Probabilistic and
Bayesian Analytics

Andrew W. Moore
Professor
School of Computer Science
Carnegie Mellon University

www.cs.cmu.edu/~awm
awm@cs.cmu.edu
412-268-7599

erPoint
originals are available. If you make use
lides in
is

Copyright © Andrew W. Moore Slide 1

Probability

e The world is a very uncertain place

» 30 years of Artificial Intelligence and
Database research danced around this fact

e And then a few Al researchers decided to
use some ideas from the eighteenth century
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What we're going to do
e We will review the fundamentals of
probability.
e It's really going to be worth it

e In this lecture, you'll see an example of
probabilistic analytics in action: Bayes
Classifiers

Discrete Random Variables

e A is a Boolean-valued random variable if A
denotes an event, and there is some degree
of uncertainty as to whether A occurs.

e Examples

e A = The US president in 2023 will be male

e A = You wake up tomorrow with a headache
e A = You have Ebola




Probabilities

e We write P(A) as “the fraction of possible
worlds in which A is true”

e We could at this point spend 2 hours on the
philosophy of this.

e But we won't.
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Visualizing A

Event space of

all possible
worlds B Worlds in which P(A) = Area of

Ais true reddish oval

Itsareais 1 - :
Worlds in which A is False

You can think of a probability as the measurement of a set.
In this case, the measurement is area.
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The Axioms of Probability
e 0<=PA) <=1
e P(True) =1
e P(False) =0
e P(AorB) =P(A) + P(B) - P(A and B)

e These plus set theory are all you need

Where do these axioms come from? Were they “discovered”?
Answers coming up later.
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Interpreting the axioms

e 0<=PA) <=1

e P(True) =1

e P(False) =0

e P(AorB) =P(A) + P(B) - P(A and B)

The area of A can't get
any smaller than 0

And a zero area would
mean no world could
ever have A true
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Interpreting the axioms

e 0<=PA)<=1

e P(True) =1

e P(False) =0

e P(AorB) =P(A) + P(B) - P(A and B)

The area of A can't get
any bigger than 1

And an area of 1 would
mean all worlds will have
A true
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Interpreting the axioms

0<=PA)<=1

P(True) =1

P(False) = 0

P(A or B) = P(A) + P(B) - P(A and B)
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Interpreting the axioms

e 0<=PA)<=1

e P(True) =1

» P(False) =0 P(A and B) would be
e P(A or B) = P(A) + P(B) - P(A and B) counted twice

P(Aor B

Simple addition and subtraction
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These Axioms are Not to be
Trifled With

e There have been attempts to do different
methodologies for uncertainty
e Fuzzy Logic
e Three-valued logic
e Dempster-Shafer
¢ Non-monotonic reasoning

e But the axioms of probability are the only
system with this property:

If you gamble using them you can't be unfairly exploited
by an opponent using some other system [di Finetti 1931]
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Theorems from the Axioms
0 <=P(A) <=1, P(True) = 1, P(False) = 0
P(A or B) = P(A) + P(B) - P(A and B)

From these we can prove:

P(not A) = P(~A) = 1-P(A)

- . h

e Substitute B = ~A above
* Notice P(A and ~A) = 0
e Notice P(Aor ~A) =1
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Side Note

e I am inflicting these proofs on you for two
reasons:

1. These kind of manipulations will need to be
second nature to you if you use probabilistic
analytics in depth
1. (or even not in depth -- Dan)

2. Suffering is good for you
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Another important theorem
e 0<=P(A) <=1, P(True) =1, P(False) = 0
e P(A or B) = P(A) + P(B) - P(A and B)
From these we can prove:
P(A) = P(A " B) + P(A " ~B)
e How?
e One way:
eletC=A"B,D=A"~B
¢ Substitute above
e Notice P(C~A D) =0
e Notice P(C v D) = P(A)
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Multivalued Random Variables

e Suppose A can take on more than 2 values

e Ais a random variable with arity k if it can take on
exactly one value out of {v,,v,, .. v\}

e Thus...
P(A=v,AA=v,)=0ifi=j
P(A=v,vA=v,v...vA=v,)=1
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An easy fact about Multivalued
Random Variables:

¢ Using the axioms of probability...
0 <=P(A) <=1, P(True) = 1, P(False) = 0
P(A or B) = P(A) + P(B) - P(A and B)

¢ And assuming that A obeys...

P(A=vl./\A=vj)=Oifi¢j
P(A=v,vA=v,v..vA=v,)=1
e It's easy to prove that

P(A=v,vA=v,v..vA=v)=Y P(A=v))
j=1
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An easy fact about Multivalued
Random Variables:

¢ Using the axioms of probability...
0 <=P(A) <=1, P(True) = 1, P(False) = 0
P(A or B) = P(A) + P(B) - P(A and B)

¢ And assuming that A obeys...

P(A=v,AA=v)=0ifi=j
P(A=v,vA=v,v..vA=vy ) =1
e It's easy to prove that ;
P(A=v1vA=v2v...vA=vi)=2P(A=vj)
¢ And thus we can prove , j=1

2P(A=vj)=1
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Another fact about Multivalued
Random Variables:

¢ Using the axioms of probability...
0 <=P(A) <=1, P(True) = 1, P(False) = 0
P(A or B) = P(A) + P(B) - P(A and B)

¢ And assuming that A obeys...

P(A=v,AnA=v)=0ifi=j
P(A=v,vA=v,v...vA=v,)=1
e It's easy to prove that i
P(BA[A=v,vA=v,v..vA=v])= > P(BAA=V))

j=1
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Another fact about Multivalued
Random Variables:

¢ Using the axioms of probability...
0 <=P(A) <=1, P(True) = 1, P(False) = 0
P(A or B) = P(A) + P(B) - P(A and B)
¢ And assuming that A obeys...
P(A=v,AnA=v)=0ifi=
P(A=v,vA=v,v...vA=v,)=1
e It's easy to prove that

P(BA[A=v,vA=v,v..vA=v])=Y P(BAA=v))

 And thus we can prove . Jj=1

P(B)=EP(BAA=vj)

j=1
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Elementary Probability in Pictures
iP(A=vj)=l
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Elementary Probability in Pictures

P(B)=iP(BAA=vj)
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Conditional Probability

e P(A|B) = Fraction of worlds in which B is
true that also have A true

H = “Have a headache”
F = “Coming down with

Flu”
P(H) = 1/10
F P(F) = 1/40

P(H|F) = 1/2
H “Headaches are rare and flu

is rarer, but if you're
coming down with *flu
there’s a 50-50 chance
you'll have a headache.”
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Conditional Probability

F

.

H = “Have a headache”
F = “Coming down with
Flu”

P(H) = 1/10
P(F) = 1/40
P(H|F) = 1/2

P(H|F) = Fraction of flu-inflicted
worlds in which you have a
headache

= #worlds with flu and headache

#worlds with flu

= Area of "H and F” region

Area of “F" region

=P(H " F)
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Definition of Conditional Probability

P(A ~ B)

Corollary: The Chain Rule
P(A ~ B) = P(A|B) P(B)
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Probabilistic Inference

H = “Have a headache”
F F = “Coming down with
Flu”
8 H
P(H) = 1/10
P(F) = 1/40
P(H|F) = 1/2

One day you wake up with a headache. You think: “Drat!
50% of flus are associated with headaches so I must have a
50-50 chance of coming down with flu”

Is this reasoning good?
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Probabilistic Inference

H = “Have a headache”
F F = “Coming down with
Flu”
8 H
P(H) = 1/10
P(F) = 1/40
P(HIF) = 1/2
P(F~H) = ..
P(FIH) = ...
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Another way to understand the
intuition

Thanks to Jahanzeb Sherwani for contributing this explanation:

Let's say we have P{F), P(H), and P(H|F), like in the
F example in class.

Areawise P(F)=A+B, P{H)=B+C,

Also, P(HF)=_B

B C H A+B

Thus, to get the opposite conditional probability, ie,
P{F|H), we need to figure out _B

B+C

Since we know B / (A+B), we can get B/ (B+C) by
multiplying by {(A+B) and dividing by (B+C). But
since we already calculated, A+B = P(F), and
B+C = P(H), so we are actually multiplying by P(F)
and dividing by P(H). Which is Bayes Rule:

P{FIH) = P(HIF) " P(F)

P{H)
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What we just did...

P(A~B) P(A[B) P(B)
P(BJA) = - =
P(A) P(A)

This is Bayes Rule

Bayes, Thomas (1763) An essay
towards solving a problem in the
doctrine of chances. Philosophical
Transactions of the Royal Society of
London, 53:370-418
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Aside: Fixing my mistakes

“Independent”
P(A and B) = P(A)-P(B)

Special case of
P(A and B) = P(A) -P(B|A)

These are not the same thing!
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“Mutually
Exclusive”
P(A or B) = P(A) + P(B)

Special case of
P(A or B) = P(A) + P(B) - P(A and B)

Slide 31
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Using Bayes Rule to Gamble

o000 [ N N

The "Win” envelope The “Lose” envelope
has 100 kronur and has three beads and
four beads in it no money

Trivial question: someone draws an envelope at random (i.e. 50% chance
of winning) and offers to sell it to you. How much should you pay?
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Using Bayes Rule to Gamble

o000 [ N N

The "Win” envelope The “Lose” envelope
has 100 krénur and has three beads and
four beads in it no money

Interesting question: before deciding, you are allowed to see one bead
drawn from the envelope.

Suppose it's black: How much should you pay?

Suppose it's red: How much should you pay?
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More General Forms of Bayes Rule

P(B1A)P(A)

A = B BIAP(A)+ PBI- D )

P(BIAAX)P(ANX)
P(BAX)

P(AIBAX)=

Here, the denominator just computes P(B).
In the gambling example, we could have done:
P(black) = P(black|win)-P(win) + P(black|~win)-P(~win)
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More General Forms of Bayes Rule
P(A=v 1B)= nAP(B|A=vl.)P(A=vl.)
EP(B |A=v)P(A=v,)

k=1
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Useful Easy-to-prove facts
P(AIB)+P(~ AIB)=1

EP(A=kaB)=1
k=1

Implied by the definition of conditional probability
P(A ™ B)

...and the “marginalization” formula

P(A) = P(A " B) + P(A " ~B)
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The Joint Distribution ... seoean

variables A, B, C

Recipe for making a joint distribution
of M variables:

Copyright © Andrew W. Moore Slide 38
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The Joint Distribution ....e: seoean

variables A, B, C

Recipe for making a joint distribution
of M variables:

1. Make a truth table listing all
combinations of values of your
variables (if there are M Boolean
variables then the table will have
2M rows).

Copyright © Andrew W. Moore

A B C
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1
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The Joint Distribution ... seoean

variables A, B, C

Recipe for making a joint distribution
of M variables:

1. Make a truth table listing all
combinations of values of your
variables (if there are M Boolean
variables then the table will have
2M rows).

2. For each combination of values,
say how probable it is.

Copyright © Andrew W. Moore

A B C Prob
0 0 0 0.30
0 0 1 0.05
0 1 0 0.10
0 1 1 0.05
1 0 0 0.05
1 0 1 0.10
1 1 0 0.25
1 1 1 0.10

Slide 40
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The Joint Distribution ....e: seoean

variables A, B, C

Prob

Recipe for making a joint distribution
of M variables:

0.30

0.05

1. Make a truth table listing all

0.10

combinations of values of your

0.05

0.05

variables (if there are M Boolean

0.10

variables then the table will have

0.25

HHHHOOOO>

2M rows).

mlr|lo|lo|r|~|lolo|m

0.10

2. For each combination of values,
say how probable it is.

3. If you subscribe to the axioms of
probability, those numbers must

fos

= ~lo|lr|o|r|lo|r|oln
-

sum to 1.
0.30
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gender hours_worked wealth
Female v0:40.5- poor 0253122 [
U - th rich  0.0245895 [l
SI n g e v1:40.5+ poor 0.0421765 [l
J H t rich  0.0116293 ||
OI n Male  v0:40.5- poor 0331313 [N
rich  0.0971295 [
v1:40.5+ poor 0.134106 |
rich 0105933 [
One you have the Joint P(E) = E P(row)

Distribution, you can ask for
the probability of any logical
expression involving your
attributes
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rows matching £

Slide 42
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gender hours_worked wealth

Female v0:40.5- poor 0253122 |G

H rich 00245895 i
U SI n g th e v1:40.5+ poor 0.0421765 [l

- rich  0.0116293 ||
JOI nt Male  v0:40.5- poor 0.331313 DIINENEG
rich  0.0971295 I
{ v1:40.5+ poor 0.134106 )G
‘ rich 0105933 [

P(Poor A Male) = 0.4654 P(E) = E P(row)

rows matching £
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gender hours_worked wealth

Female v0:40.5- poor 0253122 DIINEG

H rich  0.0245895 [l
U SI n g th e v1:40.5+ poor  0.0421768 DI

- rich  0.0116293 ||
JOI nt Male  v0:40.5- poor 0.331313 DIINENEG
rich  0.0971295 I
{ v1:40.5+ poor 0.134106 )N
‘ rich 0105933 [

P(Poor) = 0.7604 P(E) = E P(row)

rows matching £
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Inference
with the
Joint

P(El |E2)=

Copyright © Andrew W. Moore

gender hours_worked wealth
Female v0:40.5- poor 0253122 |G
rich 00245895 i
v1:40.5+ poor 0.0421765 [l
rich  0.0116293 ||
Male  v0:40.5- poor 0331313 [N
rich  0.0971295 [N
v1:40.5+ poor 0.134106 |
rich 0105933 [

P(row)
P(El A Ez) - rows matching £, and £,
P(E,) Y P(row)

rows matching £,
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Inference
with the
Joint

P(El |E2)=

P(Male | ) = 0.4654
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gender hours_worked wealth
Female v0:40.5- poor 0253122 DIINEG
rich  0.0245895 [l
v1:40.5+ poor  0.0421768 DMl
rich  0.0116293 ||

fale  v0:40.5- poor 0331313 D)

rich  0.0971295 [N

v1:40.5+ poor 0.13410%

rich 0105933 [

P(row)
P(El A Ez) _ rows matching £, and £,

P(E,) 2 P(row)

rows matching £,
/ 0.7604 = 0.612
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Inference |rme wis

with

J OI nt If1ale  v0:40.5-

P(E, | E,)

P(Poor |
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th e v1:40.5+

gender hours_worked wealth

poor 0253122 |

rich 00245895 i
poor 0.04217658 [l
rich  0.0116293 ||

— oor 0331215 )

rich  0.0971295 DN

[
|
1:40.5+ 0.134106
lif RE oor ) |

_ P(El A E2) __ rows matching £, and £,

rich  0.105933 )
P(row)

P(E,)

) = 0.4654 / 0.6685 = 0.696

E P(row)

rows matching £,
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Inference is a

e I've got this evidence. What's the chance
that this conclusion is true?
e I've got a sore neck: how likely am I to have meningitis?

e I see my lights are out and it's 9pm. What's the chance
my spouse is already asleep?

big deal

Slide 48
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Inference is a big deal

e I've got this evidence. What's the chance
that this conclusion is true?

e I've got a sore neck: how likely am I to have meningitis?

e I see my lights are out and it's 9pm. What's the chance
my spouse is already asleep?

e There’s a thriving set of industries growing based
around Bayesian Inference. Highlights are:

Medicine, Pharma, Help Desk Support, Engine
Fault Diagnosis
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Where do Joint Distributions

come from?
e Idea One: Expert Humans

e Idea Two: Simpler probabilistic facts and
some algebra (axioms, Bayes rule, ...)

Example: Suppose you had three binary variables A, B, C, and you knew

P(A) = 0.7 P(C|IA”B) = 0.1 _

P(C|AA~B) = 0.8 Then you can automatically
P(BJA) = 0.2  P(C|~A”B) = 0.3 compute the JD using the
P(B|~A) = 0.1 P(C|~A~~B) = 0.1 chain rule

P(A=x N B=y ~ C=2) =
P(C=z|A=x" B=y) P(B=y|A=x) P(A=x)

Once you have recovered JD, you can ask whatever you want!
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Where do Joint Distributions

come from?
e Idea Three: Learn them from data!

Prepare to see one of the most impressive learning
algorithms you'll come across in the entire course....

Copyright © Andrew W. Moore
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Learning a joint distribution

Build a JD table for your The fill in each row with
attributes in which the

probabilities are unspecified }3( ) records matching row
row) =
A B c Prob total number of records
0 0 0 ?
0 0 1 ? A B C Prob
0 1 0 B 0 0 0 0.30
0 1 1 > 0 0 1 0.05
1 0 0 > 0 1 0 0.10
1 0 1 B 0 1 1 0.05
1 1 0 > 1 0 0 0.05
1 1 1 B 1 0 1 0.10
1 1 0 _0.25
Fraction of all records in which ! ! . 010

A and B are True but C is False - -

Copyright © Andrew W. Moore
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Example of Learning a Joint

e This Joint was
obtained by

Iearnlng from gender hours_worked wealth

Female v0:40.5- poor 0253122 |G
th re_e . rich  0.0245895 [l
attnbutes N v1:40.5+ poor 0.0421765 [l
the UCI PR

ale  v0405-  poor 0. )
“Ad UIt" rich  0.0971295 [
Census v1:40.5+ poor  0.134106 [N

ric 5 |

Database S

[Kohavi 1995]
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Where are we?

e We have recalled the fundamentals of
probability

e We have become content with what Joint
Distributions are and how to use them

e And we even know how to learn Joint
Distributions from data.
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