down with
Flu”

P(H) = 1/10
P(F) = 1/40
P(H|F) = 1/2

P(H|F) = Fraction of flu-inflicted
worlds in which you have a
headache

= #worlds with flu and headache
    ------------------------------------
          #worlds with flu

= Area of “H and F” region
   ------------------------------
         Area of “F” region

= P(H ^ F)
   -----------
       P(F)
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Definition of Conditional Probability
                     P(A ^ B) 
P(A|B)  =  -----------
                    P(B) 

Corollary: The Chain Rule
P(A ^ B) = P(A|B) P(B) 
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Probabilistic Inference

F

H

H = “Have a headache”
F = “Coming down with
Flu”

P(H) = 1/10
P(F) = 1/40
P(H|F) = 1/2

One day you wake up with a headache. You think: “Drat!
50% of flus are associated with headaches so I must have a
50-50 chance of coming down with flu”

Is this reasoning good?
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Probabilistic Inference

F

H

H = “Have a headache”
F = “Coming down with
Flu”

P(H) = 1/10
P(F) = 1/40
P(H|F) = 1/2

P(F ^ H) = …

P(F|H) = …
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Another way to understand the
intuition

Thanks to Jahanzeb Sherwani for contributing this explanation:
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What we just did…
              P(A ^ B)     P(A|B) P(B)
P(B|A) = ----------- = ---------------
                 P(A)             P(A)

This is Bayes Rule

Bayes, Thomas (1763) An essay
towards solving a problem in the
doctrine of chances. Philosophical
Transactions of the Royal Society of
London, 53:370-418
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Aside: Fixing my mistakes

“Independent”
“Mutually 
Exclusive”

P(A and B) = P(A)·P(B) P(A or B) = P(A) + P(B)

These are not the same thing!

A B
A

B

Special case of
P(A and B) = P(A) ·P(B|A)

Special case of
P(A or B) = P(A) + P(B) - P(A and B)
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Using Bayes Rule to Gamble

The “Win” envelope
has 100 krónur and
four beads in it

100 kr.

The “Lose” envelope
has three beads and
no money

Trivial question: someone draws an envelope at random (i.e. 50% chance
of winning) and offers to sell it to you. How much should you pay?
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Using Bayes Rule to Gamble

The “Win” envelope
has 100 krónur and
four beads in it

100 kr.

The “Lose” envelope
has three beads and
no money

Interesting question: before deciding, you are allowed to see one bead
drawn from the envelope.

Suppose it’s black: How much should you pay?
Suppose it’s red: How much should you pay?
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More General Forms of Bayes Rule

! 

P(A |B) =
P(B | A)P(A)

P(B | A)P(A) + P(B |~ A)P(~ A)

! 

P(A |B" X) =
P(B | A" X)P(A" X)

P(B" X)

Here, the denominator just computes P(B).
In the gambling example, we could have done:
P(black) = P(black|win)·P(win) + P(black|~win)·P(~win)
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More General Forms of Bayes Rule

! 

P(A = v
i
|B) =

P(B | A = v
i
)P(A = v

i
)

P(B | A = v
k
)P(A = v

k
)

k=1

n
A

"
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Useful Easy-to-prove facts

! 

P(A |B) + P(~ A |B) =1

! 

P(A = v
k
|B)

k=1

n
A

" =1

Implied by the definition of conditional probability

P(A) = P(A ^ B) + P(A ^ ~B)

              P(A ^ B) 
P(A|B)  =  -----------
                   P(B) 

…and the “marginalization” formula

Copyright © Andrew W. Moore Slide 38

The Joint Distribution

Recipe for making a joint distribution
of M variables:

Example: Boolean
variables A, B, C
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The Joint Distribution

Recipe for making a joint distribution
of M variables:

1. Make a truth table listing all
combinations of values of your
variables (if there are M Boolean
variables then the table will have
2M rows).

Example: Boolean
variables A, B, C

111

011

101

001

110

010

100

000

CBA
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The Joint Distribution

Recipe for making a joint distribution
of M variables:

1. Make a truth table listing all
combinations of values of your
variables (if there are M Boolean
variables then the table will have
2M rows).

2. For each combination of values,
say how probable it is.

Example: Boolean
variables A, B, C

0.10111

0.25011

0.10101

0.05001

0.05110

0.10010

0.05100

0.30000

ProbCBA
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The Joint Distribution

Recipe for making a joint distribution
of M variables:

1. Make a truth table listing all
combinations of values of your
variables (if there are M Boolean
variables then the table will have
2M rows).

2. For each combination of values,
say how probable it is.

3. If you subscribe to the axioms of
probability, those numbers must
sum to 1.

Example: Boolean
variables A, B, C

0.10111

0.25011

0.10101

0.05001

0.05110

0.10010

0.05100

0.30000

ProbCBA

A

B

C0.05
0.25

0.10 0.050.05

0.10

0.10
0.30
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Using the
Joint

One you have the Joint
Distribution, you can ask for
the probability of any logical
expression involving your
attributes

!=
E

PEP

 matching rows

)row()(
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Using the
Joint

P(Poor ^ Male) = 0.4654 !=
E

PEP

 matching rows

)row()(
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Using the
Joint

P(Poor) = 0.7604 !=
E

PEP

 matching rows

)row()(
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Inference
with the

Joint

!

!
=

"
=

2

 2 1

 matching rows

 and matching rows

2

21
21

)row(

)row(

)(

)(
)|(

E

EE

P

P

EP

EEP
EEP
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Inference
with the

Joint

!

!
=

"
=

2

 2 1

 matching rows

 and matching rows

2

21
21

)row(

)row(

)(

)(
)|(

E

EE

P

P

EP

EEP
EEP

P(Male | Poor) = 0.4654 / 0.7604 = 0.612  
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Inference
with the

Joint

!

!
=

"
=

2

 2 1

 matching rows

 and matching rows

2

21
21

)row(

)row(

)(

)(
)|(

E

EE

P

P

EP

EEP
EEP

P(Poor | Male) = 0.4654 / 0.6685 = 0.696  
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Inference is a big deal
• I’ve got this evidence. What’s the chance

that this conclusion is true?
• I’ve got a sore neck: how likely am I to have meningitis?
• I see my lights are out and it’s 9pm. What’s the chance

my spouse is already asleep?
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Inference is a big deal
• I’ve got this evidence. What’s the chance

that this conclusion is true?
• I’ve got a sore neck: how likely am I to have meningitis?
• I see my lights are out and it’s 9pm. What’s the chance

my spouse is already asleep?

• There’s a thriving set of industries growing based
around Bayesian Inference. Highlights are:
Medicine, Pharma, Help Desk Support, Engine
Fault Diagnosis
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Where do Joint Distributions
come from?

• Idea One: Expert Humans
• Idea Two: Simpler probabilistic facts and

some algebra (axioms, Bayes rule, …)
Example: Suppose you had three binary variables A, B, C, and you knew

P(A) = 0.7

P(B|A) = 0.2
P(B|~A) = 0.1

P(C|A^B) = 0.1
P(C|A^~B) = 0.8
P(C|~A^B) = 0.3
P(C|~A^~B) = 0.1

Then you can automatically
compute the JD using the
chain rule

P(A=x ^ B=y ^ C=z) =
P(C=z|A=x^ B=y) P(B=y|A=x) P(A=x)

Once you have recovered JD, you can ask whatever you want!
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Where do Joint Distributions
come from?

• Idea Three: Learn them from data!

Prepare to see one of the most impressive learning
algorithms you’ll come across in the entire course….
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Learning a joint distribution
Build a JD table for your
attributes in which the
probabilities are unspecified

The fill in each row with

records ofnumber  total

row matching records
)row(ˆ =P

?111

?011

?101

?001

?110

?010

?100

?000

ProbCBA

0.10111

0.25011

0.10101

0.05001

0.05110

0.10010

0.05100

0.30000

ProbCBA

Fraction of all records in which
A and B are True but C is False
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Example of Learning a Joint
• This Joint was

obtained by
learning from
three
attributes in
the UCI
“Adult”
Census
Database
[Kohavi 1995]
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Where are we?
• We have recalled the fundamentals of

probability
• We have become content with what Joint

Distributions are and how to use them
• And we even know how to learn Joint

Distributions from data.


